N

N

SPDF: A Schedulable Parametric Data-Flow MoC
(Extended Version)
Pascal Fradet, Alain Girault, Peter Poplavko

» To cite this version:

Pascal Fradet, Alain Girault, Peter Poplavko. SPDF: A Schedulable Parametric Data-Flow MoC
(Extended Version). [Research Report] RR-7828, INRIA. 2011, pp.24. hal-00666284

HAL Id: hal-00666284
https://inria.hal.science/hal-00666284
Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00666284
https://hal.archives-ouvertes.fr

SPDF: A Schedulable
Parametric Data-Flow
MOC (Extended Version)

Pascal Fradet, Alain Girault, Peter Poplavko

RESEARCH
REPORT

N° 7828

ISSN 0249-6399 ISRN INRIA/RR--7828--FR+ENG

V4

: in]armu!ics,mathematics

SPDF: A Schedulable Parametric Data-Flow
MoC (Extended Version)

Pascal Frade, Alain Girault®, Peter Poplavko”ﬂ
Project-Team Pop Art

Research Report n°® 7828 — December 2011 — [24] pages

Abstract: Dataflow programming models are suitable to express multi-core streaming appli-
cations. The design of high-quality embedded systems in that context requires static analysis to
ensure the liveness and bounded memory of the application. However, many streaming applications
have a dynamic behavior. The previously proposed dataflow models for dynamic applications do
not provide any static guarantees or only in exchange of significant restrictions in expressive power
or automation. To overcome these restrictions, we propose the schedulable parametric dataflow
(SPDF) model of computation. We present static analyses and a quasi-static scheduling algo-
rithm. We demonstrate our approach using a video decoder case study.

Key-words: dataflow programming, parametric rates, boundedness, liveness, quasi-static
scheduling

This report is an extended version of

P. Fradet, A. Girault, and P. Poplavko, SPDF: A Schedulable Parametric Data-Flow MoC.
Proc. DATE-2012, Design, Automation and Test in Europe. IEEE, 2012.

Besides minutes differences, it adds an appendix with descriptions and proofs omitted
from the conference version.

* Inria Grenoble, Pop Art Team
t CRI-PILSI

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

SPDF: A Schedulable Parametric Data-Flow
MoC

Résumé : Les modéles de programmation flot de données sont particuliére-
ment bien adaptés aux traitements multimédia sur plateforme multicoeurs. La
conception de telles applications demande des analyses statiques pour s’assurer
de propriétés telles que la vivacité et I'exécution en mémoire bornée. D’autre
part, beaucoup d’applications multimédia modernes ont un comportement dy-
namique. Or, les modéles flot de données adaptés aux applications dynamiques
n’offrent pas d’outils d’analyse statique ou seulement en imposant de fortes re-
strictions d’expressivité et/ou d’automatisation. Pour pallier ces inconvénients,
nous introduisons SPDF (Schedulable Parametric DataFlow) un nouveau mod-
éle flot de données acceptant des taux de production/consommation dynamiques
mais pouvant étre analysé et ordonnancé statiquement. Nous illustrons SPDF
a ’aide d’une étude de cas: la modélisation d’un décodeur vidéo.

Mots-clés : programmation flot de données, taux paramétriques, mémoire
bornée, vivacité, ordonnancement quasi statique

SPDF 3

1 Introduction

Multi-core systems are becoming an increasingly important platform for many
embedded system designs. To take advantage of multi-cores, programming lan-
guages should express thread-level parallelism. Among such languages, dataflow
languages are prominent for many streaming applications [2].

Recent dataflow programming environments support applications whose be-
havior is characterized by dynamic variations in resource requirements. The
high expressive power of the underlying models makes it challenging to ensure
predictable behavior. For example, the CAL actor language [2] or Kahn Pro-
cess Networks [6] can express many dynamic applications. However, checking
liveness (i.e., no part of the system will deadlock) and boundedness (i.e., can
be executed in finite memory) is known to be hard or even undecidable.

This situation is troublesome for the design of high-quality embedded sys-
tems. Sufficient criteria for liveness and boundedness have been formulated for
less expressive models, which can nevertheless express the core part of many
streaming applications. However, such statically analyzable criteria come at
the cost of significantly constraining modeling and scheduling. For example,
parametrical synchronous dataflow (PSDF) [I] imposes a hierarchical discipline
which restricts scheduling and analysis.

In this paper, we introduce the schedulable parametric dataflow (SPDF)
model of computation (MoC) for dynamic streaming applications. SPDF was
designed to be statically analyzable for liveness and boundedness, while avoiding
the aforementioned restrictions of PSDF and certain essential restrictions of
other related models.

The article is organized as follows. In Section [2| we present a well-known
basic model — synchronous dataflow (SDF) [7] — which is easily analyzable but
restricted to static applications. We then introduce our SPDF model as a para-
metric and dynamic extension of SDF. In Section [3] we present the static anal-
yses for boundedness and liveness. Section [4] describes compilation, such as
the insertion of parameter distribution network and quasi-static scheduling. A
video decoding application is presented as a case study in Section [5} Section [6]
summarizes our contribution, compares it to related work and hints at future
research directions. The appendix describes in more details the implementation
of parameter communication and sketches the proofs of the main properties.

2 Model of Computation

We start from SDF — synchronous dataflow [7] — one of the simplest dataflow
MoC. Then, we present our MoC (SPDF) as a statically analyzable extension
of SDF with dynamic parametrization.

2.1 Basic Model: SDF

In SDF, a program is defined by a directed graph, where nodes — called actors
— are functional units. The actors have data ports connected by edges which
can be seen as FIFO (first-in first-out) channels. The atomic execution of a
given actor — called actor firing — consumes data tokens from its incoming edges
(its inputs) and produces data tokens to its outgoing edges (its outputs). The

RR n° 7828

4 Fradet & Girault & Poplavko

number of tokens consumed or produced at a given port at each firing is called
the rate. It is denoted as r(m,) where m,, is a port. In SDF, all rates are
constant and known at compile time.

data port m; rate data port w2
A B C

2 1

o—0
*—@
I

intitial tokens

Figure 1: A simple SDF graph.

Fig. [1] shows a simple SDF graph with three interconnected actors A, B
and C. Actor A has one input and one output port, whose rates are 2 and 4,
respectively.

The state of a dataflow graph is the number of tokens present at each edge
(i.e., buffered in each F1ro). Each edge carries zero or more tokens at any
moment of time. The initial state of the graph is specified by the number of
initial tokens. Edge (C, A) in Fig. (1] has two initial tokens. After the first firing
of actor A, the edge (A, B) gets four tokens while the two tokens of (C, A) are
consumed.

A major advantage of SDF is that, if it exists, a bounded schedule can be
found statically. Such a schedule ensures that each actor is eventually fired
(ensuring liveness) and that the graph returns to its its initial state after a
certain sequence of firings (ensuring boundedness of the Firos). The minimal
such sequence is called an iteration.

The numbers of firings of the different actors per iteration are computed by
solving the so-called system of balance equations. This system is made of one
equation per edge. Consider an edge (X7, X5) connecting the ports 7; and mo;
its balance equation is:

#X1 - r(m) = #Xo - r(m2) (1)

This equation states that the number of firings of the producer X7, denoted
#X;, multiplied by its rate r(my), should be equal to the same expression for
the consumer Xo. For example, the balance equation for edge (4, B) in Fig.
is #A -4 =#B - 1.

The existence of solutions of the system of balance equations is referred to
as rate consistency. The graph of Fig. [T]is rate-consistent, and the solutions are:
#A =1, #B = 4 and #C' = 2. Note that multiplying the solutions by the same
positive constant makes another set of solutions. One usually considers only the
minimal strictly positive integer solutions which are obtained by eliminating
common factors.

The minimal solutions determine the number of firings of each actor per
iteration. The next step is to determine a static order — the schedule — in
which those firings can be executed. The schedule is obtained by an abstract
computation where an actor is fired only when it has enough input tokens. The
graph of Fig. [[] can only start by firing A; then, B has enough input tokens
to be fired four times, and finally C' twice. Since each actor has been fired the
exact number of times requested by its solution, a schedule has been found.
We represent it as the string AB*C? where the superscripts denote repetition

Inria

SPDF 5

count. Another valid schedule for the same graph is AB?C B2C which can also
be written as A(B2C)2.

2.2 Our model: SPDF

We extend SDF by allowing rates to be parametric while preserving static
schedulability. Let P be a set of symbolic variables. SPDF rates are defined by
the grammar:

F = k|p|F1-Fe where k € N* and p € P

Actually, SPDF rates are more general and can be integer polynomials and
boolean expressions. For simplicity reasons, we limit ourselves to the previous
grammar where rates are products of strictly positive integers (k) or parameters
(symbolic variables) (p). Optionally, each parameter can be constrained to
belong to a specific integer interval ([1, +00) by default).

Fig. 2] shows a simple SPDF graph where the actors have constant or para-
metric rates (e.g., p - ¢ for the input rate of C).

4 2p 1 5 L LA
set p[l] set gq[p]

2 1

Figure 2: A simple SPDF graph

Unlike the rates of SDF graphs which are fixed at compile time, the para-
metric rates of an SPDF graph can change dynamically. The changes of each
parameter are made by a single actor called its modifier. By default, a param-
eter can be changed between iterations. In SPDF, a modifier may change a
parameter more often using the annotation “set p[a]” where p is the parameter
to be set and « is the exact (possibly symbolic) number of firings of the modifier
between two parameter changes. We assume that a single modifier and period
are provided for each parameter.. In Fig. 2l A and B are the modifiers for p
and ¢; they may change their value every single and p firings, respectively.

Definition 1. A SPDF graph is a tuple (G,P,i,d,r, M,), where:

e G is a directed connected graph (A, E) with A a set of actors and £ C Ax A
a set of directed edges;

P is a set of parameters;

i: & = N associates each edge with its number of initial tokens;

d:P — 2N returns the interval of each parameter;

r: AX E — F returns for each port (represented by an actor and an
adjacent edge) its associated (possibly symbolic) rate;

M:P — Aand a: P — F return for each parameter its modifier and its
change period, respectively.

RR n° 7828

6 Fradet & Girault & Poplavko

3 Static Analysis for SPDF

This section presents the three static analyses needed to ensure boundedness and
liveness of an SPDF graph. In Section[3.I] we check rate consistency by adapting
the analysis of SDF to SPDF. Conditions for consistency and solutions of balance
equations are computed in terms of symbolic expressions. In Section [3.2] we
check that the change periods of each parameter are safe. Rate consistency and
parameter change safety ensure boundedness. Section completes the analysis
chain by checking for liveness.

3.1 Rate Consistency

As in SDF, we check the rate consistency of an SPDF graph by generating
the associated system of balance equations, which are the same equations as
in , but with coefficients (i.e., the rates) depending on parameters. When
parameters are modified only between iterations, rate consistency alone ensures
boundedness.

Definition 2 (Rate Consistency). An SPDF graph is called rate counsistent
if the system of balance equations has solutions for all possible values of all
parameters.

Like in SDF graph, multiple solutions are possible for a rate-consistent SPDF
graph. These solutions differ from each other by a multiplication factor. How-
ever, we are only interested in the unique (symbolically) minimal solutions,
which we implicitly use in the definitions and properties throughout this re-
port. In Appendix[A] we sketch an algorithm for computing generic solutions
of balance equations. These solutions are computed, in general, as symbolic ex-
pressions in grammar F. From the generic solutions, the minimal solution can
be obtained by eliminating the (symbolic) greatest common divisor (‘ged’) of all
the solutions. This can be done easily by first decomposing all the solutions into
primary factors (prime numbers and parameters), obtaining the expressions in
the following form:

koklkz. . plpl.pl p2.p2...p2

prime decomposition the power of p; the power of ps

Obviously, the ged of two or more symbolic expressions in this form is obtained
as maximal subset of primary factors that is common to all the expressions (i.e.
the intersection of multisets of primary factors).

If the undirected version of the SPDF graph is acyclic, a solution always
exists. When the SPDF graph contains undirected cycles, the graph may be
rate inconsistent. There is, however, a necessary and sufficient condition for
the existence of symbolic solutions. Each undirected cycle X1, Xo,..., X,, X3
where p; and ¢; denote the rates of edge (X;, X;) should satisfy the following
condition:

(Cycle condition) p1-p2... Dn=0q1-G2-.-"n (2)

This condition enforces that any factor encountered on an “output” port of a
cycle should have a symbolically identical counterpart on an “input” port on this
cycle.

Inria

SPDF 7

Property 3 (Consistency). An SPDF graph is rate consistent if its undirected
cycles satisfy the cycle condition.

Proof. See Appendix [A] O

For example, the graph of Fig. [2|is consistent since its only cycle A, B,C, A
satisfies the cycle condition which is 2p-¢-1=2-1-pg. The minimal solutions
are #A =1, #B = 2 - p and #C = 2, yielding the schedule AB?*’C2.

The algorithm either yields for each actor its (symbolic) solution, or returns
an unsatisfied cycle condition that can be used by the programmer to fix his
SPDF graph.

3.2 Parameter Change Safety

It is always safe to change parameter values between graph iterations [I]. Indeed,
the rate consistency and liveness analyses ensure that the graph is bounded and
live for any value of the parameters. Since the graph returns to its initial state
after each iteration, all parameters can be modified at these stages. Nevertheless,
it is sometimes useful to change the parameters more often, i.e., during an
iteration. SPDF allows the programmer to specify a faster period using the
“set p[a]” annotation. Yet, not all periods are safe and their consistency must
be checked. Consider, for instance, actor B that modifies ¢ in Fig.[2l The period
1 would not be safe since it is only after p firing of B that C' can consume its
pq tokens. The rate pg would not be well defined if ¢ can change p times before
C is fired. On the other hand, the period p is safe since the iteration can be
written A(BPC)(BPC), with ¢ being changed after each sequence (BPC).

The criterion ensuring that parameter modification periods are safe relies on
the notions of influence, regions and local iterations. Intuitively, the criterion
states that a parameter can be modified once per local iteration of the region it
influences. For Fig. [2] it can be shown that the region of influence of ¢ consists
of actors B and C' and that ¢ can be changed after each local iteration (BPC),
that is, after p firings of B.

Definition 4 (Influence). An edge e = (A, B) is influenced by a parameter p,
denoted Infl(e,p), if p appears in the rates of e or in the solutions of the balance
equations of its source and sink actors. Formally,

Infl(e,p) ©@pe #AVPE #BVper(Ae)Vp e r(B,e)
where p € F if p occurs in the symbolic expression F.

The region of influence of a parameter is the subset of edges it influences.
Since an edge is a relation between actors, a region also specifies a subset of
actors.

Definition 5 (Region). The region of edges R(p) influenced by p is defined as:
R(p) = {e| Infi(e,p)}

We will sometimes abuse notation R to denote also the set of actors con-
nected by the edges of the region. For example, the region of influence of ¢ in
Fig. [2[is R(q) = {(B,C)} and the actors in this region are {B,C}.

The solutions of the system of balance equations are global solutions in that
they define the number of firings for the global iteration of the whole graph. Lo-
cal solutions are solutions for a subset of actors; they denote a nested iteration.

RR n° 7828

8 Fradet & Girault & Poplavko

Definition 6 (Local solutions). Let A be the set of actors of an SPDF graph
and #X be the global solution of X. The local solution of X in the subset
{X1,..., X} C A, denoted #,X, is obtained by dividing the global solution of

X by the greatest common divisor: #4,X; = m.

For example, the global solutions for Fig. 2| are #4 = 1, #B = 2p and
#C = 2, forming the global iteration AB*C?. The gcd of #B and #C is 2 and
the local solutions for the subset {B,C} are #4,B = p and #.,C = 1. After one
local iteration BPC, all the edges influenced by ¢ return to their initial state.
Therefore, g can be changed after each such local iteration, hence after p firings
of B, as specified by the “set ¢[p]” annotation.

Regions of influence of a given parameter can overlap (i.e., have common
edges). Each local iteration of such region may entail firing the same actor
a different number times. Such overlapping regions must be grouped so that
the modification periods of their parameters are checked on the same subset of
actors. Regions are then generalized to a subset of parameters P’ as follows:

R(P')={e|3pe P Infl(e,p)}

For convenience, we also assume that the region of the empty set of parameters
includes all edges of the graph: R(0) = &

When a region R(P2) is included within another region R(P;), the periods
of the parameters in Py can be checked on R(Pz). The local iteration of R(P1)
will always involve one or several local iterations of the inner region. Hence,
the changes of parameters from P; are always done between local iterations of
R(P2) and are therefore safe for both regions.

Before checking the parameter modification safety criterion, we structure the
set P of all parameters into a hierarchy tree of sets of parameters P; such that:

e P is partitioned into non-empty partitions P; that are placed at different
nodes and leafs of the hierarchy;

e the root of the hierarchy tree is the empty parameter set (;

e if a partition P; is a hierarchical child of a non-empty partition P;, then its
region is strictly included in the region of the parent (i.e., R(P;) C R(P;));

i

e the regions of two sets P; and P; which are not ancestor or descendant of
each other are disjoints.

This structuring process is based on two basic steps:

e (Decomposition) the first step decomposes the current set of edges (ini-
tially &) into disjoint regions. Consider the relation e; < e; which holds if
there exists a parameter influencing both edges e; and e;. Then, disjoint
regions are the connected components of the graph of the < relation. Each
disjoint set of edges corresponds to a region of a disjoint set of parameters;

INote that, by construction, all regions are also non-strictly included in the root region:
(i-e., R(Pi) C R(0)).

Inria

SPDF 9

e (Nesting) the second step finds, for each such independent region R(P),
the largest subset P’ C P such that R(P’') C R(P —P’). The set P — P’
will be the root of the (sub-)tree that will be built by iterating the process
(decomposition and nesting) on P’. This process ends when P’ = ().

Fig. |3| represents a graph with two non-empty hierarchy levels: the parent
level P; = {p} and the child level P, = {q}. The parameter p influences all
edges whereas ¢ influences only (A, D) and (D, C), hence R(P2) C R(P1). We
can now state the criterion for parameter modification safety.

Definition 7 (Data Safety). An SPDF graph is data safe if, for each parameter
p and its hierarchy node P; (p € P;), #M (p) is a multiple of a(p) and every actor
X, in R(P;) is such that #X; is a multiple of #M (p)/a(p).

This criterion ensures that the local iteration count of any region R(P;) —
computed by ged({#X | X € R(P;})) — is a multiple of the parameter change
count, #M (p)/a(p). Hence, per one change of each parameter p there are mul-
tiple local iterations of its hierarchy node P;. Thus, the change of parameter
values can take place “safely”, i.e., in between the local iterations, when the data
edges are in the initial state.

In Fig. |3} we have g € Pa, #M /o = #A/1 = 2, and R(P2) = {A,C, D}. The
solutions for the actors in R(Pz) are all multiples of 2: #A4 = 2, #C = 2p and
#D = 2pq. The annotation “set ¢[1]” in A is thus data safe.

Figure 3: An SPDF graph with two hierarchy levels: P; = {p}, P> = {q}.

Definition 8 (Period Safety). An SPDF graph is period safe if, for every pair
of parameters p and q such that #M (q) depends on at least one parameter of
the hierarchy node of p, #M (q)/a(q) is a multiple of #M (p)/a(p).

This criterion ensures that every modifier is contained in at least one region
whose local iterations never finish when a period of that modifier is not yet
completed. E.g., the graph of Fig. [2|is period-safe because even if the solution
of M(q) depends on p (#M(q) = #B = 2p), #B/a(q) = 2 is a multiple of
#M (p)/a(p) = 1, so the criterion is satisfied.

Definition 9 (Safety). An SPDF graph is safe if it is both data safe and period
safe.
Boundedness can now be stated for rate consistent and safe SPDF graphs

with bounded symbolic parameters.

Property 10 (Boundedness). All data edges and periods of a rate consistent
and safe SPDF graph return to their initial state at the end of a global iteration.
Furthermore, if every symbolic parameter can be bounded then the graph can be
scheduled in bounded memory.

RR n° 7828

10 Fradet & Girault & Poplavko

Proof. See Appendix [C] O

3.3 Liveness

The liveness property for a dataflow graph with parametric rates means that in
every infinite execution, each actor fires an infinite number of times. An SPDF
model can fail to be live when an actor waits for indefinite time for data tokens
from an input edge or for parameter values from a modifier. This happens
when a producer of the input tokens or a modifier is itself waiting for the given
actor. Thus, this phenomenon is caused by a cyclic dependency. An acyclic
directed SPDF graph where the parameter communication does not introduce
cyclic dependencies then is trivially live. There exist actors that can always
fire, thus allowing other actors to fire, and so on until the iteration is complete.
However, if there exists a directed cycle, we must check that each cycle contains
enough initial tokens. For example, if the (C, A) edge in Fig. 2| had only one
token, then A (and therefore B and C) could never fire. Checking the liveness
of SDF graphs is done by computing an iteration by abstract execution. It is
not clear whether such an approach is applicable to SPDF. Instead, we present
a sufficient condition on cycles.

Definition 11 (Saturated edge). An edge e = (A, B) is said saturated is it
has enough initial tokens to fire B the needed number of times to complete the
iteration. Formally,

i(e) > r(B,e) - #B

If the rate (B, e) or the solution #B contain symbolic parameters, the in-
equality must be proved for the upper bounds of those parameters. An edge
cannot be saturated if the corresponding inequality involves symbolic parame-
ters with no upper bound.

Definition 12 (Live cycle). A cycle X1, ..., X, X1 is said live if it contains
at least one saturated edge.

If (X, exr) - #Xk is a symbolic expression, the inequality is checked using
the maximum values of the parameters involved. If one of the parameters does
not have a declared maximum, then the inequality is considered false. In Fig.
the cycle is live since i(C, A) = 2, r(A4, (C, A)) = 2, and #A = 1.

Definition 13 (User). A user U of a parameter p is an actor different from
M (p) such that p occurs in #U or in the rate of one of the ports of U.

Property 14 (Liveness). Given a rate-consistent and safe SPDF graph where
e all directed cycles are live,

e for each parameter p there is a path from its modifier to each user of p in
a directed acyclic graph obtained from the SPDF graph by removing only
saturated edges,

there exists a schedule where every actor is fired for an infinite number of times.

Proof. See Appendix O

Inria

SPDF 11

The second requirement ensures that the parameter communication from
the modifier to the users does not introduce non-live cycles. Liveness analysis
either succeeds or returns to the programmer the faulty cycles (i.e., with not
enough initial tokens) or the faulty modifier-user pairs.

We could use, as in [I] [3], less restrictive criteria using local solutions in
strongly connected subgraphs. We skip this possibility here for simplicity rea-
sons.

4 Compilation

We first show how to transform any safe SPDF graph into a graph which can
be scheduled in bounded memory by dynamic scheduling (Section . Then,
we describe how to generate a quasi-static schedule (Section .

4.1 Parameter Communication for Bounded Scheduling

The critical aspect for simulating or scheduling SPDF graphs is the communi-
cation of the values of parameters from the modifiers to the users. Not only
the data paths (i.e. the SPDF graph itself), but also the control paths (i.e. the
communication of the parameters), should be bounded and live. Such control
paths are inserted automatically by an algorithm presented in this subsection.

Parameter communication is defined in Appendix [B] Our algorithm imple-
ments this definition by taking the values of the parameters computed by the
modifiers and propagating them to the users. This is done by adding extra ac-
tors, edges, and ports, forming parameter distribution networks (PDNs). This
occurs in such a way that the SPDF graph when instrumented by PDNs remains
rate consistent, safe and live according to the criteria defined in Section [3| The
PDNs link M (p) to all the users of p. These networks are built in three steps.

The first step adds to M (p) a new output port, and to each user a new control
port, respectively to send and to receive the successive values of p. Control ports
behave exactly as in BDF [4]: each actor must read input tokens from all its
control ports before reading tokens from its regular data ports.

; {users} : ,- {users} ll
s PP ,” 1

i
‘add to the set’ : !\ ‘add to the set’
\ N

Va

{users}
P; Py Ps
14
control ports

S,

assume pe P,

Mp))
Posetplap] |

region of the modifier

U

< from other
PDNs >

R(P3) R(P5) .~ R (Py)

< to other regions >

Figure 4: Communication of a parameter from the modifier to the users.
The second step adds a new actor E(p), called the emitter of p, and a new

edge e = (M(p), E(p)), such that (M (p),e) = 1 and r(E(p),e) = a(p). Among
the «(p) tokens it receives, E(p) transmits only the first one, the one that

RR n° 7828

12 Fradet & Girault & Poplavko

contains the new value of p. To transmit the output token, the emitter has one
or more output ports with rate 1. Note that the rates at the edge (M (p), E(p))
ensure that , by balance equations:

#E(p) = #M (p)/a(p) (3)

We refer to E(p) as a downsampler (]), because it translates multiple tokens
(samples) into one. This is illustrated in Fig.

In general, E(p) fires once per certain number of firings of the users, so each
user should receive the same value of p repeated a certain number of times. The
third step implements this requirement using upsamplers (1) that repeat every
input token a given number of times. This step depends on the region hierarchy.

The order in which the users are connected to the emitter is defined by
the hierarchal location of their ports (see Definition [16] in Appendix [B). For
parameter p contained in hierarchy node Py the user ports can be located in
the hierarchy node Py or in a node Py that is lower in the hierarchy tree. For
example, in Fig.] we assume that p is in P, which has a hierarchical child Ps,
where some users of Py are located.

The parameter distribution network (PDN) of parameter p to destination
region R(Pn-) is the tree of sampler actors and edges from the modifier of p to
the users of p whose ports are located in region Py-. For example, in Fig.
we illustrate a PDN to destination region R(Ps); thus, in this example N’ = 3.
As illustrated in the figure, all the PDNs of parameter p share the same emitter
and go to different destination regions.

Let us describe the insertion of one PDN for parameter p to R(Py-) and then
describe how all PDNs are inserted. Let us consider the path in the hierarchy
tree Py, Po,...,Pn+, where Py is the location of the emitter output port. We
insert a chain of upsampling actors (Uy)g=1...n’—1 With upsampling rates wuy, as
illustrated in Fig. [The input of U; is connected to the emitter output, and
the input of Uy, k > 1 is connected to the output of Ug_;. The rates uj are
computed according to the semantics of parameter communication as described
in Appendix [B| (Equality (14)). Having thus inserted the upsampling chain to
the destination region of the PDN, now for each internal user X;, we insert an
extra upsampling actor S; with upsampling rate s; equal to local solution #4,X;
in the context of region R(Pn+) (see Fig. H)).

Our PDN insertion algorithm first inserts all the emitters, then visits the
hierarchy nodes P; and connects the users that have ports located in R(P;) to
the emitters of all parameters that influence these ports. For every parameter,
a PDN is created to the region of P; as destination, using the PDN insertion
procedure defined above. The nodes P; are visited in a bottom-up order. Al-
though Uy and S; are new users, they can be located only in the current or
higher hierarchy levels. Thus, when adding these new users the lower level re-
gions do not need to be revisited. Note that if E(p) is a user of p we do not
communicate parameter p to it by a PDN, as this would create a deadlocked
cyclic path and the emitter anyway receives the values of the parameter directly
from the modifier.

After inserting the PDN, the final step is to shortcut all the samplers with
rate 1. The graph of Fig. 2] with its PDN is shown in Fig. [f] It is interesting
to note that by PDN insertion we obtain an SPDF graph where not only data
but also control communication is done via FIFO channels. Therefore, SPDF

Inria

SPDF 13

can be seen as a special case of Kahn process networks, just as SDF, PSDF and
other dataflow MoCs.

Figure 5: The SPDF graph of Fig. [2| with its PDN.

Unlike general Kahn process networks, the SPDF graphs have bounded-
memory executions, as shown by Property [I0] It follows that they can be
scheduled in bounded memory by the general dynamic scheduling algorithms
presented in [0, [5]. However, in the next section we show that for a certain class
of SPDF graphs the schedule can be computed statically.

4.2 Quasi-static scheduling

In SPDF, since the firing counts of some actors can be parametric, so is the
schedule, which is said to be quasi-static [I]. Currently, our quasi-static schedul-
ing algorithm, next to the static analysis criteria for rate consistency, safety and
liveness, requires that all parameters p; can be ordered such that their corre-
sponding emitters E(p;) are related by:

#E(piﬂ) =fi- #E(pi)

for some f; € F. Observing that #F(p;) denotes the modification count of
p; during a global iteration, we can expect our requirement to hold often in
practice. A typical streaming application can be represented by nested loops
where each parameter is modified exactly once at a certain loop level. The
ordering of parameters corresponds to the different loop levels.

Our liveness criterion implies that we can ignore the edges with initial tokens
and consider the corresponding acyclic graph. First, for the source (i.e., non-
PDN) part of the graph, we generate a string composed of the actors of that
graph sorted topologically, e.g., ABC for Fig.

In this string, we replace every actor X by the wrapper:

(4)

X#Xif X is not a user or modifier of any parameter
(set ps,; (set piy; ... (set piy; XIN+1) [)/2) i otherwise

where p;, (kK = 1...N) are parameters use(ﬂ or modified by X; 75 are the
increasing indexes of parameters in the above ordering; ‘set p;’ sets a new pa-

rameter value for the given actor; f{ = #E(p1); [, = % for k=2...N;
gl = ﬁ% For Fig. we produce:
(set p; A;) (set p; (set q; BP)?) (set p; (set q; C)?)
25ee definition

RR n° 7828

14 Fradet & Girault & Poplavko

Finally, we introduce modifier-to-user communication statements, equivalent
to PDNs. The modifier is implicitly connected to each user by a separate queue.
It writes to all the queues with a single “push p;”. Each user reads the parameter
values by a “pop p;”. In the wrapper for actor X, we replace the “set p;” by
“push p;” if X is the modifier or by “pop p;” otherwise. The push are moved
after the actor invocationf’] because the actor as modifier has to compute the
value to be pushed. In our running example, we get:

(A;push p) (pop p; (B”;push ¢)*) (pop p; (pop ¢; C)?)

5 Case Study

We have applied SPDF to realistic case studies provided by an industrial part-
ner. Figure [6] shows an SPDF model for a video decoder. The actor “input”
reads the coded input frame and triggers a variable-length decoder “vld” for
the 100 macroblocks of the frame. Once per frame (period 100) “vld” deter-
mines parameter p indicating whether the frame uses motion compensation.
The actor “mv” determines whether the current macroblock has motion vectors
(parameter t). If both conditions hold (p-t), motion compensation is performed
by the actor “mc”. The actor “vld” triggers the calculation of four luminance
blocks, “lum”; each one computing an [indicating whether it is coded. For
coded blocks, inverse discrete cosine transform (IDCT) is performed by the ac-
tor “l-idet”. The actor “vld” also determines whether chrominance is coded in
macroblock (parameter ¢). If so, it triggers the execution of IDCT, “c-idct”,
followed by upscaling, “upsc”, which builds four chrominance blocks out of one.
Finally, the four luminance and chrominance blocks of the macroblock are con-
verted one-by-one to RGB color format by the actor “color” and sent to the
output frame. For each 100 macroblocks, the output frame expects 400 blocks.

Concerning rate consistency, the cycle condition is true for three undirected
cycles, so the balance equation algorithm succeeds. Concerning safety, our hi-
erarchy computation algorithm finds three disjoint nodes with parameter sets
Py = {p,t}, P2 = {l}, and P53 = {c}. The video decoder does not have directed
cycles and the modifiers are located upstream to the users, so the liveness cri-
terion holds.

Then, the PDN is inserted, shown in grey in Fig. [l Finally, the quasi-
static scheduler examines the periods of the modifiers and sorts the parame-
ters: (p (modified x1/frame), ¢ (x100 more),l,¢ (x4 more)). Applying our al-
gorithm, we obtain the following schedule:

input ((vld;push c) 100; push p) (pop p; (mv; push ¢

(pop p; (pop ¢; (me)?*)*%%) ((lum; push 1)*%%)
((pop ; (l-idct)l)400) (pop ¢; (c-idct)c)100
(pop ¢; (upsc)c)loo (pop ¢; (pop l; pop t; color

)400)

)4)100 output

Actually, all the parameters (p, ¢, [, ¢) have been encoded as booleans. For
simplicity reasons, we have not presented this extension, but the whole method-
ology presented in this work applies to this example without restrictions.

3while staying at the same level of parentheses nesting

Inria

SPDF 15

input output
— A
Vu\ 1
— T
t
4 1| mv pt (1 PPt
| set 7[1] color
vid
setc [1]
set p [100]|4 1 1, /
| lum 1
set[1] l-idct
4 1< 11 4 ¢
—> .

Figure 6: Video decoder (compiler-inserted elements shown in gray).

6 Conclusions

We presented SPDF, a novel MoC for parametric streaming applications en-
abling static analysis and scheduling. We formulated sufficient and general
static criteria for boundedness and liveness. In SPDF, parameter changes are
allowed even within iterations. Their safety can be checked and their implemen-
tation is made explicit. All this was possible because we could manipulate and
compare dynamic values by well-defined static operations on symbolic expres-
sions. The same holds for quasi-static scheduling, which is the first step towards
code generation for multi-core systems.

The most closely related MoC is PSDF [I], which requires to manually find
the hierarchy levels and enclose them into hierarchical actors, e.g., four levels
for Fig. @ With PSDF, the analysis is not completely static, as [I] applies
a run-time analysis at hierarchy boundaries. The hierarchy analysis proposed
in [8] requires significant manual help. The Scenario-Aware Data-Flow (SADF)
MoC [10] is a dynamic extension of the SDF for which various advanced perfor-
mance analysis techniques have been developed. Yet, SADF does not define any
boundedness analysis if dataflow rates change more often than once per global
iteration.

The Variable-Rate Data-Flow (VRDF) MoC [11] introduced support for fre-
quent changes of actor rates. However, VRDF imposes strong structural con-
straints on the graph. In particular, for each parametric rate p there can be at
most one port 7, = (4, e,) in the graph that produces p tokens, which must be
matched by exactly one port m, = (B, ep) that consumes p tokens. Moreover,
let G’ be the minimal subgraph that includes all the graph paths from m, to .
Then the VRDF requires that the local solutions of A and B in this subgraph
be equal to 1, so that parameter p can change safely at every firing of A and
B. This VRDF requirement is obviously significantly more restrictive than our

RR n° 7828

16 Fradet & Girault & Poplavko

safety criterion. Moreover, quite a few practical applications do not satisfy this
requirement. For example, in our case study in Fig.[6] we see that ‘chrominance’
parameter ¢ does not satisfy the VRDF requirement, as parameter ¢ may safely
change only once per four firings of actor color, which has a port that consumes
c tokens.

Multiprocessor scheduling for SPDF is an obvious and important extension
of our work. Other important future work is SPDF scheduling with dynamic
voltage and frequency scaling and performance-memory trade-off exploration.
We also intend to explore other forms of dynamicity, such as dynamic graph
reconfigurations, while preserving static schedulability.

References

[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow model-
ing of DSP systems. In ICASSP’00. IEEE, 2000.

[2] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. von Platen,
M. Mattavelli, and M. Raulet. OpenDF: a dataflow toolset for reconfig-
urable hardware and multicore systems. SIGARCH Comput. Archit. News,
36:29-35, June 2009.

[3] S.S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Press, 1996.

[4] J. Buck and E. Lee. Scheduling dynamic data-flow graphs with bounded
memory using the token flow model. In ICASSP’93, volume I, pages 429—
432, Minneapolis (MN), USA, Apr. 1993. IEEE.

[5] M. Geilen and T. Basten. Requirements on the execution of Kahn process
networks. In ESOP’03, pages 319-334. Springer-Verlag, 2003.

[6] G. Kahn. The semantics of a simple language for parallel programming. In
Information processing, pages 471-475. North Holland, 1974.

[7] E. Lee and D. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Comput., 36(1):24-35,
Jan. 1987.

[8] S. Neuendorffer and E. Lee. Hierarchical reconfiguration of dataflow models.
In MEMOCODE’04, pages 179-188. IEEE, 2004.

[9] T. M. Parks. Bounded Scheduling of Process Networks. PhD thesis, Uni-
versity of California, Berkeley, 1995.

[10] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications. In IC-
SAMOS’11, pages 404-411. IEEE, 2011.

[11] M. Wiggers, M. Bekooij, and G. Smit. Buffer capacity computation for
throughput constrained streaming applications with data-dependent inter-
task communication. In RTAS’08, pages 183-194. IEEE, 2008.

Inria

SPDF 17

Appendix

A Proof of Rate Consistency

Property 3 (Counsistency). An SPDF graph is rate consistent if its undirected
cycles satisfy the cycle condition.

Proof. If the undirected SPDF graph contains no cyclic paths then, for any
given actor X; the SDF graph can be see as an undirected tree rooted in X;.
For instance, the following trees rooted in X, Xs and X3 respectively, are three
representations of the same graph.

ro r1 ra
r2 r3)

We define the generic solutions of the balance equations as
#X, =p1...0n for each actor X;

where the p;’s are the rates of the “input” ports of the tree rooted in X;. For
the previous graph, such a solution would be

#X1 =rors #Xo=rors #X3 =112

Let us consider an arbitrary edge A2 9B, then the balance equation associ-
ated with this edge is

#A-p=#B-q (5)

The generic solutions for A and B are of the form
#A=q i1 in H#B=p-ir-in

which are clearly solutions of equation |5} Note that minimal solutions can be
obtained by removing all common factors from generic solutions.

In case of a SPDF graph with undirected cycles, we proceed exactly as above
on a spanning tree. That tree is obtained by selecting a cycle and removing one
of its edge to suppress it. This process is pursued until no cycle remains. As
shown in the acyclic case, the balance equations corresponding to the edges of
the spanning tree are satisfied by the generic solutions. The remaining equations
correspond to edges suppressed to remove cycles. Let us consider a cycle

)(1 D1 q2)(2 b2 o dn ann q1 Xl

in the SPDF graph whose edge X,, 22— X does not appear in the spanning
tree. We must show that the generic solutions found using the spanning tree

RR n° 7828

18 Fradet & Girault & Poplavko

are also solutions for the balance equation associated with this suppressed edge.
We know that the generic solutions verify the following balance equations:

#X - pi = #Xi41 - Gyt fori=1...n—1

Then, multiplying all the lhs and rhs of the n — 1 equations we get

#X1 X1 PPl = #H XX @ g
by removing the common factors
#X1:p1p2- D1 = #Xnoq@on

and multiplying both sides by ¢;
#X1qu-prop2opnor = #Xnqi @2

then using the cycle condition
#X1-qrprop2ooopnr = H#XnoProp2...opn

and simplifying by p1 - p2... pp-1

#X1 -1 = #Xo-pa

which is the balance equation corresponding to the suppressed edge.

The cycle condition guarantees that the balance equation of any suppressed
edge is satisfied. Hence, the generic solutions satisfy the balance equations for
all edges, which guarantees rate consistency of the SPDF graph. O

B Parameter Communication

SPDF dictates a specific way of setting the parameters that influence the dy-
namic rates. This section describes how the parameters set by the modifiers
should be propagated to the users.

We define parameter communication only for SPDF graphs that satisfy the
safety criterion. As a tool to define it, we consider a modified variant of the
SPDF model, which we call pseudo-SPDF. Compared to SPDF, this model is
characterized by a more relaxed ordering of productions and consumptions of
tokens at the edges. In pseudo-SPDF, ports are decoupled from each other and
are fired independently. An input port does not necessarily wait until there are
enough input tokens in the edge. As a result, some edges can sometimes be seen
as carrying a “negative” number of tokens. Nevertheless, every port produces
or consumes exactly the same parametric number of tokens as specified in the
SPDF graph. The k-th firing of a pseudo-SPDF port results in an exactly
equivalent production or consumption at this port by the k-th firing of the
actual SPDF actor. An important property of pseudo-SPDF is that if the ports
fire the same number of times as specified in the SPDF schedule, then the
pseudo-SPDF graph will end up in the same state, i.e., the edges will carry the
same number of tokens. By defining the parameter changes in a pseudo-SPDF
graph, we define which parameter changes should be experienced by actors in
the SPDF MoC.

A pseudo-schedule describes the sequential execution of a pseudo-SPDF
graph. It is a schedule expressed in terms of ports instead of actors. We write
them into curly braces “{...}” to distinguish them from ‘regular’ schedules. The
ports fire the same number of times per iteration as their corresponding SPDF
actor. A simple naive pseudo-schedule can be constructed by listing all the
ports of the graph in an arbitrary order with a superscript giving the solution of

Inria

SPDF 19

balance equations of the corresponding actors. Such a pseudo-schedule is called
an initial pseudo-schedule. For example, the initial pseudo-schedule for Figure 3]
is:

{4} [AZBPBPD*PID*CE C2Y (6)

p.q”"p

Each port is denoted by the actor it belongs to, with no subscript when the
rate is constant (e.g., B for the input port and for the output port of B), with
a subscript denoting the parameters it depends on (e.g., A, or A, , for the two
output ports of A), and with a superscript denoting its firing count as in an
SPDF schedule (e.g., D?? for the input port and for the output port of D).
Note that two ports can have identical subscript and superscript (e.g., the two
ports of B or D). It is irrelevant for us to distinguish between them.

The describe parameter communication within pseudo-schedule, we start by
adding virtual ports called emitter ports. One emitter port E(p) is added for
each parameter p. The role of the emitter port is to propagate the new value
of the parameter generated by the modifier. These values are enqueued in the
output queue attached to the emitter port until they are retrieved and used to
instantiate parametric rates and firing counts. By definition, an emitter port
fires the same number of times as the modifier sets the new value of its parame-
ter. Therefore, the superscript of the emitter port of p is #M (p)/a(p), which is
in line with Equality . For the example of Figure we have #M (p)/a(p) = 1
and #M (q)/a(q) = 2. We insert E(p) and E(q)? to obtain the following pseudo-
schedule:

{E(p)E(q)*A; ,AZBPBYD*1D*MC? C2} (7)

p,q=7p

A pseudo-schedule like does not reflect the change of parameters during
the global iteration yet. This is done by reordering the pseudo-schedule and
grouping ports according to the hierarchy of regions. This grouping of ports
is done according to the notion of containment and location of ports in the
hierarchy regions. E| Region R(P;) contains the given port 7 if a parameter
from P; occurs in the subscript and subscript of 7. Formally:

Definition 15 (Port Region). A port m = (A, e) is contained in a region R(P;)
if IpePi,per(n)VpeHA)

Definition 16 (Port Location). A port is said to be located in the hierarchically
lowest region R(P;) that contains it.

For example, in Figure [3] we had two hierarchical nodes: P; = {p} and
P2 = {q}, and the root node for an empty parameter set (). The port A, , is
contained in R({¢}), R({p}), and R(0). The lowest region is R({q}), so A, 4 is
located there.

According to the location of ports, the pseudo-schedule is reordered as
follows:

{E(p)E(q)*(A;C, BP BP (D" DM Cy Ay g)*) } (8)
R({a})
R({p})
R(0)

4See Section for the definition of regions

RR n° 7828

20 Fradet & Girault & Poplavko

In general, the grouping is done by traversing the hierarchy tree from bottom
to top (e.g., first {¢}, then {p}, and then () in our example). As a result, we get
a string representation of the hierarchy tree, where the lower regions are nested
within the higher regions. By computing and factorizing the (symbolic) ged of
the solutions (superscripts) inside regions, we make explicit the local iteration
of regions. For example, in (8], the greatest common divisor of region R({q})
is 2, which is factorized and placed outside the parentheses, leaving inside the
schedule for the local iteration of R({q}).

The last step to obtain a correct pseudo-schedule is to make explicit the
actual retrieve and change of parameters. This is done using parameter switch
points, denoted A p, for each parameter p. As discussed in Section the
parameter may only change at the beginning of local iteration of its hierarchical
region. A switch point is inserted at the beginning of the local subschedule of
R(P;) for every parameter in P;. In our running example, the result is:

{E(p)E(q)*(apA;CyBPBP(Ag DP1DYCy, 4 A,)%)} 9)
—_——
R({q})
R({r})

R()

The new parameter value of p, which was earlier enqueued by E(p), is pre-
cisely retrieved at the switch point Ap. In our running example, two values of
parameter g are enqueued at the beginning, by E(q)?, and then dequeued by Aq,
which belongs to the local schedule of region R({q}) executed also twice.

Note that in general a switch point does not retrieve the parameter value
at every firing of that point but at a certain period, called switch period. The
computation of the switch period is defined later.

After grouping the local schedules and inserting the switch points, we finally
obtain a correct pseudo-schedule. There are however other correct pseudo-
schedules which can be obtained by transformations. For example, changing
the order of ports of the given region is such a transformation. Another trans-
formation (that we will use later) is refactoring.

Property 17 (Refactoring a pseudo-schedule). Let S, and S, be some sub-
schedules of a correct pseudo-schedule, let f,, fy, g, and h be expressions in F.
Then, the transformation from

(. (Sfasfn y into {...(S[eS/)Th .Y
results in an equivalent pseudo-schedule.

Proof. Sketch: In a correct pseudo-schedule, there is only one switch point for
every parameter. Further, this switch point cannot occur between two sub-
schedules that use this parameter. Hence, the parameters that may occur in g
have exactly the same value in Sf+*9 as in Sg @9, Therefore g has the same value
in both cases and we can factorize this common factor by taking it outside the
parentheses. O

The following definition is needed to define the superscripts occurring within
pseudo-schedules

Inria

SPDF 21

Definition 18 (Local iteration w.r.t. the parent region). The local iteration
count of region R(P;) in the context of its parent region R(P;), R(P;)CR(P;)
is defined as:
foi= ged{#X | X € R(Pi)}

Y ged{#X | X € R(P))}
This local iteration count gives the number of iterations of R(P;) per each iter-

ation of R(P;).

We can now complete the definition of parameter change by defining the
switch periods. From the safety criteria, we know that the solutions of the
regions are multiples of #FE(p) for all parameters p that influence these regions.
The data criterion ensures this relation between the emitters and the user actors.
The period safety criterion complements the data safety criterion such that the
emitters themselves can be seen as the users of parameters of other emitters,
ensuring that the abovementioned relation holds also in this case.

For a given parameter p contained in hierarchy node P;, consider the emitter
port E(p). From the safety criteria, the emitter port is located in a hierarchy
region R(P;) that is strictly higher in the hierarchy tree than P;. It then follows
that there is a path in the hierarchy tree from P; to P; with N — 1 edges for
some N > 1. Without loss of generality, let us assume that j =1, i = N, and
that the nodes in the hierarchy path are Pi,Ps, ..., Py. The subschedule that
includes only the ports located in the given hierarchical path is of the form:

{E@)= ... (aPy...(aAPs... APN_1(APx ...)0y o)) fe2) (10)

where fg is the local solution of the emitter in region R(P;), AP; is the collection
of switch points for the parameters in P; and f;y is specified by Definition

To define the switch period of Ap properly, we must consider the relative
frequency of execution of the emitter port E(p) w.r.t. the switch point Ap. Let
us remove from schedule all the irrelevant elements (i.e., all ports except
E(p) and all switch points in APy except Ap) to get:

{E(®)7E(APo(APs ... APN_1(Ap)TN .)2y e} (11)

We now transform the pseudo-schedule to make clear how many times Ap is
executed per execution of E(p). From the safety criteria, it follows that:

EIUEfv u'fE:er'fr3’~~'er

In other words, the right-hand side of this equality is a multiple of fg. Therefore,
we can split every fy(x41) for k=1... N — 1 into two factors:

Jr(kr1) = Uk - fek (12)

such that:
u1~u2...U(N,1) = u
fel'fe2~'~fc(N—l) = fE

One of the possible formulas that can be used to compute for and wuy for k =
1...N —1is given below{’]

fer = gcd(frks1), fER) (13)
ug = fe(err)/ fek (14)

5 Any other valid formula would also result in a pseudo-schedule that is equivalent to .
Thus a different choice for a formula would not essentially change the behavior.

RR n° 7828

22 Fradet & Girault & Poplavko

where fg1 = fg and frki1) = fer/ for- Substituting into (11), we get:
{E’(p)fel'feQ-nfe(N—l) (AP (APs. .. (Ap)u(N—l)'fe(N—l) o _)u2'f62)u1'fe1}
Using the transformation from Property [17] N times, we get:
{(B() (8'Pa(8Pa.. ()= eyt YJovfovfuv)

where A'Pj, are switch points that are different from the switch points AP as
they were before the transformations. The periods of these “modified” switch
points are multiplied by the factors that we took outside the parentheses. In-
deed, A"Py switches less frequently than APy by a factor fer - fokt1) - - - fo(n—1)
fork=2...(N —1).

From this result, we finally obtain the schedule that defines the number of
executions of Ap per one execution of E(p). This schedule is given below:

{E(p)(&"P2(&'Ps ... (Ap)H@v-1 .)u2)ur} (15)

The switch period of Ap is defined to be such that at every iteration of sched-
ule , the switch point Ap will retrieve a value only at the first firing and
then not for the remaining firings. This ensures that the value of p is dequeued
once per iteration of the schedule above, which is consistent with the fact that
it is also enqueued only once, by the firing of E(p).

From schedule , it might seem that the switch period is u = wuq - us -
... u(n—1)- However, in general, this is not true, because u; depend on parame-
ters in Ps, Ps, ..., which switch their values during the iteration of this schedule.
Thus, the switch periods of Ap depends on the switch periods of the parameters
strictly higher in the hierarchy. This is done recursively by first calculating the
periods for the parameters that are higher in the hierarchy and then deriving
the periods lower in the hierarchy. It is unclear whether there is a general way
to express the switch period analytically, in a direct way. For this reason we
content ourselves by the above indirect definition, using pseudo-schedule .

This completes the definition of parameter changes in the SPDF graph.
Correct pseudo-schedules define where parameters may change their values and
the frequency (consistent with “set p[a]” annotations) of those changes.

C Proof of Boundedness

Property 10 (Boundedness). All data edges and periods of a rate consistent
and safe SPDF graph return to their initial state at the end of a global iteration.
Furthermore, if every symbolic parameter can be bounded then the graph can be
scheduled in bounded memory.

Sketch. Let e be an arbitrary edge e = (A, B) and R(P;) the lowest region in
the hierarchy tree that contains e, then R(P;) is the region where both ports of e
are located. As defined in Appendix [B] the communication of parameters in safe
graphs ensures that the rates of ports located in a given region do not change
during the local iteration of that region. Hence, rates of the ports connected to
e do not change during a local iteration of R(P;). Moreover, the firing counts
of A and B per local iteration are equal to the local solutions of these actors:
#,A and #,B. By construction, these solutions satisfy the balance equation for

Inria

SPDF 23

edge e. Thus, a local iteration of region R(P;) always brings edge e to its initial
state. Because the global pseudo-schedule always brings the local iterations of
hierarchical nodes to completion, we see that a global iteration also brings edge
e to the initial state.

By construction, the PDN actors and edges satisfy the rate consistency and
safety criterion. Therefore the above reasoning also holds for the parameter
communication edges, including the edges (M (p), E(p)), which model the peri-
ods. Because all these edges come back to their initial state, we conclude that
a global iteration brings all the periods to completion.

If the interval of every parameter is bounded, the firing counts per global
iteration and the rates of actors are bounded as well. Hence, a global itera-
tion uses a bounded memory and, because the graph comes back to the initial
state, the required memory of the next iteration is independent of the previous
iterations. A schedule can execute an indefinitely long sequence of global itera-
tions. Consequently, an indefinitely long execution of the SPDF graph can be
scheduled in a bounded memory. O

D Proof of Liveness

Property 14 (Liveness). Given a rate-consistent and safe SPDF graph where
e all directed cycles are live,

e for each parameter p there is a path from its modifier to each user of p in
a directed acyclic graph obtained from the SPDF graph by removing only
saturated edges,

there exists a schedule where every actor is fired for an infinite number of times.

Sketch. By definition, every live cycle contains a saturated edge, that is, an
edge e satisfying the following inequality:

i(e) = (r(X,e) - #X)[pi"*" /pi] (16)

where e is an incoming edge of actor X, p; denotes the symbolic parameters in
the inequality and p7*** their upper bounds, and X [k/p] denotes the substitution
of k for pin X. Two important facts hold under the assumptions of the property.

First, the right-hand side of inequality contains an upper bound on the
number of tokens consumed in a global iteration. Indeed, even if parameters
change within an iteration no one can exceed its own upper bound p[***. Actu-
ally (r(X,e) - #X)[p"*® /p;] is the least upper bound on the number of tokens
consumed; it is reached by fixing all parameters p; to p/*** at the beginning of
the iteration and not changing them.

Second, when we insert the PDNs into the SPDF graph then all the cycles
in the resulting SPDF graph are live. Suppose that the PDNs introduce a non-
live cycle in the graph then it contains PDN edges that start at a modifier of
some parameter p and ends at some non-PDN user of parameter p. From the
second assumption of property[4] all such paths have a corresponding non-PDN
path (from the same modifiers to the same users) on a DAG. Furthermore, by
definition, the non-live cycle introduced by PDNs consists of non-saturated edges
only and so the non-PDN paths of that cycle belong to the DAG. Therefore,

RR n° 7828

24 Fradet & Girault & Poplavko

after replacing all PDN paths by paths from the DAG, all edges of the cycle
belong to the DAG, which is a contradiction. We conclude that the PDNs
cannot introduce non-live cycles.

With these two facts, the statement of the property becomes straightfor-
ward. Indeed, in this case, a schedule executing an indefinitely long sequence of
global iterations can ignore the edges that satisfy . This makes the resulting
graph acyclic, which trivially allows such a schedule to bring every iteration to

completion by executing the actors of the acyclic graph in a topological order.
O

Inria

V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Model of Computation
	Basic Model: SDF
	Our model: SPDF

	Static Analysis for SPDF
	Rate Consistency
	Parameter Change Safety
	Liveness

	Compilation
	Parameter Communication for Bounded Scheduling
	Quasi-static scheduling

	Case Study
	Conclusions
	Proof of Rate Consistency
	Parameter Communication
	Proof of Boundedness
	Proof of Liveness

