
HAL Id: hal-00668010
https://inria.hal.science/hal-00668010

Submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Contention-Friendly Methodology for Search
Structures

Tyler Crain, Vincent Gramoli, Michel Raynal

To cite this version:
Tyler Crain, Vincent Gramoli, Michel Raynal. A Contention-Friendly Methodology for Search Struc-
tures. [Research Report] 2012. �hal-00668010�

https://inria.hal.science/hal-00668010
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

1
9

8
9

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 1989
Febuary 2012

Project-Team ASAP

A Contention-Friendly

Methodology for Search

Structures
Tyler Crain, Vincent Gramoli, Michel Raynal

tyler.crain@irisa.fr, vincent.gramoli@epfl.ch, raynal@irisa.fr

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

A Contention-Friendly Methodology for Search

Structures

Tyler Crain∗, Vincent Gramoli†, Michel Raynal‡∗

tyler.crain@irisa.fr, vincent.gramoli@epfl.ch, raynal@irisa.fr

Project-Team ASAP

Research Report n° 1989 — Febuary 2012 — 32 pages

Abstract: In this paper, a new methodology for writing concurrent data structures is proposed. This

methodology limits the high contention induced by today’s mutlicore environments to come up with effi-

cient alternatives to most widely used search structures, including skip lists, binary search trees and hash

tables.

Data structures are generally constrained to guarantee a big-oh step complexity even in the presence of con-

currency. By contrast our methodology guarantees the big-oh complexity only in the absence of contention

and limits the contention when concurrency appears. The key concept lies in dividing update operations

within an eager abstract access that returns rapidly for efficiency reason and a lazy structural adaptation

that may be postponed to diminish contention.

We illustrate our methodology with three contention-friendly data structures: a lock based skip list and

binary search tree, and a lock-free hash table. Our evaluation clearly shows that our contention-friendly

data structures are more efficient than their non-contention-friendly counterparts. In particular, our lock-

based skip list is up to 1.3× faster than the Java concurrent skip list, our lock-based tree is up to 2.2× faster

than the most recent concurrent tree algorithm we are aware of, and our lock-free hash table outperforms

by up to 1.2× the Java concurrent hash table. We also present contention-friendly versions of the skip list

and binary search tree using transactional memory. Even though our transaction-based data structures are

substantially slower than our lock-based ones, they inherit compositionality from transactional memory and

outperform their non-contention-friendly counterparts by 1.5× on average.

Key-words: Lock-based, Lock-free, Eager abstract modification, Lazy structural adaptation

∗ IRISA, Université de Rennes 35042 Rennes Cedex, France
† EPFL
‡ Institut Universitaire de France

Une approche méthodologique pour l’implémentation

efficace de structures de recherche concurrentes

Résumé : Ce rapport présente une approche méthodologique pour les structures de

recherche concurrentes avec des applcations aux listes á saut (skip list), arbres et table

de hachage (hash table).

Mots-clés : mémoire transactionnelle, arbre binaire, structures de données concur-

rente

A Contention-Friendly Methodology for Search Structures 3

1 Introduction

Multicore architectures are changing the way we write programs. Not only are all

computational devices turning multicore thus becoming inherently concurrent, but to-

morrow’s multicore will embed a larger amount of simplified cores to better handle

energy while proposing higher performance, a technology usually called manycore [2].

Programmers must thus change their habits to design new concurrent data structures

that can be bottlenecks in modern every day applications.

The big-oh complexity, which indicates the worst-case amount of converging steps

necessary to complete an access, used to prevail in the choice of a particular data

structure algorithm running in a sequential context or with limited concurrency. Yet

contention has now become an even more important factor of performance drops in

today’s multicore systems. For example, some concurrent data structures are even so

contended that they cannot perform better than bare sequential code, and exploiting ad-

ditional cores simply make the problem worse [30]. In response to such contention, re-

searchers seek relaxed abstractions, i.e., alternative abstractions offering weaker guar-

antees, whose performance remains acceptable when their data structure implementa-

tion is placed in a highly concurrent context. This is typically the case for the queue

of the Intel® TBB1 that is not FIFO under multiple producers/consumers and for the

quiescently consistent stack that is not LIFO in the presence of concurrency [30].

To better illustrate how con-

-40

-20

 0

 20

 40

 60

 80

 100

0 5 10 15 20 25 30 35 40 45 50S
ki

p
lis

t o
ve

r
lin

ke
d

lis
t s

pe
ed

up
-1

 (
%

)

Update ratio (%)

Speedup-1 (%)

Figure 1: Impact of contention on the performance of two 512-

sized data structures (with 48 cores running with an increasing up-

date ratio)

tention can counterbalance the

big-oh complexity in today’s

multi-/many-cores, Figure 1 de-

picts the performance of a 48-

core machine running the same

set based experiment on a con-

current linked list, with O(n)
complexity, and on a concur-

rent skip list, with O(log2 n)
complexity. A skip list, in short,

is a structure that diminishes

the complexity of a linked list

by being a sort of linked list

whose nodes may have addi-

tional shortcuts pointing towards

other nodes located further in

the list [28]. In this experi-

ment, 48 threads run insert/delete/contains accesses with an increasing proportion of

update accesses over read-only ones on each of these two structures initialized with 512

elements.2 To obtain the corresponding concurrent data structures used in the experi-

ments, we simply encapsulated the sequential code of each access into an elastic trans-

action [9]. Interestingly, above 20% updates the concurrent linked list is more efficient

than the concurrent skip list—this is shown by the negative values of the speedup-1.

The reason is that the linked list updates are localized, that is, each of them only af-

1Intel® Threading Building Blocks (TBB) http://threadingbuildingblocks.org.
2More precisely, this experiment was performed on a 4× 12-core AMD Opteron machine running at

2.1GHz and 32 GB of memory, each point is averaged over 5 runs of 5 seconds each, removes and inserts

accesses are triggered with the same probability to keep the size expectation constant and removes/inserts

that do not update the data structure are considered read-only accesses.

RR n° 1989

http://threadingbuildingblocks.org

4 T. Crain, V. Gramoli & M. Raynal

fects a constant number of nodes, typically the predecessor of the removed or of the

newly inserted node. By contrast, the skip list updates may affect up to a logarithmic

amount of predecessors for each removed of newly inserted node, producing additional

contention.

This result is unsurprising as Herb Sutter noticed that linked list could better tol-

erate contention than balanced trees for similar reasons [31], yet it is interesting to

observe experimentally that only 20% updates make a linear complexity data struc-

ture better suited than a logarithmic complexity data structure on nowadays’ multicore

machines.

In the light of the impact of contention on performance, we propose the Contention-

Friendly (CF) methodology as a methodology to design new data structures that accom-

modate contention of modern multi-/many-core machines without relaxing the correct-

ness of the abstractions. To this end, we argue for a genuine decoupling of each access

into an eager abstract access and a lazy structural adaptation. The abstract access con-

sists in modifying the abstraction by minimizing the impact on the structure itself and

aims at returning as soon as possible for the sake of responsiveness. The structural

adaptation, which can be deferred until later, aims at adapting the structure to these

changes by re-arranging elements or garbage collecting deleted ones.

We illustrate the CF methodology by designing three data structures with locks,

universal primitives, and transactions: a skip list, a binary search tree and a hash ta-

ble. As for the skip list, the aforementioned decoupling translates into splitting a node

insertion into the insertion phase at the bottom level of a skip list and the structural

adaptation responsible for updating pointers at its higher levels, or into splitting a node

removal into a logical deletion marking phase and its physical removal and garbage

collection. Similarly, the decoupling of the binary tree accesses consists in inserting or

logically removing a node prior to rebalancing and/or garbage collecting. Finally, the

hash table decoupling lies in inserting/deleting eagerly and resizing the structure lazily.

Our Java implementation of the resulting data structures indicates that our method-

ology leads to good performance on today’s multicore machines. In particular using a

micro benchmark, on a 64-way Niagara 2 machine our lock-based CF binary search tree

improves the performance of the most recent Java lock-based binary search tree imple-

mentation [4] by up to 2.2×, our lock-based CF skip list improves the performance of

Doug Lea’s concurrent skip list adaptation of Harris and Michael algorithms [14,23] by

up to 1.3×, and our lock-free hash table outperforms by up to 1.2× the JDK hash table,

which is widely distributed in the java.util.concurrent package. Finally, we show that

state-of-the-art software transactional memories execute 1.5× faster on average when

the data structures are contention-friendly.

Section 2 describes the related work. Section 3 depicts the CF methodology, Sec-

tion 4 illustrates it on three data structures. Section 5 presents the experimental results

and Section 6 concludes. The companion appendix comprises the pseudo-code and

correctness proofs of our CF algorithms, as well as additional experimentations using

transaction-based variants of our CF algorithms and a discussion.

2 Related Work

Various complexity metrics exist to evaluate data structures efficiency on a given work-

loads. From a theoretical point of view, the big-oh notation helps to derive data struc-

tures whose access step complexity is proportional to the total number of elements.

Typically, balanced trees have a logarithmic big-oh access complexity whereas non-

Inria

A Contention-Friendly Methodology for Search Structures 5

overloaded hash tables have a constant big-oh access complexity. This big-oh com-

plexity does not capture the cost of contention and theoretical models have been ex-

plored to remedy this issue [7]. Unfortunately, there are not enough evaluations of this

impact in practice.

From a more pragmatic point of view, the locality of data both in terms of space

(i.e., the promiscuity of data stored in memory) and time (i.e., the closeness of the

points in time at which they are accesses) has been an important metric of considera-

tion when implementing data structures in cache-coherent systems. Cache-aware and

cache-oblivious data structures try to exploit locality to maximize the chance of cache

hits. While the former data structures rely on some tunable parameter that can accom-

modate the targeted platform like the Judy array3, the later aims at being more portable

by flattening cleverly structural nodes into memory [12], for example the tree algorithm

of van Emde Boas et al. [32]. Both approaches are tied to cache-coherent machines but

do not accommodate upcoming many-core platforms whose cache-coherence is either

limited [33] or absent [22].

The decoupling of the update and rebalancing was vastly explored in the context of

trees [1, 3, 5, 13, 19, 21, 26, 27] but this idea was not generalized to other search struc-

tures. The decoupling of the removals in logical and physical phases was originally

studied in transactional systems [24] and later applied to various lock-free data struc-

tures including linked lists [14], hash tables [23], skip lists [10, 11] and binary search

trees [8] but insertions in these data structures were not decoupled. The contention

friendly methodology generalizes these decoupling into an eager abstract access and a

lazy structural adaptation that benefit both insertions and removals.

Our methodology is independent from the synchronization primitive used but lies

essentially in splitting accesses into an eager abstract access and a lazy structural adap-

tation. Although we focus essentially on lock-based data structures, we also evaluate

the benefit of various transactional memory algorithms when running our contention-

friendly data structures. We have already illustrated the benefit of decoupling accesses

into separate transactions in [5] on a C-based binary search tree. In such optimistic

executions, this decoupling translated into avoiding a conflict with a rotation from

rolling back the preceding insertion/removal. Here we generalize our previous work

by showing how a similar decoupling can benefit pessimistic execution and various

search structures and we compare our results to existing Java concurrent structures.

Previous investigations on improving the performance of transaction-based data struc-

tures focused exclusively on the improvement of the transaction algorithm. Some of

these investigations led to the development of novel transaction models based on ab-

stract locks to ignore low level conflicts [15, 25], or elastic transactions [9].

Finally, Shavit suggests to relax data structure guarantees in the light of the new

multicore context [30]. A stack algorithm and several relaxations to this algorithm are

presented to support concurrency. The objective as well as the means to achieve it are

quite different from ours. First, the problem raised by placing the stack into the mul-

ticore context is that performance drops below the sequential stack performance, and

the goal is to diminish contention to limit this concurrency drawback. By contrast, we

focus on deriving alternative data structures that are more scalable than highly concur-

rent ones, hence leveraging multi-/many-cores. Second, the goal of limiting contention

induced by multiple cores is achieved by relaxing consistency. In the stack example,

this relaxation boils down to replacing linearizability by quiescent consistency, guar-

anteeing that the last-in-first-out policy of an access is only with respect to preceding

3http://judy.sourceforge.net

RR n° 1989

6 T. Crain, V. Gramoli & M. Raynal

Data structure Invariant Abstract modifications Structural adaptations

Hash tables constant load factor key-value pair insertion adding buckets and rehashing

(i.e., #nodes/#buckets= O(1)) logical deletion physical deletion + rehashing

Search trees balance node insertion rotation

(i.e., shortest route to leaf ≅ longest route to leaf) logical deletion physical deletion + rotation

Skip lists node distribution per level horizontal insertion vertical insertion + increasing toplevel

(i.e., Pr[leveli = j] = 2O(j)) logical deletion physical removal + decreasing toplevel

Table 1: Decoupling example of existing data structure accesses into an abstract modification and a struc-

tural adaptation

calls when no other accesses execute concurrently. Conversely, the contention friendly

methodology aims at replacing existing data structures without relaxing their abstrac-

tion consistency: all accesses remain linearizable.

3 The CF Methodology at a Glance

In this section, we give an overview of the Contention-Friendly (CF) methodology by

describing how to write contention-friendly data structures.

The CF methodology aims at modifying the implementation of existing data struc-

tures using two simple rules without relaxing their correctness. The correctness cri-

terion ensured here is linearizability [18]. The data structures considered are search

structures because they organize a set of items referred to as elements in a way that

allows to retrieve the unique expected position of an element given its value. The typ-

ical abstraction implemented by such structures is a collection of elements that can be

specialized into various sub-abstractions like a set (without duplicates) or a dictionary

(that maps each element to some value). We consider insert, delete and contains op-

erations that respectively inserts a new node associated to a given value, removes the

node associated to a given value or leaves the structure unchanged if no such node is

present, and returns the node associated to a given value or ⊥ if such a node is absent.

Both inserts and deletes are considered updates, even though they may not modify the

structure.

The key rule of the methodology is to decouple each update into an eager ab-

stract modification and a lazy structural adaptation. The secondary rule is to make

the removal of nodes selective and tentatively affect the less loaded nodes of the data

structure. These rules induce slight changes to the original data structures as summa-

rized in Table 1, that result in a corresponding data structure that we denote using the

contention-friendly adjective to differentiate them from their original counterpart.

3.1 Eager abstract modification

Existing search structures rely on strict invariants (cf. Table 1) to guarantee their big-

oh complexity, hence each time the structure gets updated, the invariant is checked and

the structure is accordingly adapted instantaneously. While the update may affect a

small sub-part of the abstraction, its associated restructuring is a global modification

that conflict potentially with any concurrent update, thus increasing contention.

The CF methodology aims at minimizing such contention by returning eagerly the

modifications of the update operation that makes the changes to the abstraction visible.

By returning eagerly, each individual process can move on to the next operation prior to

adapting the structure. It is noteworthy that executing multiple abstract modifications

without adapting the structure does no longer guarantee the big-oh step complexity

Inria

A Contention-Friendly Methodology for Search Structures 7

of the accesses, yet such complexity may not be the predominant factor in contended

execution as we reported in the Introduction.

A second advantage is that removing the structural adaption from the abstract modi-

fication makes the cost of each operation more predictable. All operations share similar

cost and create the same amount of contention. More importantly the completion of

the abstract operation does not depend on the structural adaptation (like they do in ex-

isting algorithms) so the structural adaptation can be performed differently, using and

depending on global information.

The skip list example. A traditional skip list picks a level for each node when they

are inserted based on some pseudo-random function. The aim of this function is to

distribute the levels so that operations have an average cost of O(logn). In certain

workloads this can be preferred over trees due to the assumption that rotations are

more costly. When a node is inserted in the contention-friendly skip list it has a level

of one, which is all that is needed to ensure the correctness of the abstraction.

As an example, assume we

-∞ 5 23 36 62

-∞

-∞

+∞118

+∞

+∞36

36

12

Figure 2: Inserting horizontally in the skip list

aim at inserting an element with

value 12 in a skip list. Our in-

sertion consists in an abstract

modification that updates only

the bottom most level by in-

serting the new node as if its

level was the lowest one lead-

ing to Figure 2 where dashed arrows indicate the freshly modified pointers. We defer

the process of linking this same node at higher levels, to diminish the probability of

having this insertion conflict with a traversing operation.

3.2 Lazy structural adaptation

The purpose of decoupling the structural adaptation from the preceding abstract mod-

ification is to enable its postponing (by, for example, dedicating a separate thread to

this task), hence the term “lazy” structural adaptation. The main intuition here is that

this structural adaptation is intend to ensure the big-oh complexity rater than to ensure

correctness of the state of the abstraction. Hence, the linearization point belongs to the

execution of the abstract modification and not the structural adaptation and postponing

the structural adaptation does not change the effectiveness of operations. The visible

modification applied to the abstraction (and the structure) during the abstract modifica-

tion guarantees that any further operation applying to the same structure will observe

the changes. This helps ensuring that all operations are linearizable in that real-time

precedence is satisfied. In Appendix C we show that our structures implement a lin-

earizable abstraction.

This postponing has several advantages whose prominent one is to enable merging

of multiple adaptations in one simplified step. Although the structural adaptation might

be executed in a distributed fashion, by each individual updater threads, one can con-

sider centralizing it at one dedicated thread. Since these data structures are designed

for architectures that use many cores performing the structural adaptation on a dedi-

cated single separate thread, takes advantage of hardware that might otherwise be left

idle. Only one adaptation might be necessary for several abstract modifications and

minimizing the number of adaptations decreases accordingly the induced contention.

Furthermore, several adaptations can compensate each other as two restructuring can

RR n° 1989

8 T. Crain, V. Gramoli & M. Raynal

lead to identity. For example, a left rotation executing before a right rotation at the

same node may lead back to the initial state and executing the left rotation lazily makes

it possible to identify that executing these rotations is useless.

The skip list example. As explained in the previous example the insertion executes in

two steps. Once the horizontal insertion of node 12, depicted in Figure 2, is complete,

a restructuring is necessary to ensure the logarithmic complexity of further accesses.

A separate structural adap-

-∞ 5 23 36 62

-∞

-∞

+∞118

+∞

+∞36

36

12

12

Figure 3: Adapting vertically the skip list structure

tation step is accordingly raised

to increase the node level ap-

propriately. The insertion at

higher levels of the skip list

is executed as a separate step,

which guarantees eventually a

good distribution of nodes among

levels as depicted in Figure 3. This decoupling allows higher concurrency by splitting

one atomic operation into two atomic operations.

3.3 Selective removal

In addition to decoupling level adjustments, we do selective removals. A node that

is deleted is not removed instantaneously, instead it is marked as deleted. The struc-

tural adaptation then selects cleverly nodes that are suitable for removal, i.e., whose

removal would not induce high contention. This is important because removals may

be expensive. Removing a frequently accessed node requires locking or invalidating

a larger portion of the structure. Removing such a node is likely to cause much more

contention than removing a less frequently accessed one. In order to prevent this, only

nodes that are marked as deleted and have a level of 1 (in the skip list) or a single or

no children (in the tree) are removed. This leads to less contention, but also means

that certain nodes that are marked as deleted will not be removed. In the tree it has

already been observed that only removing such nodes [5], [4] results in a similar sized

structure as existing algorithms. In the skip list the level of a node is calculated in such

a way that after a structural adaptation is performed less than half the nodes (in the

worst case) in the list will be marked as deleted. In practice this number is observed to

be much smaller.

The skip list example. Let us look at a specific example with the skip list. On the one

hand, a removal of a node with a high level, say the one with value 36 in Figure 3, would

typically induce more contention than the removal of a node with a lower level, say the

one with value 62 spanning a single level. The reason is twofold. First removing a node

spanning ℓ levels boils down to updating ℓ pointers which increase the probability of

conflict with a concurrent operation accessing the same pointers, hence removing node

with value 36 requires to update 3 pointers while node with value 63 requires to update

a single pointer. Second, the organization of the skip list implies that higher level

pointers are more likely accessed by any operation, hence the removal of 36 typically

conflicts with every operation concurrently traversing this structure (because all these

operations would follow the topmost left pointer) whereas the single next pointer of 62

is unlikely accessed by concurrent traversals. Removing a tall node such as 36 would

Inria

A Contention-Friendly Methodology for Search Structures 9

also mean that in order to keep the logarithmic complexity of the traversals a node

would have to take its place at an equivalent height.

3.4 Avoiding contention during traversal

Each abstract operation (contains, insert, delete) of a tree or a skip list is expected to

traverse O(logn) nodes. Given that the traversal is the longest part of the operation, the

CF algorithms try to avoid as often as possible producing contention. Concurrent data

structures often require more complex synchronization operations during traversal (not

including the updates done after the traversal). For example, locking nodes in a tree

helps ensure that the traversal remains on track during a concurrent rotation [4], using

compare-and-swap operations during traversal helps the raising and lowering of levels

of a concurrent insert/delete in a lock-free skip list [11], or using optimistic strategy

helps at the risk of having to restart [16, 17].

Usually these synchronization operations are required due to structural adaptations

and the CF algorithms structural adapt differently to especially so that operations can

avoid using locks or synchronization operations during traversal.

4 Putting the CF Methodology to Work

Here we present how we apply the contention-friendly (CF) methodology to three data

structures. For further detail on the algorithms and correctness proofs please refer to

Appendix B and Appendix C, respectively.

4.1 CF Skip list

The CF skip list is made up of several levels of linked lists, with the bottom level being

a doubly linked list. Each node on the bottom level contains the following fields: A key

k, a next and prev node pointers, a lock field, a del flag indicating if the node has been

marked deleted, and a rem flag indicating if the node has been physically removed. The

algorithm presented here is lock-based, however, we have derived a transaction-based

version (cf. Appendix A).

Abstract operations. The goal of these CF algorithms is for the abstract operations

to encounter and produce as little contention as possible. In particular, it boils down

to setting the nodes del flag to true to delete a node as well as linking a new node to

the bottom list level to insert it. These modifications are necessary to guarantee that

linearizability, with all other structural adaptations being saved for later execution. For

the sake of safety, the abstract insertion acquires a lock on the predecessor node of the

to-be-inserted node whereas the abstract deletion acquires a lock on the to-be-marked

node. The lock is immediately released after the insertion or deletion completes.

No locks are acquired during the traversal, inducing no contention. More precisely,

while traversing upper levels the operation will move forward in the list using the next

pointer until it encounters a node with a larger key than the one being search for at

which point it will move down a level, similarly to a bare sequential implementation

would do. At the bottom level the traversal may end up on a node that is physically

removed due to a concurrent structural adaptation remove operation, in this case it

travels backwards in the list following the prev pointer until it arrives at a node that has

not yet been removed.

RR n° 1989

10 T. Crain, V. Gramoli & M. Raynal

Structural adaptation. The first task of the structural adaptation is to remove nodes

marked as deleted who have a height of 1. In order to prevent conflicts with concurrent

abstract operations the node n to be removed and its predecessor in the list (n.prev) are

locked. The prior nodes next pointer (n.prev.next) is then modified so that it points to

the next node (n.next), and the next node’s prev pointer (n.next.prev) is then modified

to point to the previous node (n.prev). Finally the n’s rem flag is set to true and the

locks are released.

The structural adaptation must also modify the level of nodes in order to ensure the

O(logn) expected traversal time. Since neither removals nor insertions are done as they

are in traditional skip lists, calculating the height of a node must also be achieved dif-

ferently. Existing algorithms call a random function to calculate the heights of nodes,

but if this same function was used here the structure would end up with excessive tall

nodes.

When choosing the heights it is important to consider that the fundamental struc-

ture of a skip list is not designed to be perfectly balanced but rather probabilistically

balanced. Consider a perfectly balanced skip list. The node in the very middle of the

list would be the tallest node and the nodes just to the right and left of this node would

be nodes with height 1. Now if a couple new nodes are inserted at the very end of the

list then to re-balance the skip list the node that was previously the tallest node would

now be shrunk to a level of 1, and one of its neighboring nodes which previously had

height of 1 would become the tallest node. Instead a scheme of approximately balanced

is more fitting for the skip list (as this is what the existing algorithm’s random functions

do).

By contrast, the CF skip list deterministically adjusts the level of nodes. From the

bottom level going upwards, it traverses the entire list of the level, and each time it

observes that 3 consecutive nodes whose height equals this level, it raises the level of

the second of this node (the one in the middle) by 1. Such a technique approximates the

targeted number of nodes present at each level, balancing the structure. Doing this is

similar to the original intuition of the skip list, there is no frequent re-balancing going

on, tall nodes will stay tall nodes. Less modification of the taller nodes also means less

contention at the frequently traversed locations of the structure.

Given that the number of nodes in the list might also shrink the height of nodes

might also be lowered. When the height of the tallest node is greater than some thresh-

old (usually when the height is greater than the log of the total number of nodes in the

list) the entire bottom index level of the skip list is simply removed by modifying the

down pointers of the level above. Doing this avoids constant modification of the taller

nodes and ensures there are not too many marked deleted nodes left in the list.

4.2 CF Tree

The CF tree is a binary search tree. Each of its nodes contains the following fields:

a key k, pointers l and r to the left and right children nodes, a lock field, a del flag

indicating if the node has been marked deleted, and a rem flag indicating if the node

has been physically removed. As for the CF skip list, the CF tree algorithm presented

here is lock-based but we also derived a transaction-based variant of it.

Abstract operations. Similarly to the CF skip list operations the insert and delete

operations must acquire a lock on the node they modify. A delete operation sets the

node’s del flag to true while an insert operation allocates a new node and modifies the

Inria

A Contention-Friendly Methodology for Search Structures 11

parent’s child pointer to point to it.

The traversal is performed without locks. At each node the traversal travels to

the right child if the node’s key is larger than k, otherwise it travels to the left child.

Since locks are not used, the traversal might get caught during a concurrent removal

or rotation, but the structural adaptation is done in such a way that the traversal can

continue safely following the child pointers.

Structural adaptation. The structural adaptation is in charge of removing marked

deleted nodes that have at most one non-⊥ child pointer. Removals are done by first

locking the node n to be deleted and its parent. The parent’s child pointer is then mod-

ified so that it points to n’s non-⊥ child (if any). Next n’s child pointers are modified

so that they point upwards to it’s parent node allowing concurrent traversal that arrived

on this node a safe path back to the tree. Finally n’s rem flag is set to true and the locks

are released.

The structural adaptation must also perform rotations in order to ensure the tree is

balanced so that traversal can be done in O(logn) time. Methods for performing local-

ized rotation operations in the binary trees have already been examined and proposed

in several works such as [4,5]. The main concept used here is to propagate the balance

information from a leaf to the root. A leaf is known to have height of 0 for their left

and right children. This information is then propagated upwards by sending the height

of the child to the parent where the value is then increased by 1. Local rotations are

performed depending on this information and result eventually in a balanced tree.

In order to avoid using locks and aborts/rollbacks during traversals, rotations are

performed differently than traditional rotations. Before performing the rotation the

parent node and its child node that will be rotated are locked in order to prevent conflicts

with concurrent insert and delete operations. In a traditional rotation there is one node

n that is rotated downwards and one node (one of n’s children) that is rotated upwards.

A traversal preempted on the node rotated downwards (n in this case) is then in danger

of being set off track and missing the node it is searching for. The rotations performed

in the CF algorithm avoid this by not actually rotating n at all, meaning that after the

rotation n still has a pointer to the node that is rotated upwards allowing traversals to

continue safely. Instead a new node takes n place in the structure. This new node is

set to have the same values and pointers as n would if a rotation was performed as

normal. After the rotation, the node n has its rem flag set to true and, finally, the locks

are released.

4.3 CF Hash table

The CF hash table contains an array of pointers with each location pointing to ⊥ or

to a list of nodes. Each node contains the following fields. A key k, and a next

pointer pointing to the next node in the list. This algorithm is lock-free (relying on

compare-and-swap for synchronization) but we derived a transaction-based variant of

it (cf. Appendix A).

Abstract operations. Given that the traversal for the contains, insert, delete opera-

tions has complexity O(1) and not O(logn) the hash table operations are performed

slightly differently. In fact, the shortness of the hash table operations brings two main

differences to the algorithm.

RR n° 1989

12 T. Crain, V. Gramoli & M. Raynal

First physical removals are done from within the delete operation. This is because

the contention caused by removing the node will only be with other nodes of that bucket

which are expected to be O(1).
Second the algorithm is made lock-free because given the short operations, a cache

miss caused by loading a lock could be relatively costly. Other implementations might

avoid this by using coarser grained locks, like lock-striping, but this can cause con-

tention on the lock(s). Instead we use a lock-free implementation where each operation

only uses (at most) a single synchronization operation, which is a compare-and-swap

on the given bucket pointer.

For the sake of linearizability of operations the compare-and-swap always happens

at the same location (on the bucket pointer) and the next pointer of list elements is

never modified after node creation. An insert will compare-and-swap a new node as

the first element of the list, while a delete will remove a node by creating a new list

that does not contain the node and compare-and-swap this new list to the bucket. If the

compare-and-swap fails due to a concurrent operation then the operation retries from

the beginning.

Structural adaptation. The structural adaptation must ensure the O(1) cost of contains,

insert, delete operations. This is done by rehashing and resizing the table which first

traverses the table counting the number of nodes. If the number of nodes is greater than

some threshold (usually a fraction of the number of buckets in the table) then a rehash

is performed and the size of the table is increased by a size of the power of 2.

The rehash is performed one bucket at a time allowing concurrent operations on

other buckets. At each bucket the list of nodes is copied and placed into two new lists

added to the corresponding buckets of the new table. Next a compare-and-swap is

performed at the bucket of the old table replacing the list there with a dummy node. If

the compare-and-swap fails then the rehash operation is retried for this bucket. Any

abstract operation that encounters a dummy node then knows that the bucket has been

rehashed so it uses the new table for the operation.

5 Evaluation

We evaluate the CF methodology using a micro benchmark by comparing our CF data

structures to three Java state-of-the-art concurrent data structure implementations:

• Non-CF hash table: the widely deployed ConcurrentHashMap of the java.util.concurrent
package,

• Non-CF binary tree: the most recent lock-based binary search tree [4] we are

aware of, and

• Non-CF skip list: the Doug Lea’s ConcurrentSkipListMap relying on Harris and

Michael algorithms [14, 23].

All CF data structure implementations use a separate thread in addition to the applica-

tion threads that constantly adapts the structure to compensate the effect of preceding

abstract modifications. We use an UltraSPARC T2 with 8 cores running up to 8 hard-

ware threads each, comprising 64 hardware threads in total. For each run we averaged

the number of executed operations per microsecond over 5 runs of 5 seconds. Thread

counts are 1,2,4,8,16,24,32,40,48,56 and 64 and the five runs execute successively

Inria

A Contention-Friendly Methodology for Search Structures 13

as part the same JVM for the sake of warmup. We used Java SE 1.6.0 12-ea in server

mode and HotSpot JVM 11.2-b01.

Figure 4 depicts the tolerance to contention of the various data structures. More

precisely, it indicates the slowdown of each data structure under contention as the nor-

malized ratio of its performance with non-null update ratios over its performance with-

out updates. The slowdown of non-CF tree and skip list always more significant than

the one of their CF counterpart, indicating that the CF is more tolerant to contention.

Interestingly, the

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

10 20 30 40 50 60 70 80 90 100

N
o
rm

a
liz

e
d
 s

lo
w

d
o
w

n
 (

%
)

Attempted update ratio (%)

CF-SkipList
CF-HashTable

CF-SearchTree

non-CF-SkipList
non-CF-HashTable

non-CF-SearchTree

Figure 4: Tolerance to contention of Contention-Friendly (CF) and non-CF

data structures (performance slowdown with respect to 0% updates)

slowdown of the CF

hash table is higher

than the one of the

non-CF hash table

at low levels of con-

tention but becomes

similar at high con-

tention levels. As

shown later, our CF

hash table is actu-

ally very efficient on

read-only workload

whereas the Concur-

rentHashMap relies

on lock-stripes whose

segments have to be

loaded even on read-only workloads. This explains why CF performance drops as

soon as contention appears, however, the CF hash table tolerates the contention in-

crease as the slowdown remains almost constant, as opposed to the non-CF hash ta-

ble. We played with the number of segments and we observed better scalability with

more segments but lower read-only overhead with a single one. We chose 64 segments

which makes threads fetch multiple segments from memory before finding them in

their cache. Another advantage of using the CF hash table is not having to worry about

such segments.

Figure 5 compares the performance of state-of-the-art data structures against per-

formance of our CF data structures with 214 (left) and 216 elements (right) and on

a read-only workload (top) and workloads comprising up to 30% updates (bottom).

While all data structures scale well with the number of threads, the state-of-the-art data

structures are slower than their contention-friendly counterparts in all the various set-

tings. In particular, the CF hash table, skip list, search tree are respectively up to 1.2×,

1.3×, 2.2× faster than their non-CF counterparts.

Finally Appendix A shows that our adaptation of these data structures to three trans-

actional memory algorithms allows a performance benefit of 1.5× on average.

6 Conclusion

Multicore programming brings new challenges, like contention, that programmers have

to anticipate when developing novel applications. Programmers must now give up con-

centrating on the big-oh complexity and should rather think in terms of contention

overhead. We explored the methodology of designing contention-friendly data struc-

tures, keeping in mind that contention will be a predominant cause of performance loss

RR n° 1989

14 T. Crain, V. Gramoli & M. Raynal

 0
 10
 20
 30
 40
 50
 60

1 16 32 48 64

hash table search tree skip list

0
%

 u
p
d
a
te

s

CF
non-CF

 0

 10

 20

 30

1 16 32 48 64
 0

 5

 10

 15

1 16 32 48 64

 0
 10
 20
 30
 40
 50

1 16 32 48 64

T
h
ro

u
g
h
p
u
t

(o
p
e
ra

ti
o
n
s
/µ

s
e
c
)

1
0
%

 u
p
d
a
te

s

 0

 5

 10

 15

 20

1 16 32 48 64
 0

 5

 10

 15

1 16 32 48 64

 0

 10

 20

 30

 40

1 16 32 48 64

2
0
%

 u
p
d
a
te

s

 0

 5

 10

 15

 20

1 16 32 48 64
 0

 5

 10

 15

1 16 32 48 64

 0

 10

 20

 30

 40

1 16 32 48 64

3
0
%

 u
p
d
a
te

s

 0

 5

 10

 15

 20

1 16 32 48 64

Thread number

 0

 5

 10

 15

1 16 32 48 64

(a) 214 elements

Inria

A Contention-Friendly Methodology for Search Structures 15

 0
 10
 20
 30
 40
 50

1 16 32 48 64

hash table search tree skip list

0
%

 u
p
d
a
te

s

CF
non-CF

 0

 10

 20

1 16 32 48 64
 0

 5

 10

 15

1 16 32 48 64

 0

 10

 20

 30

 40

1 16 32 48 64

1
0
%

 u
p
d
a
te

s

 0

 5

 10

 15

1 16 32 48 64
 0

 5

 10

 15

1 16 32 48 64

 0

 10

 20

 30

1 16 32 48 64

2
0
%

 u
p
d
a
te

s

 0

 5

 10

 15

1 16 32 48 64
 0

 5

 10

1 16 32 48 64

 0

 10

 20

 30

1 16 32 48 64

3
0
%

 u
p
d
a
te

s

 0

 5

 10

 15

1 16 32 48 64

Thread number

 0

 5

 10

1 16 32 48 64

(b) 216 elements

Figure 5: Performance of the Contention-Friendly (CF) and non-CF data structures

RR n° 1989

16 T. Crain, V. Gramoli & M. Raynal

in tomorrow’s architectures. This simple methodology led to a novel Java package of

concurrent data structures more efficient than the best implementations we could find.

We plan to extend it with additional contention-friendly data structures.

Inria

A Contention-Friendly Methodology for Search Structures 17

References

[1] L. Ballard. Conflict avoidance: Data structures in transactional memory, May

2006. Undergraduate thesis, Brown University.

[2] S. Borkar. Thousand core chips: a technology perspective. In DAC, pages 746–

749, 2007.

[3] L. Bougé, J. Gabarro, X. Messeguer, and N. Schabanel. Height-relaxed AVL re-

balancing: A unified, fine-grained approach to concurrent dictionaries. Technical

Report RR1998-18, ENS Lyon, 1998.

[4] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent

binary search tree. In Proc. of the 15th ACM SIGPLAN Symp. on Principles and

Practice of Parallel Programming, 2010.

[5] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary search tree.

In Proc. of the 17th ACM SIGPLAN Symp. on Principles and Practice of Parallel

Programming, 2012.

[6] D. Dice, O. Shalev, , and N. Shavit. Transactional locking II. In Proc. of the 20th

Int’l Symp. on Distributed Computing, 2006.

[7] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms.

J. ACM, 44:779–805, November 1997.

[8] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search

trees. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles

of distributed computing, PODC ’10, pages 131–140, New York, NY, USA, 2010.

ACM.

[9] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Proc. of the 23rd

Int’l Symp. on Distributed Computing, 2009.

[10] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In Pro-

ceedings of the twenty-third annual ACM symposium on Principles of distributed

computing, PODC ’04, pages 50–59, New York, NY, USA, 2004. ACM.

[11] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University, September

2003.

[12] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. In Proceedings of the 40th Annual Symposium on Foundations of Com-

puter Science, pages 285 –297, 1999.

[13] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In

Proc. of the 19th Annual Symp. on Foundations of Computer Science, 1978.

[14] T. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC,

pages 300–314, 2001.

[15] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-

concurrent transactional objects. In Proc. of the 13th ACM SIGPLAN Symp. on

Principles and Practice of Par. Prog., 2008.

RR n° 1989

18 T. Crain, V. Gramoli & M. Raynal

[16] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple optimistic skiplist

algorithm. In Proceedings of the 14th international conference on Structural in-

formation and communication complexity, SIROCCO’07, pages 124–138, Berlin,

Heidelberg, 2007. Springer-Verlag.

[17] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kauffman, February 2008.

[18] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for con-

current objects. ACM Trans. Program. Lang. Syst., 12:463–492, July 1990.

[19] J. L. W. Kessels. On-the-fly optimization of data structures. Comm. ACM,

26:895–901, 1983.

[20] G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive software transactional

memory. Transactions on HiPEAC, 5(2), 2010.

[21] U. Manbar and R. E. Ladner. Concurrency control in a dynamic search structure.

ACM Trans. Database Syst., 9(3):439–455, 1984.

[22] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,

S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-core SCC processor: the

programmer’s view. In SC, pages 1–11, 2010.

[23] M. M. Michael. High performance dynamic lock-free hash tables and list-based

sets. In SPAA, pages 73–82, 2002.

[24] C. Mohan. Commit-LSN: a novel and simple method for reducing locking and

latching in transaction processing systems. In Proc. of the 16th Int’l Conference

on Very Large Data Bases, 1990.

[25] Y. Ni, V. Menon, A.-R. Abd-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B.

Moss, B. Saha, and T. Shpeisman. Open nesting in software transactional mem-

ory. In Proc. of the 12th ACM SIGPLAN Symp. on Principles and Practice of

Parallel Programming, 2007.

[26] O. Nurmi and E. Soisalon-Soininen. Uncoupling updating and rebalancing in

chromatic binary search trees. In Proc. of the 10th ACM Symp. on Principles of

Database Systems, 1991.

[27] O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrency control in database

structures with relaxed balance. In Proc. of the 6th ACM Symp. on Principles of

Database Systems, 1987.

[28] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM,

33, June 1990.

[29] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager valida-

tion. In DISC, 2006.

[30] N. Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84,

2011.

[31] H. Sutter. Choose concurrency-friendly data structures. Dr. Dobb’s Journal, June

2008.

Inria

A Contention-Friendly Methodology for Search Structures 19

[32] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of

an efficient priority queue. Theory of Computing Systems, 10:99–127, 1976.

10.1007/BF01683268.

[33] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-

tina, C.-C. Miao, J. Brown, and A. Agarwal. On-chip interconnection architecture

of the tile processor. IEEE Micro, 27(5):15–31, 2007.

RR n° 1989

20 T. Crain, V. Gramoli & M. Raynal

A Transactional Contention-Friendly Algorithms

The concept of splitting the abstract operation and the structural modification to create

contention friendly data structures does not only apply to lock based or lock-free im-

plementations. It can also be applied to data structures implementations using transac-

tional memory. Our previous work has studied this problem when specifically looking

at trees [5].

We now present the experimental results with three existing transactional memory

implementations: E -STM [9], LSA [29] and TL2 [6] using the Deuce Java bytecode

instrumentation framework [20]. The experimental settings are the same as for other

experiments, except that we evaluate the red-black tree (non-CF tree) and the Pugh skip

list (non-CF skip list) to compare our CF tree and CF skip list against on 212 elements

with 5% effective updates. Figure 6(a) and Figure 6(b) depict the speedup of using the

CF skip list over using the non-CF skip list (resp. CF tree over using the non-CF tree)

for each of the considered transactional memory implementations. Using transaction-

based CF data structures as opposed to default ones clearly speeds up the performance

of all transactional memories. The benefit of turning to CF is more important when

using trees, which confirms our previous results obtained with our lock-based imple-

mentations. In particular, the average speedup for all transactional memories and data

structures is of 50%. Interestingly, the speedup of using transaction-based CF does

not scale much with the number of threads, probably because the overhead induced by

transactional memory and Deuce is too heavy for the contention rise to be visible.

When using transactional memory the benefit of these contention friendly algo-

rithms is apparent just by the fact that abstract operation transactions will have smaller

read and write sets causing less contention on the data structure and making the oper-

ations less likely to abort. Also structural modifications are each broken into a single

transaction causing less contention then they would be if they were include in a single

large transaction.

The abstract operations for the tree are very simple, traversals are done in the same

way they would be in a sequential algorithm except transactional reads are used. Each

physical removal and rotation is performed as a single transaction by the structural

adaptation.

In the lock based version of the skip list locks are only used when traversing the

bottom level of the structure. Each of the index levels are accessed and modified using

only regular read/write operations. This can be applied to the transaction version of

the skip list as well. Abstract operation traversals as well as structural modifications to

the index level are done outside of transactions. Once an abstract operation traversal

has reached the bottom list level a transaction is started, if it arrived on a physically

removed node then the operation travels backwards in the list until is reaches a node

still in the structure at which point the traversal continues as it would in a sequen-

tial list algorithm. Physical removals are done as single transactions by the structural

adaptation.

The transactional hash table is very similar to the to the lock-free contention friendly

version. Each abstract operation is contained in a single transaction where the compare&swap

operations from the lock-free version are replaced by reads and writes. During the re-

hash operation each bucket rehash is done as a single transaction.

Inria

A Contention-Friendly Methodology for Search Structures 21

 0

 20

 40

 60

 80

 100

8 16 24 32 40 48 56 64

S
p
e
e
d
u
p
 (

%
)

Number of threads

¼-STM LSA TL2

(a) CF-SkipList vs. Pugh Skip List

 0

 20

 40

 60

 80

 100

8 16 24 32 40 48 56 64

S
p
e
e
d
u
p
 (

%
)

Number of threads

(b) CF-Tree vs. RB-Tree

Figure 6: STM Speedup when using CF data structures instead of their existing coun-

terparts on the Niagara 2 machine

RR n° 1989

22 T. Crain, V. Gramoli & M. Raynal

B Pseudo-code and Description

All three data structures share the general structural adaptation code shown in Algo-

rithm 3.

In the normal case the structural adaptation thread works by performing the background-struct-adaptation

operation constantly traversing the data structure by calling the restructuring proce-

dure. Each iteration of this procedure traverses the entire data structure where at each

node it might perform some sort of restructuring or a removal. For some data structures

after a complete traversal of the structure is done, some restructuring of the entire struc-

ture might be needed, this includes the rehash operation of a hash table or the changing

of levels of nodes in the skip list.

For backwards compatibility the structural adaptation can also be distributed among

the program threads by calling the distributed-struct-adaptation operation. In this case

each insert/delete operation will toss a coin, if the value of this coin is greater then

some threshold value the thread will then acquire a global structural adaptation lock,

and call the restructuring procedure before finally releasing the lock, and continuing

with its abstract operation.

B.1 Tree and Skip List

Skip List As with existing skip list algorithms the structure is made up of many levels

of linked lists.

The bottom level of is made up of a doubly linked list of nodes. Each node has

a prev and next pointer, as well as pointer to its key k, an integer level indicating the

number of levels of linked lists this node has, the rem and del flags, and a lock.

The upper levels are made up of singly linked lists of IndexItems. Each of these

items has a next pointer, pointing to the next item in the linked list. A down pointer,

pointing to the linked list of IndexItems one level below (the bottom level of IndexItems

have ⊥ for their down pointers). And a node pointer that points to the corresponding

node in the Speculation Friendly Skip List.

A per structure array of pointers called first is also kept that points to the first

element of each level of the skip list. The pointer top points to the first element of the

highest index of the list, all traversals start from this pointer.

Tree The tree is made up of nodes with each node having left and right child pointers

l and r, as well as a pointer to its key k, integers indicating the estimated local height of

this node and its children left-h, right-h, and local-h, the rem and del flags, and a lock.

In addition there is a single pointer root that points to the root node of the tree.

B.1.1 Skip List Structural Adaptation

The code for the skip list structural adaptation operations is found in Algorithm 1.

The restructure-node procedure takes care of removing marked deleted nodes. For

each node it checks if it has both a level of 0 and del set to true then tries to remove the

node by calling the remove-node procedure. This procedure locks both the node to be

removed and the node previous to it in the list in order to not conflict with concurrent

insert and delete operations. The node is then simply removed by changing the previ-

ous node’s pointer to skip the node. Finally the rem flag is set to true and the locks are

released.

Inria

A Contention-Friendly Methodology for Search Structures 23

Algorithm 1 Skip List Specific Maintenance Operations

1: restructure-node(node)s:
2: if node.level = 0∩node.del then
3: remove(node.prev,node)

4: restructure-structure()s:
5: size← raise-node-level()
6: i← 1

7: count← raise-index-level(i)
8: while count > 2 do
9: i← i+1

10: count← raise-index-level(i)

11: top← first[i]
12: if log(size)< i then
13: lower-index-level()
14: // Adjust first array index

15: lower-index-level()s:
16: index← first[2].next

17: while index 6=⊥ do
18: index.down←⊥
19: index← index.next

20: remove(node,next)s:
21: if next.level 6= 0 then
22: return false

23: lock(node)
24: if node.rem∪¬node.del then
25: unlock(node)
26: return false

27: if node.next 6= next then
28: unlock(node)
29: return false

30: lock(next)
31: next.next.prev← node

32: node.next← next.next

33: next.rem← true
34: unlock(node)
35: unlock(next)
36: return true

37: raise-index-level(i)s:
38: count← 0

39: prev-tall← first[i+1]
40: index← first[i].next

41: while true do
42: next← index.next

43: if next =⊥ then
44: return count

45: prev← index.prev

46: if prev.node.level≤ i

47: ∩index.node.level≤ i

48: ∩next.node.level≤ i then
49: // Allocate a new IndexItem

50: // called new

51: // Set new as the top IndexItem

52: // of index.node

53: new.next← prev-tall.next

54: prev-tall.next← new

55: index.node.level← i+1

56: prev-tall← new

57: count← count+1

58: index← index.next

The restructure-structure procedure raises and lowers the levels of the nodes in

order to keep the logarithmic traversal cost of the abstract operations. This is done

by calling the raise-node-level procedure on the bottom level of the skip list and the

raise-index-level on higher levels. The code for the procedures is practically the same,

just raise-node-level is performed on nodes while raise-index-level is performed on

index levels as such only the raise-index-level pseudo code is displayed here. The

procedures work by simply traversing the entire level i that they are called on if they

encounter 3 or more nodes all with height i then the middle of these nodes is raised to

height i+1. This is performed on each index level starting from the bottom until there

are less than 2 nodes on a level.

Due to nodes being removed from the skip list it might be necessary to decrease

the number of index levels in the structure. If the log of the number of nodes in the

structure is less then the height of the structure then the bottom index level is removed.

This is done by the lower-index-level procedure which simply traverses the second from

bottom index level and sets each index item’s down pointer to ⊥. Finally the index of

the first array must be updated to take account the removal of the bottom index level.

B.1.2 Tree Structural Adaptation

The code for these operations is found in Algorithm 2.

The restructure-node procedure takes care of removing marked deleted nodes as

well as performing rotations and propagating balance information upwards in the tree.

Like in the skip list only certain nodes are removed. These are the nodes that have 1

or 0 children and are a majority of the nodes in the tree. This avoids expensive removal

operations that require finding and moving a successor node.

In order to do a removal first the parent and the node to be removed are locked(in

order to prevent conflicts with concurrent insert and delete operations) and the del flag

of the node is checked. The node to be removed has its left and right child pointers

changed so that they point to the parent. This is done to ensure a concurrent operation

preempted on this node can still proceed. Next the appropriate parent’s child pointer is

RR n° 1989

24 T. Crain, V. Gramoli & M. Raynal

Algorithm 2 Tree Specific Maintenance Operations

1: restructure-node(node)s:
2: if node.l.del then
3: remove(node, false)

4: if node.r.del then
5: remove(node,true)

6: propagate(node)
7: if |node.left-h−node.right-h|> 1 then
8: // Perform appropriate rotations

9: restructure-structure()s:
10: // Do nothing

11: propagate(node)s:
12: if node.l 6=⊥ then
13: node.left-h← node.l.localh

14: else
15: node.left-h← 0

16: if node.r 6=⊥ then
17: node.right-h← node.r.localh

18: else
19: node.right-h← 0

20: node.localh←
21: max(node.left-h,node.right-h)+1

22: remove(parent, left-child)p:
23: if read(parent.rem) then
24: return false

25: if left-child then
26: n← read(parent.ℓ)
27: else
28: n← read(parent.r)

29: if n =⊥ then
30: return false

31: lock(parent)
32: lock(n)
33: if ¬read(n.deleted) then
34: // release locks

35: return false

36: if (child← read(n.ℓ)) 6=⊥ then
37: if read(n.r) 6=⊥ then
38: // Release locks

39: return false

40: else
41: child← read(n.r)

42: if left-child then
43: write(parent.ℓ,child)
44: else
45: write(parent.r,child)

46: write(n.ℓ,parent)
47: write(n.r,parent)
48: write(n.rem,true)
49: // release locks

50: update-node-heights()
51: return true

52: right-rotate(parent, left-child)p:
53: if read(parent.rem) then
54: return false

55: if left-child then
56: n← read(parent.ℓ)
57: else
58: n← read(parent.r)

59: if n =⊥ then
60: return false

61: ℓ← read(n.ℓ)
62: if ℓ=⊥ then
63: return false

64: lock(parent)
65: lock(n)
66: lock(ℓ)
67: ℓr← read(l.r)
68: r← read(n.r)
69: // allocate a node called new

70: new.k← n.k
71: new.ℓ← ℓr
72: new.r← r

73: write(ℓ.r,new)
74: write(n.rem,true)
75: if left-child then
76: write(parent.ℓ, ℓ)
77: else
78: write(parent.r, ℓ)

79: // release locks

80: update-node-heights()
81: return true

changed to point to the non-null child of the node to be removed (if any). Finally the

rem flag is set to true.

The structural adaptation is also responsible for keeping the tree well balanced.

This is done by doing local rotations. Deciding to do a rotation is based on a local

estimated height values. The height values are propagated from the leaves to the root

by the propagate procedure. This procedure is executed per node and simply reads

the l-height values of its left and right children, before updating its local values and

setting its local l-height value to 1 greater then the maximum height of its children. If

the absolute value of a nodes left and right heights is at least two then an appropriate

rotation is performed. Double rotations are performed as two separate single rotations.

In a traditional rotation operation one node is always rotated downwards. If a

concurrent traversal operation is preempted on this node then either it might have to

abort or rollback in order to ensure it performs a valid traversal or nodes must be

locked/marked during traversal.

In order to avoid using locks and aborts/rollbacks, rotations are preformed differ-

ently then traditional rotations. A diagram of the new rotation operation is shown in

figure ??. Before performing the rotation the parent node and the node n that will be

rotated are locked in order to prevent conflicts with concurrent insert and delete opera-

tions. Instead of actually modifying n, a new node new is created that takes n’s place in

the structure, this node is set have the same values and pointers as n would if a rotation

was performed as in existing tree data structures. After the rotation, the node n has its

rem flag set (to true in the case of a right rotation and by-left-rot in the case of a left

rotation) and the locks are released.

The reason for not modifying n is so that concurrent traversals are not set off track.

If the node n is removed by a right (resp. left) rotation then its left (resp. right) child

has a path to all the nodes as it did before the rotation so a traversal preempted on this

Inria

A Contention-Friendly Methodology for Search Structures 25

node can still traverse the tree safely.

Algorithm 3 States and Restructuring of the Generic CF Algorithm

1: State of process p:
2: structure, shared pointer to the data

3: structure

4: frequency, the frequency of a structural

5: adaptation

6: background-struct-adaptation()p:
7: while true do
8: // continuous background restructuring

9: restructuring()

10: distributed-struct-adaptation()p:
11: toss(coin)
12: if coin > frequency then
13: // restructure now

14: restructuring()

15: // ...or restructure later

16: restructuring()p:
17: next← first-in-trav(structure)
18: while next 6=⊥ do
19: restructure_node(next)
20: next← next-in-trav(next)

21: restructure-structure()

B.2 Abstract Operations

The tree and skip list share code for the contains, insert, delete operations displayed

in Algorithm 4. These operations might call one of more of the get_ f irst, get_next,

validate, add procedures which each have specific code for the given data structure,

show in Algorithm 6 for the tree and Algorithm 5 for the skip list. None of these

additional procedures use locks or other synchronization methods.

Each of the three abstract operations start by calling the get_first procedure. This

operation returns the root of the tree or the first node of the top index level of the

skip list. The operations then traverse the structure using the get_next procedure. This

procedure either returns the next node in the traversal or ⊥ if the traversal is done.

The get_next procedure traverses the tree by returning the right child if the node’s

key is lager then k otherwise the left child is returned. If the nodes key is equal to k

and the node is not physically removed then ⊥ is returned. Since locks are not used

during traversal the algorithm has to be aware of concurrent rotations. This means

returning the right child in case of being preempted on a node that was removed during

a left rotation. If the node was removed during a right rotation then the traversal can

continue as normal unless it arrives at a child pointer with value ⊥, in this case it just

returns the other child (which is guaranteed to not be ⊥).

For the skip list the get_next procedure traverses the structure just as it would in

a sequential algorithm, with the simple exception that is travels backwards in the list

using the prev pointer in the case of arriving at a node that has been physically removed.

If the nodes key is equal to k and the node is not physically removed or if the traversal

is at the bottom level and the next node has key greater then k then ⊥ is returned.

Once⊥ is returned insert and delete operations protect the last node in the traversal

by locking it (locking is not necessary for the contains operations as it does not make

modifications). Due to concurrent operations this node may not longer be the end of

the traversal, therefore the validate procedure is performed on this node ensuring that

the traversal has stopped at the correct location. The validation checks to make sure

that the node has not been physically removed and that no new node has been inserted

directly after this node.

If the validation succeeds then the traversal is finished. Otherwise the lock protect-

ing the node is released and the traversal continues.

Finally some additional code is executed depending on the operation.

In the case of a contains operation, the key and/or the deleted flag of the node is

checked and a boolean is returned.

RR n° 1989

26 T. Crain, V. Gramoli & M. Raynal

Algorithm 4 Operations of the Generic CF Algorithm

22: State of node n:
23: node a record with fields:

24: k ∈ N, the node key

25: del ∈ {true, false}, indicate whether

26: logically deleted, initially false
27: rem ∈ {true, false}, indicate whether

28: physically deleted, initially false
29: lock, used to lock the node

30: contains(k)p:
31: node← get_first(structure)
32: while true do
33: next← get_next(node,k)
34: if next =⊥ then
35: if validate(node,k) then
36: break

37: else
38: node← next

39: result← false
40: if node.k = k then
41: if ¬node.del then
42: result← true

43: return result

44: insert(k)p:
45: node← get_first(structure)
46: while true do
47: next← get_next(node,k)
48: if next =⊥ then
49: lock(node)
50: if validate(node,k) then
51: break

52: unlock(node)
53: else
54: node← next

55: result← false
56: if node.k = k then
57: if node.del then
58: node.del← false
59: result← true

60: else
61: add_node(node,k)
62: result← true

63: unlock(node)
64: return result

65: delete(k)p:
66: node← get_first(structure)
67: while true do
68: next← get_next(node,k)
69: if next =⊥ then
70: lock(node)
71: if validate(node,k) then
72: break

73: unlock(node)
74: else
75: node← next

76: result← false
77: if node.k = k then
78: if ¬node.del then
79: node.del← true
80: result← true

81: unlock(node)
82: return result

Algorithm 5 Skip List Specific Operations

1: Additional fields of IndexItem item:
2: IndexItem a record with additional fields:

3: next, pointer to the next IndexItem

4: in the SkipList

5: down, pointer to the IndexItem one

6: level below in the SkipList

7: node, pointer a node in the list at

8: the bottom of the SkipList

9: Additional fields of node n:
10: node a record with additional fields:

11: next, pointer to the next node in the list

12: prev, pointer to the previous node

13: in the list

14: level, integer indicating the level of

15: the node, initialized to 0

16:

17: State of structure s:
18: top, pointer to the first and highest

19: level IndexItem in the SkipList

20: first, array of pointers to the first item

21: of each level in the SkipList

22: bottom-index integer indicating the

23: level of the bottom IndexItem

24: get-first()s:
25: return top

26: get-next(node,k)s:
27: if node is a list node then
28: return get-next-node(node,k)

29: else
30: return get-next-index(node,k)

31: get-next-index(node,k)s:
32: next← node.next

33: if next.k > k then
34: if node.down 6=⊥ then
35: return node.down

36: return node.node

37: else if next.k = k then
38: return next.node

39: return next

40: get-next-node(node,k)s:
41: if node.rem then
42: while node.rem do
43: node← node.prev

44: else
45: next← node.next

46: if next =⊥∪next.k > k then
47: return ⊥
48: else
49: return next

50: validate(node,k)s:
51: if node.rem then
52: return false

53: if node.next =⊥∪node.next.key > k then
54: return true

55: return false

56: add(node,k)s:
57: // allocate a node called new

58: new.key← k

59: new.prev← node

60: new.next← node.next

61: node.next.prev← new

62: node.next← new

In the case of the insert operation, first the key of the node is checked, if it is equal

to the key being search for then the deleted flag of the node is checked (and possibly

modified) and a boolean is returned. Otherwise if the key is not equal to the one being

searched for then the add operation is performed. The code for the add operation

simply allocates a new node and attaches it to the data structure by modifying a pointer.

In the case of the delete operation the key of the node is checked, if it is equal

to the key being search for then the deleted flag of the node is checked (and possibly

modified) and a boolean is returned. Otherwise false is returned. It should be noted that

when these structures are used as maps the deleted flag can be replaced with a pointer

Inria

A Contention-Friendly Methodology for Search Structures 27

Algorithm 6 Tree Specific Operations

1: Additional fields of node n:
2: node a record additional with fields:

3: left-h,right-h ∈ N, local height of

4: left/right child, initially 0

5: ℓ,r ∈ N, left/right child pointers,

6: initially ⊥
7: local-h ∈ N, expected local height,

8: initially 1

9: State of structure s:
10: root, pointer to root

11: get-first()s:
12: return root

13: get-next(node,k)s:
14: rem← node.rem

15: if node.k > k∪ rem = by-left-rot then
16: next← node.right

17: else
18: next← node.left

19: if next =⊥∩¬rem then
20: if node.k > k then
21: return node.left

22: else
23: return node.right

24: return next

25: validate(node,k)s:
26: if node.rem then
27: return false

28: if node.next.key > k then
29: next← node.right

30: else
31: next← node.left

32: if next =⊥ then
33: return true

34: return false

35: add(node,k)s:
36: // allocate a node called new

37: new.key← k

38: if node.k > k then
39: node.right← new

40: else
41: node.left← new

to the value object (from the key/map pair). When this pointer is set to ⊥ the node is

considered as deleted.

B.3 Hash Table

The hash table is made up of two pointers to tables: table and new_table. The second

is used during resize operations. Each process also keeps local variable l_pointer that

points to a table.

Each table contains an array, with each location in the array containing a list of

nodes. Each location in the array is initialized to point to⊥. The array also has a single

special node associated with it called the dummy node which is used during resizing.

B.3.1 Abstract Operations

The code for these operations is found in Algorithm 7. Each abstract operation starts

by calculating the hash value of the key and then calling the get-first procedure. This

procedure returns the first node in the table located at the bucket given by the hash value

or ⊥ in the case that this bucket is empty. The get-first procedure might encounter a

dummy node, this means that there is a rehash operation going on that has rehashed

this bucket, but not yet finished rehashing the entire table. In this case the local table

pointer is updated and the bucket is read again.

Once a value is received from the get-first procedure the contains simply traverses

the list looking for a node with key k.

The insert operation also traverses the list looking for a node with key k, if none

is found then a new node is allocated and is added to the beginning of the list by per-

forming a compare&swap on the bucket. If the compare&swap fails then the operation

restarts.

If the delete operation locates a node n with key k in the list then it creates a copy

of the list from the first node in the list up to node n but not including n. The bucket is

then set to first node of this list by performing a compare&swap. If the compare&swap

fails then the operation restarts.

RR n° 1989

28 T. Crain, V. Gramoli & M. Raynal

Algorithm 7 HashTable Specific Operations

1: Fields of node n:
2: node a record with fields:

3: k ∈ N, the node key

4: hash, hash value for this node

5: next, pointer to next node in list

6: State of structure s:
7: table, pointer to array, each location in

8: the array contains a list

9: table.dummy, pointer to dummy node

10: table.mask, binary mask

11: new-table, pointer to a table used during

12: rehash operations

13: Process local variables:
14: l-table local pointer to table

15: check-table():
16: t2← new-table

17: t1← table

18: if l-table = t1 then
19: l-table← t2

20: else
21: l-table← t1

22: get-first(hash)s:
23: l-table← table

24: node← l-table[hash&l-table.mask]
25: while node = table.dummy do
26: check-table()
27: node← l-table[hash&l-table.mask]

28: return node

29: contains(k)s:
30: node← get_first(hash(k))
31: while node 6=⊥ do
32: if k = node.k then
33: return true

34: node← node.next

35: return false

36: insert(k)s:
37: hash← hash(k)
38: while true do
39: first← get_first(hash)
40: node← first

41: index← l-table[hash&l-table.mask]
42: while node 6=⊥ do
43: if k = node.k then
44: return false

45: node← node.next

46: // allocate a node called new

47: new.k← k

48: new.next← first

49: if C&S(l-table[index],first,new) then
50: return true

51: delete(k)s:
52: hash← hash(k)
53: while true do
54: first← get_first(hash)
55: node← first

56: index← l-table[hash&l-table.mask]
57: while node 6=⊥ do
58: if k = node.k then
59: prev← first

60: new-first← node.next

61: while prev 6= node do
62: // make a copy prev

63: if prev = first then
64: // set new-first to the copy

65: prev← prev.next

66: if prev 6= first then
67: prev.next← node.next

68: if C&S(l-table[index],first,new-first)
69: then
70: return true

71: else
72: // Goto start of outter while loop

73: node← node.next

74: return true

Algorithm 8 HashTable Specific Maintenance Operations

1: restructure-node(node)s:
2: // Do nothing

3: restructure-structure()s:
4: if size()> threshold then
5: grow()

6: size()s:
7: count← 0

8: for i← 0; i < table.length; i++ do
9: next← table[i]

10: while next 6=⊥ do
11: count← count+1

12: next← next.next

13: return count

14: grow()s:
15: new-table← allocate a new table

16: for i← 0; i < table.length; i++ do
17: grow-level(i)

18: table← new-table

19: grow-level(i)s:
20: while true do
21: list1←⊥
22: list2←⊥
23: next← table[i]
24: first← next

25: while next 6=⊥ do
26: // make a copy of next

27: if hash(next)&new-table.mask = i

28: then
29: // add copy to list1

30: else
31: // add copy to list2

32: prev← prev.next

33: new-table[i]← list1

34: new-table[i+ table.length]← list2

35: if C&S[table[i],first, table.dummy] then
36: return

B.3.2 Structural Adaptations

The code for these operations is found in Algorithm 8. Local node restructuring is not

necessary for the hash table.

The structure restructuring consists of two procedures. The first is the size operation

that simply traverses the structure counting the number of nodes. If the number of

nodes has surpassed some threshold then a resize is necessary and the grow procedure

is called. This procedure starts be creating a new table larger then the previous one by

a power of 2. It then goes through the old table rehashing one bucket at a time. At each

Inria

A Contention-Friendly Methodology for Search Structures 29

bucket in the old table it performs the grow-level procedure. This procedure makes a

copy of each node in the bucket, rehashing them and placing them in their appropriate

buckets in the new hash table. The operation then replaces the list in the old table with

its dummy node by performing a compare&swap. If the compare and swap fails then

the operation is restarted for this level. Once all levels have been rehashed the table

pointer is modified so that it points to the new table.

C Correctness

Here we present a sketch of the proof that each data structure algorithm satisfies lin-

earizability.

C.1 Skip List

Each of the contains, insert, and delete operations call the validate procedure. The

validate procedure may be called multiple times, but it must return true exactly once.

This is used as the linearizability point for the proof sketch. Assume k the key provided

as input to the abstract operation.

The result of the contains, insert, and delete operations depends on the existence of

a node with key k in the set described by the data structure. At any single point in time

there is exactly one valid location in the list where a node with key k can exist (Note

that a full proof would require to show this, for example by induction). This location

is the next pointer of the node in the list with the largest key smaller then k. For the

purpose of this proof sketch we will use a node (call this node corr) that is either the

node in the list with key k or if no node with key k exists the node whose next pointer

would point to the node with key k.

Any operation that modifies a node must lock the node before it performs any

modification. Given that the validate operation is called while a node is locked it only

needs to be shown that the when validate returns true the node locked is corr.

The nodes in the list are sorted by their keys and the prev pointer is not modified

when a node is removed so any removed node will always have a path to a non-removed

node with a smaller or equal key. This means that there will always be a path from a

node with key smaller then or equal to k to corr. Now since the get-next procedure will

never traverse past a node that has key larger then k the operation it will always have

a path to corr. If a node that has been removed is reached during traversal the prev

pointer is followed, otherwise the next pointer is followed during traversal so corr will

be reached eventually.

Before the validate operation returns true it first ensures that the locked node has

either key k or the node pointed to by the locked node’s next pointer has a key larger

then k. Second it ensures that the node is not removed (rem = false). Therefore when

validate returns true, the locked node must be corr.

C.2 Tree

The tree is a bit more complicated because traversals have to deal with rotations as

well as removals. Like in the skip list the abstract operations can call the validate

procedure multiple times, but it must return true exactly once. This is used as the

linearizability point for the proof sketch. Assume k is the key provided as input to the

abstract operation.

RR n° 1989

30 T. Crain, V. Gramoli & M. Raynal

At any point in time there is exactly one valid location in the tree where a node

with key k can exist. This location is the left or right child pointer of a certain node.

This pointer points to the node with key k or to ⊥ if no node with key k exists. For the

purpose of this proof sketch we will use a node (call this node corr) that is either the

node with this pointer (if no node with key k exists) or the node with key k (is a node

with key k does exist).

Before the validate operation returns true it first ensures that the locked node either

has key k or (if the locked node does not have key k) the child pointer from the locked

node where k would exist is ⊥. Second it ensures that the locked node is not removed

(removed = false).

Now to complete the sketch it is enough to show that the traversal never passes

corr. Without rotations or removals this is simple. With removals and rotations the

idea is to show that a traversal that is preempted on a node modified by a removal or

rotation operation has a path to a node at a higher level in the tree so that the traversal

still has a path to corr. For removals this is clear due to the fact a removed node has

both its child pointers point to its parent during removal. Rotations require a bit more

detail. In a traditional left/right rotation one node is rotated downward in the tree while

either its left or right child is rotated upwards. For rotations in the contention friendly

algorithm the child pointers of the node that would normally be rotated downwards

(call this node n) are not modified at all. Instead n is removed from the tree (as the

previous parent of n now points to one of n’s children) and a new node is created taking

n’s place. This new node is set up exactly how n would be after a traditional rotation.

Now since one of n’s children was rotated upwards any concurrent traversal preempted

on n will still have a path to all the nodes it did before the rotation.

C.3 HashTable

The linearization of the hash table relies on two things, first that the next pointer of a

node is never modified after it is set during creation, and second any successful mod-

ification to a bucket happens by performing a single compare&swap on the bucket’s

pointer.

The linearization point of the contains operation is when the get-first procedure

reads the first element of the bucket that is later returned. Since the next pointer of

nodes is never changed then when the operation traverses the list it observes a valid

state of the list. The same is true for insert and delete operations that complete without

performing a compare&swap.

If a compare&swap is required, then the lineraization point is when the compare&swap

returns successfully. Given that the compare&swap operations are only performed at

the first element of the bucket, if the operation succeeds then the lineraiztion is valid

because the list at the bucket has not changed since get-first procedure read it.

D Garbage Collection

Nodes that are physically removed from the data structures must be garbage collected.

In the tree and skip list nodes are physically removed only by the structural adapta-

tions. This can happen during rotations of the tree, during the lowering of levels in the

skip list, or during the remove operation of either structure. Nodes of the hash table are

physically removed by the abstract delete operation or by the rehash structural adapta-

tion operation. Once a node is physically removed it will no longer be pointed to by

Inria

A Contention-Friendly Methodology for Search Structures 31

the data structure meaning that no future operation will traverse these nodes.

Concurrent traversal operations could be preempted on a removed node so the node

cannot be freed immediately. In languages with automatic garbage collection these

nodes will be freed as soon as all preempted traversals continue past this node. If

automatic garbage collection is not available then some additional mechanisms can

be used. One possibility is to provide each thread with a local operation counter and

a boolean indicating if the tread is currently performing an abstract operation or not.

Then any physically removed node can be safely freed as long as each thread is either

not performing an abstract operation or if it has increased its counter since the node

was removed. Normally this should be done during the structural adaptation.

E Future Work

E.1 Lock-freedom

The tree and skip list algorithms presented in this paper use locks. By using locks

they are susceptible to problems such as a thread crashing or being descheduled while

holding a lock. In order to avoid these problems, certain concurrent algorithms such

as have been designed to be lock-free such as [11]. Lock-free algorithms are generally

considered to be complex and difficult to program. This paper focuses on the method-

ology of designing contention friendly data structures rather then deep descriptions of

the algorithms. For this reason the algorithms are described using locks and a brief

intuition on how to make the algorithms lock free is given here.

Lock free algorithms often rely on atomic synchronization primitives such as compare&swap

in order to preform tasks without using locks. Often a more complex task will require

more then just a single atomic operation. In this case one thread might be required to

help another thread’s operation so that it completes without blocking other operations.

The insert, delete, contains operations of the contention friendly data structures are

simple enough to only require at most one compare&swap operation to complete. For

an insert this might be performing a compare&swap on a pointer and for a delete this

might be performing a compare&swap on a flag.

The structural adaptation thread takes care of the more complex operations such as

removals and modifications to the structure, operations that might require more then

just a single compare&swap. Consider a remove operation, the structural adaptation

thread will initiate the removal by performing a compare&swap to flag the node letting

other processes know that it will be removed. The actual removal is then preformed

which requires several more compare&swaps. Before the removal is completed another

thread might concurrently traverse the flagged node while searching for some key at

a different location in the structure. Like in the lock based algorithms this is fine and

the traversal can continue as normal. On the other hand a concurrent traversal might

need to perform its operation at the location of the node being removed, for example it

might need to insert a new node just after the node. In this case the traversal will help

the structural adaptation thread with the removal before completing its operation.

In the lock-free version of the concurrent friendly skip list the structural adaptation

thread is in charge of removals and raising and lowers of heights of nodes. The raising

and lowering of heights can be done just as in the lock based version since no syn-

chronization is required. The removal of nodes uses the same process as in [11] except

the structural adaptation thread will start the removal and program threads will help as

necessary.

RR n° 1989

32 T. Crain, V. Gramoli & M. Raynal

In the tree removals as well as rotations are performed by the structural adaptation

thread and might be helped by program threads. Each of these operations is started

by the structural adaptation thread performing a compare&swap to flag the node. The

only non-blocking implementation of a binary search tree that we know of is presented

in [8]. This tree is leaf-oriented where keys are stored in leaf nodes.

Even though we do belive it would be possible to implemnt these lock-free algo-

rithms we do expect them to be very complex and would require more investigation.

E.2 Structural Adaptation Throttling

In the default version of these algorithms a separate structural adaptation thread is cre-

ated that continually traverses the tree performing structural modification as necessary.

In workloads with low update rates this constant traversal will not have any modifica-

tion to perform, wasting computation. Even if there are extra unused cores this extra

computation may be unwanted due to additional power consumption. Future work

should include studying way to throttle the structural adaptation dynamically based on

the workload. This could mean putting the thread to sleep during periods of low update

rate or even starting and stopping the structural adaptation thread entirely. In largely

parallel workloads with high update rates it might even be beneficial to have multiple

structural adaptation threads that can be started and stopped at will.

E.3 Distributed Structural Adaptation

Each structural adaption is a short local operation, yet each round of structural adap-

tation is done by a complete traversal of the data structure. Some might argue that if

all the hardware of a system is already in use by program threads then why not break

the structural adaptation into smaller structural adaptations and distribute them over the

abstract modifications. The reason for not doing this is twofold.

Firstly even though each structural adaption is a very local operation, they use

global information. For example rotations in a tree need balance information that is

propagated from the leaves. Since only nodes with height 1 are removed from the skip

list the structural adaptation needs to know about the heights of the other nodes be-

fore raising the level of a node in order to ensure that the structure does not become

unbalanced. Before resizing the hash table the structural adaptation should know ap-

proximately how many nodes are in the table.

Secondly the structural adaptations are in some cases more costly (in terms of com-

putation, not contention) then in existing data structures. For example a rotation re-

quires allocating a new node, choosing the levels of nodes in the skip list requires

previously traversing the other nodes to know their height, and resizing the hash table

first requires counting the nodes.

Such algorithms with distributed structural adaptation might be possible, but have

not been examined here, but could be interesting to study in the future.

Inria

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	The CF Methodology at a Glance
	Eager abstract modification
	Lazy structural adaptation
	Selective removal
	Avoiding contention during traversal

	Putting the CF Methodology to Work
	CF Skip list
	CF Tree
	CF Hash table

	Evaluation
	Conclusion
	Transactional Contention-Friendly Algorithms
	Pseudo-code and Description
	Tree and Skip List
	Skip List Structural Adaptation
	Tree Structural Adaptation

	Abstract Operations
	Hash Table
	Abstract Operations
	Structural Adaptations

	Correctness
	Skip List
	Tree
	HashTable

	Garbage Collection
	Future Work
	Lock-freedom
	Structural Adaptation Throttling
	Distributed Structural Adaptation

