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Abstract

Scalings form a class of group actions that have theoretical and practical importance. A scaling is

accurately described by a matrix of integers. Tools from linear algebra over the integers are exploited

to compute their invariants and offer a scheme for the symmetry reduction of dynamical systems. A

special case of the symmetry reduction algorithm applies to reduce the number of parameters in physical,

chemical or biological models.
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1 Introduction

Consider the following predator-prey model
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which has six parameters, r, K, k, s, h, d, and s. Following [20, Section 3.4] one introduces nondimensional
variables

s =
s

r
, k =

k

rh
, d =
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K
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K
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h
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so as to simplify the system into

dn
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= n (1− n)− k

n p

n+ d
,
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= s p

(
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p

n

)

where there are only three parameters left, s, h, k.

In order to obtain this reduced system algorithmically, which is one of the main points of this paper, one
has to notice that the original dynamical system admits a scaling symmetry : it is invariant under any of the
the following change of variables parameterized (η, µ, ν):

t → η t,
n → µn,
p → ν p,

r → η−1 r,
h → µ ν−1 h
K → µK,

s → η−1 s,
k → η−1µν−1 k,
d → µd.

(2)
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The new coordinates (1) are also left invariant by the above transformation. We shall prove that they have
the rather strong property that any dynamical system that is invariant under the transformations (2) can
be written in terms of the variables (1) with the following substitution:

r 7→ 1, h 7→ 1, K 7→ 1, s 7→ s, k 7→ k, d 7→ d, t 7→ t, n 7→ n, p 7→ p. (3)

Furthermore we shall show how to retrieve the solutions of the original system from the solutions of the
reduced system. Here, if (n(t), p(t)) is a solution of the reduced system for the parameters (s, h, k) then, for
any constant (r, h,K), we obtain a solution of the original system with parameter (r, h,K, s, k, d) by forming
the following combinations:

s = r s, k = r h k, d = K d, n(t) = K n(rt), p(t) =
K

h
p(rt). (4)

Note that the relationships (1-4) are all given by monomial maps, where we have allowed negative powers.
As such they are appropriately described by matrices of integers. For instance the transformations (2) is
described by a 3 × 9 matrix. If we use the order (η, µ, ν) for the parameters of the transformations and
(r,K, k, s, h, d, t, n, p) for the variables of the system this matrix is

A =





−1 0 0 −1 −1 0 1 0 0
0 1 1 0 1 1 0 1 0
0 −1 0 0 −1 0 0 0 1



 .

In this paper we show how parameter reduction, as in the above example, can be algorithmically performed
with linear algebra over the integers. This applies to a great number of models from mathematical biology.

Parameter reduction is actually a particular case of a more general problem to which we give a complete
solution. We provide an algorithmic solution to scaling symmetry reduction of a dynamical system: determine
a maximal scaling symmetry without isotropy, compute a generating set of rational invariants that act as
new variables, obtain the dynamics on those new variables and finally establish the correspondence between
the solutions of that reduced system and the original system. All those steps, except actually solving the
differential systems, are algorithmic and relie solely on linear algebra over the integers.

Scalings form a class of group actions; They describe groups of transformation like (2) that rescales each
individual variable. On the theoretical front scalings are known as torus actions and play a major role in
algebraic geometry and combinatorics. Scalings also underlie what is known as dimensional analysis with
the invariants giving the dimensionless quantities needed to derive physical laws [3, 4, 12]. Dimensional
analysis has been automated in the works [13] and [15]. Central to this is the Buckingham-π-theorem. A
reinterpretation of it states that a fundamental set of invariants is obtained from the basis of the nullspace
of the matrix of exponents of the scaling [21, Section 3.4]. As illustrated in the above example scalings also
give mathematical sense to rules of thumb applied to reduce the number of parameters in biological and
physical models [20, 17]. In this context, reduction by a scaling symmetry of a dynamical was previously
studied with an algorithmic point of view in [11, 16, 24]. In this paper we go further in this direction than
handled in the previous cited works.

Determining symmetries of differential equations has had many applications [21]. One usually resorts to
infinitesimal methods and obtain local symmetries. When dealing with a dynamical system given in terms
of rational functions, we determine the maximal scaling symmetry as a lattice kernel of an integer matrix.
The group action thus determined is rational while retaining trivial isotropy.

Algorithmic tools for finding generating rational invariants and rewrite rules for the general class of
rational actions of an algebraic group typically require Gröbner bases computations [9, 14, 19]. A rewriting
substitution can be achieved provided we allow algebraic functions [10]. Gröbner bases are unnecessary
for scalings; linear algebra over the integers provides more information. The key is to compute a Hermite
normal form of the matrix describing the scaling. The information is then read on the unimodular multiplier
giving the Hermite normal form, and its inverse. The unimodular multiplier provides a minimal generating
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set of rational invariants and the equations of a rational section. Its inverse provides the substitution to be
performed to rewrite any invariant in terms of the exhibited generating set. When comparing to [6, 9, 10, 18]
where the local cross-section has to be part of the input, an important point here is that a rational section,
that is, a global cross-section (of degree 1), is actually a side-product of the algorithm.

As illustrated earlier, invariants can be used as new variables to simplify dynamical systems with a
symmetry. When this symmetry is a scaling we show that the reduced dynamical system can be directly
determined from the unimodular multiplier and its inverse. The relationship between the solutions of the
reduced system and the original system can also be written down explicitly from those two matrices. The
solutions of the original system are obtained from the solutions of the reduced system by additional mutually
independent quadratures. This is to be compared and contrasted with the general methods of symmetry
reduction proposed in [1, 7] and [18, Section 6]. Providing a global cross-section, and quotient map, does
not make them straightforwardly algorithmic.

The unimodular multipliers for the Hermite normal form of the scaling matrices are not unique. We
propose a normal form that exhibits further properties of the scaling. In particular, this normal form
discriminates the cases where the scaling symmetry can be fully used to reduce the number of parameters in
a dynamical system. The solutions of the original system are then obtained from the solution of the reduced
system with just some additional constants.

The remainder of the paper is organized as follows. Section 2 presents the needed material on integer
matrices and the Hermite normal form, along with the normalization of its unimodular multipliers. Section 3
presents scalings together with the matrix notations for monomial maps. Section 4 shows how to produce
the generating invariants, rewrite rules and a rational section for a scaling. Section 5 provides an algorithm
to compute the maximal scaling that leaves a given set of rational function invariants. The determination
of the maximal scaling symmetry of a dynamical system is reduced to this problem. The scaling symmetry
reduction of dynamical systems are discussed in Section 6. Section 7 shows how this can be specialized to
explicitly reduce the number of parameters in dynamical systems, as mentioned earlier in the introduction.

2 Integer Matrix Normal Forms

When dealing with matrices of integers such basic operations as Gaussian elimination or finding a row
echelon form are no longer valid since this involves working over the field of rational numbers. In this
section we provide the basic information about the Hermite normal form of a matrix of integers, a type
of triangularization for integer matrices. Here row and column operations are represented by unimodular
matrices, which are invertible integer matrices whose inverses are also integer matrices. The unimodular
multiplier to obtain the Hermite normal form of an integer matrix is not unique. We propose a normal form
for it, which is relevant for our applications.

2.1 Hermite Normal Forms

Definition 2.1 An m × n integer matrix H = [hij ] is in column Hermite Normal Form if there exists an
integer r and a strictly increasing sequence i1 < i2 < · · · < ir of pivot rows such that

(i) The first r columns are nonzero;

(ii) hk,j = 0 for k > ij;

(iii) 0 ≤ hij ,k < hij ,j when j < k.

Thus a matrix is in column Hermite normal form if the submatrix formed by the pivot rows i1, · · · , ir
and the first r columns is upper triangular and that all nonzero elements of the pivot rows are positive and
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less than the corresponding (positive) diagonal entry. The integer r is the rank of the matrix. By changing
column to row and row and column indices in (ii) and (iii) one obtains the row Hermite Normal Form of a
matrix of integers.

Every integer matrix can be transformed via integer column operations to obtain a unique column Hermite
form. The column operations are encoded in unimodular matrices, that is, invertible integer matrices whose
inverses are also integer matrices. Thus for each A there exists a unimodular matrix V such that A · V is in
Hermite normal form. Similar statements also holds for the row Hermite normal form. We refer the reader
to [5, 23] for more information on such forms.

When A ∈ Z
r×n, with r ≤ n, has full row rank r then there exists a unimodular matrix V such that

A · V = [H, 0] with H ∈ Z
r×r of full rank. (5)

If W ∈ Z
n×n is the inverse of V then we can partition V and W as

V = [Vi, Vn] with Vi ∈ Z
n×r and Vn ∈ Z

n×(n−r) (6)

and

W =

[

Wu

Wd

]

with Wu ∈ Z
r×n and Wd ∈ Z

(n−r)×n. (7)

We then have

In = WV =

[

WuVi WuVn

WdVi WdVn

]

In = VW = ViWu + VnWd .

(8)

Note that the blocks of V provide the column Hermite normal forms of the blocks of W since from (8)
we have

Wu · [Vi, Vn] = [Ir, 0] and Wd · [Vn, Vi] = [In−r, 0].

We state a known property of Hermite normal forms [5, 23] in a way that is needed later in the paper.

Lemma 2.2 Let A ∈ Z
r×n be a full row rank matrix and V ∈ Z

n×n a unimodular matrix such that AV =
[ H, 0] with H ∈ Z

r×r. If V is partitioned as in (6), then the columns of Vn form a basis for the integer
lattice defined by the kernel of A.

2.2 Normal unimodular multiplier

For the problem of interest in this paper the number of columns is larger than the rank. In this case the
unimodular multiplier is not unique. Indeed, with the partition V = [Vi, Vn] as in (6), we see that any
column operations using the columns of Vn do not affect the Hermite form H for the initial matrix A and
hence results in a different unimodular multiplier V . In this subsection we describe a normalization of the
multiplier V which is both simple and unique. The normalization will play an important role in later sections.

Previous work on determining unique unimodular multipliers includes that of [5, 8] for integer matrices
where the unimodular multiplier is reduced via lattice reduction. In our case we prefer that the component
Vn be in Hermite normal form as the triangular aspect of that form is useful later in our applications. Our
construction is similar to that used for polynomial matrices in [2].

Theorem 2.3 Let A ∈ Z
r×n be a full row rank matrix and V ∈ Z

n×n a unimodular matrix such that
AV = [ H, 0] with H ∈ Z

r×r in column Hermite normal form.
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(i) A unimodular multiplier V is unique up to multiplication on the right by matrices of the form

[

Ir 0
M U

]

, with U ∈ Z
(n−r)×(n−r) unimodular .

(ii) There exists a unique multiplier V = [Vi, Vn] with

(a) Vn ∈ Z
n×(n−r) in column Hermite normal form,

(b) If i1 < i2 < · · · < in−r are the pivot rows for Vn then for each 1 ≤ j ≤ n− r :

0 ≤ [Vi]ij ,k < [Vn]ij ,j for all 1 ≤ k ≤ r.

That is, Vi is reduced with respect to the pivots rows of Vn.

proof: Suppose that V (1) = [V
(1)
i

, V
(1)
n ] and V (2) = [V

(2)
i

, V
(2)
n ] are two unimodular multipliers for the

Hermite form which we both partition in the usual way. Then V
(1)
n and V

(2)
n are two bases for the nullspace

of A as a module over Z. Thus there exists a unimodular matrix U ∈ Z
(n−r)×(n−r) which makes these

matrices column equivalent, that is, V
(1)
n = V

(2)
n U . Also, by the uniqueness of H, the columns of V

(1)
i
−V

(2)
i

are in the nullspace of A and hence there exists a matrix M ∈ Z
(n−r)×r such that V

(1)
i
− V

(2)
i

= V
(2)
n M .

This gives the general form of the multipliers in (i).

The existence of a unimodular multiplier V satisfying (a) follows from the existence of column Hermite
forms. The reduction (b) follows by doing the column operation

[Vi]ij ,k ← [Vi]ij ,k − q · [Vn]ij ,j with q = iquo([Vi]ij ,k, [Vn]ij ,j)

for each k as j varies from column n− r to 1. Here iquo denotes integer quotient, a function which always
results in a nonnegative remainder.

It remains to show that any V satisfying (ii) is unique. Thus we suppose the contrary and assume that
we have A · V = A · V ∗ = [H, 0] with V = [Vi, Vn] and V ∗ = [V ∗

i
, V ∗

n ] both being unimodular and satisfying
(ii). From (i) we have that there exists an integer matrix U such that Vn = V ∗

n ·U . The uniqueness of column
Hermite forms then implies that U = I and so Vn = V ∗

n .

Suppose now that M ∈ Z
(n−r)×r such that Vi − V ∗

i
= Vn ·M . Looking at the last pivot row of Vn (row

in−r) and using condition (b) we have that for each 1 ≤ k ≤ r:

[Vi]in−r,k − [V ∗
i ]in−r,k = [Vn]in−r,n−r · [M ]n−r,k.

From condition (b) we have that both [Vi]in−r,k and [V ∗
i
]in−r,k are positive integers smaller than [Vn]in−r,n−r.

Thus [M ]n−r,k = 0 for all k and hence the last row of M is zero. Suppose now that rows n− r, . . . , ℓ+ 1 of
M are all zero. Then for the pivot row iℓ the triangular property of the Hermite form implies that for each
k we have

[Vi]iℓ,k − [V ∗
i ]iℓ,k = [Vn]iℓ,ℓ · [M ]ℓ,k.

As before, the size condition (c) implies that [M ]ℓ,k = 0 for all k and hence row ℓ of M is zero. By induction
we see that M = 0. Hence Vi = V ∗

i
and so V = V ∗ is unique. �

We refer to our unique unimodular multiplier V as a normal unimodular multiplier. The construction of
this multiplier is similar to that of [5, page 97] except that both H and Vn are lattice reduced in that case.

Example 2.4 Let

A =

[

8 2 15 9 11
6 0 6 2 3

]
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which has Hermite normal form [I2, 0]. The reduction performed by Maple results in the unimodular multiplier

V ′ =













−49 −1 −57 −13 −28
−36 −1 −42 −10 −21
79 2 92 21 45
−36 −1 −42 −9 −21
−36 −1 −42 −10 −20













while the normalized unimodular multiplier is

V =













−1 −2 −2 −2 −1
−3 −14 −7 −13 −7
1 1 2 1 0
0 2 0 3 0
0 1 0 0 2













.

The simplest case of a normal unimodular multiplier occurs when the pivot rows of Vn ∈ Z
n×(n−r) are

the rows of an (n− r)-identity matrix. In this case there we have

Vn =

[

V ∗
n

In−r

]

and Vi =

[

V ∗
i

0r

]

.

Thus V ∗
i

is unimodular and V and W (where W = V −1) are of the form

V =

[

V ∗
i

V ∗
n

0 In−r

]

and W =

[

V ∗
i

−1 −V ∗
i

−1V ∗
n

0 In−r

]

.

Note that this is the only possibility for a block of zero to appear at the bottom left. Indeed, if V is block
upper triangular, the diagonal blocks need to be unimodular and the Hermite normal form of a unimodular
matrix is the identity.

2.3 Reducing the unimodular inverse

For some applications it is meaningful to rather reduce or simplify the inverse W of a unimodular multiplier
for the Hermite form. This latter is defined by the fact that it is unimodular and satisfies

A = [H, 0] ·W. (9)

By Theorem 2.3, if W is the inverse of a unimodular multiplier V then any other such inverse is of the
form

[

Ir 0
M ′ U ′

]

·W with U ′ ∈ Z
(n−r)×(n−r) unimodular.

Thus if we partition any W satisfying (9) as

[

Wu

Wd

]

then Wu is unique and any simplification can only take

place with Wd.

An obvious simplification to consider is the row Hermite form of Wd, that is, M
′ = 0 and U ′ such that

U ′Wd = W ∗
d , the row Hermite form of Wd. When applied to the inverse of the normal unimodular multiplier

we call the result the reduced unimodular inverse.

Example 2.5 Continuing with Example 2.4, a unimodular inverse W for the normal unimodular multiplier
V is

W =

[

Wu

Wd

]

=













8 2 15 9 11
6 0 6 2 3
−5 −1 −8 −5 −6
−4 0 −4 −1 −2
−3 0 −3 −1 −1













.
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Taking the row Hermite normal form W ∗
d of Wd then gives a reduced inverse multiplier and corresponding

unimodular multiplier V ∗ as

W ∗ =

[

Wu

W ∗
d

]

=













8 2 15 9 11
6 0 6 2 3
1 0 1 0 1
0 1 3 0 11
0 0 0 1 −2













and V ∗ =













−1 −2 21 2 13
−3 −14 108 7 55
1 1 −14 −2 −11
0 2 −12 0 −3
0 1 −6 0 −2













.

The reduction we have defined for the inverse W might fail to provide a normal form. If a normal form
is needed then it can be obtained as follows. Since Wu has full rank one can always first reduce Wd with
respect to Wu and then reduce the resulting Wd. If W ∗

u is the row Hermite form for Wu then this is the
same as first finding M ∈ Z

n−r×r such that MW ∗
u + Wd = W ∗

d where the entries of W ∗
d are smaller than

W ∗
u and then finding U ∈ Z

(n−r)×(n−r) so that UW ∗
d is in row Hermite form. Here smaller means that

0 ≤ [W ∗
d ]k,ci < [W ∗

u ]i,ci for all k and i where the ci are the pivot columns for W ∗
u .

3 Scalings

Scalings can be described through the matrix of exponents of the group parameters as they act on each
component1. In this section we describe the matrix forms and properties that are useful when representing
scalings and computing their invariants. We consider an algebraically closed field K of characteristic zero,
the multiplicative group of which is K∗.

3.1 Matrix notations for monomial maps

If a = [a1, . . . , ar]
T is a column vector of integers and λ = [λ1, . . . , λr] is a row vector with entries in K

∗,
then λa denotes the scalar

λa = λa1

1 · · ·λ
ar
r .

If λ = [λ1, . . . , λr] is a row vector of r indeterminates, then λa can be understood as a monomial in the
Laurent polynomial ring K[λ, λ−1], a domain isomorphic to K[λ, µ]/(λ1µ1−1, . . . , λrµr−1). We extend this
notation to matrices: If A is an r × n matrix then λA is the row vector

λA = [λA·,1 , · · · , λA·,n ]

where A·,1, . . . , A·,n are the n columns of A.

In some cases it is important to keep track of those exponents which are nonnegative (and hence describe
numerators) and those which are negative (and hence describe denominators). To this end the following
notation becomes useful. Every vector a ∈ Z

r can be uniquely written as a = a+ − a− where a+ and a− are
nonnegative and have disjoint support. Their components are:

[a+]i =

{

ai if ai ≥ 0
0 otherwise

and [a−]i =

{

ai if ai ≤ 0
0 otherwise.

This can be extended to r × n matrices by

A+= [(A.,1)
+, · · · , (A.,n)

+] and A−= [(A.,1)
−, · · · , (A.,n)

−].

If x = [x1, . . . , xn] and y = [y1, . . . , yn] are two row vectors, we write x ⋆ y for the row vector obtained by
component wise multiplication:

x ⋆ y = [x1y1, . . . , xnyn]

1Similar descriptions are used for the parameterization of toric varieties [25].
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Proposition 3.1 Suppose A and B are matrices of size r × n and n× n, respectively, and that λ is a row
vector with r components. Then

(a) If A = [Ai, An] is a partition of the columns of A, then λA = [λAi , λAn ],

(b) λAB = (λA)B,

Suppose A and B are matrices of size r × n and λ and µ are row vectors with r components. Then

(c) (λ ⋆ µ)A = λA ⋆ µA.

(d) λA+B = λA ⋆ λB

proof: Part (a) follows directly from the definition of λA. For part (b) we have for each component j,
1 ≤ j ≤ t:

[(λA)B ]j =
∏n

i=1[λ
A]

bij
i

=
∏n

i=1(
∏r

ℓ=1 λ
aℓi

ℓ )bij

=
∏r

ℓ=1(
∏n

i=1 λ
aℓibij
ℓ ) =

∏r
ℓ=1( λ

∑n
i=1

aℓibij
ℓ ) = [λAB ]j .

For part (c) one simply notices that for each j we have

[(λ ⋆ µ)A]j =
r
∏

i

[λ ⋆ µ]
ai,j

i =
r
∏

i

λ
ai,j

i · µ
ai,j

i

= [λA]j [µ
A]j = [λA ⋆ µA]j .

The proof of (d) follows along the same lines. �

3.2 Scalings in matrix notation

The r-dimensional torus is the Abelian group (K∗)r. Its identity is 1r = (1, . . . , 1) and the group operation
is component-wise multiplication, which we denoted ⋆.

Definition 3.2 Let A be a r × n integer matrix: A ∈ Z
r×n. The associated scaling is the linear action of

(K∗)r on the affine space K
n given by

(K∗)r ×K
n → K

n

(λ , z) → λA ⋆ z. (10)

With the notations introduced above we have that

λA ⋆ z = [λA·,1z1, . . . , λ
A·,nzn]

with A·,1, . . . , A·,n being the n columns of A. Thus for each j = 1, . . . , n the action scales the jth component
zj by the power product λ

a1,j

1 · · ·λ
ar,j
r . The axioms for a group action are satisfied thanks to Proposition 3.1:

1r ⋆ z = z and (λ ⋆ µ)A ⋆ z = λA ⋆ (µA ⋆ z).

There is no loss of generality in assuming that A has full row rank. Indeed, we can view the scaling
defined by A as a diagonal representation of (K∗)r on the n dimensional space K

n:

(K∗)r → Dn

(λ1, . . . , λr) 7→ diag(λA)

8



where Dn is the group of invertible diagonal matrices. This in turn can be factored by the group morphism
from (K∗)r to (K∗)n defined by A. This is given explicitly by:

ρ(A) : (K∗)r → (K∗)n

(λ1, . . . , λr) 7→ λA

Suppose now that UA =

[

B
0

]

is in row Hermite normal form2, with unimodular row multiplier U .

Consider the splitting U =

[

U1

U2

]

, where U1A = B is of row dimension d and U2A = 0. Then

(K∗)d × (K∗)r−d U
−→ (K∗)r

A
−→ (K∗)n

(µ1, µ2) 7→ µU1

1 ⋆ µU2

2 7→ (µU1

1 ⋆ µU2

2 )A = µB
1 .

Since U is unimodular, ρ(U) is an isomorphism of groups and the image of (K∗)r by ρ(A) is equal to the
image of (K∗)d by ρ(B).

Proposition 3.3 Let A be a full row rank matrix in Z
r×n. The isotropy groups for the scaling defined by

A on (K∗)n are trivial if and only if the Hermite normal form of A is [Ir, 0].

proof: Assume V = [Vi, Vn] is a unimodular multiplier such that A ·V is in Hermite normal form [H, 0].
Take z ∈ (K∗)n so that there exists λ ∈ (K∗)r such that λA ⋆z = z. This is equivalent to [λH ⋆zVi , zVn ] = zV

and therefore to λH = 1r.

Since H is triangular with positive integer entries on the diagonal, the set of equations λH = 1r has
∏r

i=1 hi distinct solutions, where (hi) are the diagonal entries. In all cases, λ = 1r is a solution. It is the
only solution if and only if H = Ir. �

4 Rational invariants of scaling

Consider a full row rank matrix A ∈ Z
r×n which defines a scaling, that is an action of the torus (K∗)r on

K
n. A rational invariant is an element f of K(z) such that f(λA ⋆ z) = f(z). Rational invariants form the

subfield K(z)A of K(z). In this section we show how a unimodular multiplier V , where A · V is in Hermite
normal form, provides us with a complete description of the subfield of rational invariants. From V , and its
inverse, we shall extract

• n− r generating rational invariants that are algebraically (and functionally) independent

• a simple rewriting of any (rational) invariant in terms of this generating set,

• a rational section to the orbits of the scaling.

We thus go much further than the group action transcription of the Buckingham π-theorem of dimensional
analysis [3, 21]. This latter takes any basis of the nullspace of the matrix A and provides a set of functionally
generating invariants, some of which could involve fractional powers. In the present approach, only integer
powers are involved. This spares us the determination of proper domains of definition. Furthermore, the
Buckingham π-theorem gives no indication on how to rewrite an invariant in terms of the generators produced.
The rewriting we propose is a simple substitution. This is reminiscent of the normalized invariants appearing

2Or any row rank revealing form.
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in [6, 10, 18] (or replacement invariants in [9]). And rightfully so. Using the terminology of those articles, we
are in a position to exhibit a global cross-section (of degree one) to the orbits of the scaling. Note though,
that the substitution is again rational: we do not introduce any algebraic functions as would be generally
the case when choosing a local cross-section arbitrarily.

4.1 Generating and replacement invariants

A Laurent monomial zv is a rational invariant if (λA ⋆ z)v = zv and therefore if and only if Av = 0. The
following theorem shows that rational invariants of a scaling can be written as a rational function of Laurent
monomials that are invariants.

Lemma 4.1 Suppose p
q ∈ K(z)A, with p, q ∈ K[z] relatively prime. Then there exists u ∈ Z

n such that

p(z) =
∑

v ∈ kerA∩Zn

av z
u+v and q(z) =

∑

v ∈ kerA∩Zn

bv z
u+v

where the families of coefficients, (av)v and (bv)v, have finite support.3

proof: We take advantage of the more general fact that rational invariants of a linear action on K
n are

quotients of semi-invariants (see for instance [22, Theorem 3.3]). Indeed, if p/q is a rational invariant, then
we have

p(z) q(λA ⋆ z) = p(λA ⋆ z) q(z)

in K(λ)[z]. As p and q are relatively prime, p(z) divides p(λA ⋆ z) and, since these two polynomials have
the same degree, there exists χ(λ) ∈ K(λ) such that p(λA ⋆ z) = χ(λ) p(z). It then also follows that
q(λA ⋆ z) = χ(λ) q(z).

Let us now look at the specific case of a scaling. Then

p(z) =
∑

w∈Zn

aw zw ⇒ p(λA ⋆ z) =
∑

w∈Zn

awλ
Aw zw.

For p(λA ⋆ z) to factor as χ(λ)p(z) we must have Aw = Au for any two vectors u,w ∈ Z
n with av and au in

the support of p. Let us fix u. Then w − u ∈ kerA and χ(λ) = λAu. From the previous paragraph we have
∑

w∈Zn bwλ
Aw zw = q(λA ⋆ z) = λAuq(z) = λAu

∑

w∈Zn bw zw. Thus Au = Aw and therefore there exists
v ∈ kerA ∩ Z

n such that w = u+ v for all w with bw in the support of q. �

The set of rational functions on K
n that are invariant under a group action form a subfield of K(z) and,

as such, it is a finitely generated field. In the case of a scaling the generators of this field can be constructed
making use only of linear algebra and the representation of rational invariants given in Lemma 4.1.

Theorem 4.2 Let V = [ Vi, Vn ] and W =

[

Wu

Wd

]

be unimodular matrices of integers such that AV =

[ H, 0 ] is in column Hermite normal form and W is the inverse of V . Then the scaling defined by A has
the following properties:

(a) The n− r components of g = [z1, . . . , zn]
Vn form a generating set of rational invariants;

(b) Any rational invariant can be written in terms of the components of g by substituting z = [z1, . . . , zn]
by the respective components of gWd .

3In particular av = 0 (respectively bv = 0) when u+ v /∈ N
n.
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proof: Observe first that the components of g are invariants. Indeed the columns of Vn span kerA and

so
(

λA ⋆ z
)Vn

= λAVn ⋆ zVn = zVn . We shall prove that any rational invariant can be rewritten in terms of
these components.

Since V and W are inverses of each other we have In = ViWu + VnWd. Thus z = zViWu+VnWd , where
z = [z1, . . . , zn]

T , the vector of degree 1 monomials. More generally, for any v ∈ Z
n, zv = z(ViWu+VnWd)v. If

now v ∈ kerA ∩ Z
n then zv = zVnWdv = gWdv since ker A ⊂ ker Wu.

The representation given in Lemma 4.1 implies that any p
q ∈ K(z)T , with p, q ∈ K[z] relatively prime,

has the form
p(z) =

∑

v ∈ kerA∩Zn

av z
u+v and q(z) =

∑

v ∈ kerA∩Zn

bv z
u+v

for some u ∈ Z
n. As elements of K(z), we can rewrite these as

p(z) = zu
∑

v∈kerA∩Zn av
(

zVnWd

)v
and q(z) = zu

∑

v ∈ kerA∩Zn bv
(

zVnWd

)v

and so
p(z)

q(z)
=

p
(

zVnWd

)

q (zVnWd)
=

p
(

gWd

)

q (gWd)
.

�

Both V and W are needed for computing invariants and rewrite rules. Since a matrix V is produced from
column operations converting A to Hermite normal form, the W matrix can be computed simultaneously
with minimal cost by the inverse column operations.

Example 4.3 Consider the scaling defined by A =
[

2 3
]

. A unimodular multiplier for its Hermite
normal form is

V =

[

−1 3
1 −2

]

with inverse W =

[

2 3
1 1

]

.

It follows that g = x3

y2 is a generating invariant. Any other rational invariant can be written in terms of g
with the substitution x 7→ g, y 7→ g.

Example 4.4 Consider the 2× 5 matrix A given by

A =

[

6 0 −4 1 3
0 3 1 −4 3

]

.

If z = (z1, z2, z3, z4, , z5) and λ = (µ, ν) then the group action defined by A is given by

λA ⋆ z = ( µ6z1, ν3z2,
ν

µ4
z3,

µ

ν4
z4, µ3ν3z5).

The column Hermite normal form for A is given by

[ H, 0 ] =

[

3 2 0 0 0
0 1 0 0 0

]

and the normal unimodular multiplier and its inverse are

V=













1 1 2 1 0
1 0 −1 2 0
1 1 3 2 1
1 0 0 2 1
0 0 0 0 1













, W=













2 −2 −2 3 −1
0 3 1 −4 3
0 −1 0 1 −1
−1 1 1 −1 0
0 0 0 0 1













.
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Here the last 3 rows of Vn are the pivot rows. A generating set of invariants is given by the components

(g1, g2, g3) = zVn =

(

z21
z2

z33 , z1z
2
2z

2
3 z

2
4 , z3z4 z5

)

while the rewrite rules are given by

(z1, z2, z3, z4, z5)→ gWd =

(

1

g2
,
g2
g1

, g2,
g1
g2

,
g3
g1

)

.

A normal unimodular multiplier V = [Vi, Vn] has Vn in column Hermite normal form. By part (a)
of Theorem 4.2 the use of a normal unimodular multiplier implies a simple, triangular-like form for the
invariants of a scaling. On the other hand a reduced unimodular inverse W has Wd in row Hermite normal
form. By part (b) of Theorem 4.2 the use of a reduced unimodular inverse ensures a simple triangular-like
form for the rewrite rules of an invariant of a scaling.

Example 4.5 Returning to the previous example the reduced inverse is

W :=













2 −2 −2 3 −1
0 3 1 −4 3
1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 1













, with V =













1 1 −1 −1 −2
1 0 −2 3 1
1 1 −2 −1 −2
1 0 −2 2 1
0 0 0 0 1













.

Now the bottom 3 rows of W are in row Hermite form. Accordingly the rewrite rules are given by

(z1, z2, z3, z4, z5)→ yWd =

(

g1, g2,
1

g1
,
1

g2
, g3

)

.

where the generating invariants, read from V , are

(g1, g2, g3) = zVn =

(

1

z1z22z
2
3z

2
4

,
z32z

2
4

z1z3
,
z2z4z5
z21z

2
3

)

.

4.2 Rational section to the orbits

The fact that we can rewrite any invariant in terms of the generating set by a simple substitution actually
reflects the existence and intrinsic use of a rational section [9, 10]. Indeed, any unimodular multiplier for
the Hermite normal form provides a rational section. The simplest rational sections are uncovered by the
normal unimodular multipliers of Theorem 2.3.

An irreducible variety P ⊂ K
n is a rational section for the rational action of an affine algebraic group

if there exists a nonempty Zariski open subset Z ⊂ K
n such that any orbit of the induced action on Z

intersects P at exactly one point [22, Section 2.5].

Theorem 4.6 With the hypotheses of Theorem 4.2, the variety P of (zV
+

i − zV
−
i ) : z∞ is a rational section

for the scaling defined by A. The intersection of the orbit of a point z ∈ (K∗)n with this section is the point
zVnWd .

proof: The matrix Wd is full row rank and Wd · [Vn, Vi] = [In−r, 0]. By Lemma 2.2 the columns of Vi

span the lattice kernel of Wd. Thus the kernel of

K[z] → K[x, x−1]
z 7→ xWd .
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is the prime (toric) ideal P =
(

zV
+

i − zV
−
i

)

: (z1 . . . zn)
∞ of dimension r [25, Lemma 4.1, 4.2 and 12.2].

Assume z ∈ (K∗)n. For z̃ = λA ⋆ z to be on the variety P of P the components of z̃Vi need to all
be equal to 1. Thus λAVi = z−Vi , that is, λH = z−Vi . Because of the triangular structure of H we can

always find λ ∈ (K∗)r satisfying this equation. For any such λ we then have z̃ =
(

λA ⋆ z
)ViWu+VnWd

since
ViWu + VnWd = In and so z̃ = λHWu ⋆ zViWu+VnWd = z−ViWu ⋆ zViWu+VnWd = zVnWd by Proposition 3.1.
Thus the intersection of the orbit of z with the variety of P exists, is unique and equal to zVnWd . �

From this description we deduce that the invariants zVnWd are actually the normalized invariants as
defined in [10]. As such the rewriting of Theorem 4.2 applies to the more general class of smooth invariants.
Furthermore, if the Hermite form of A is Ir there is a global moving frame for the group action, namely the
equivariant map ρ : (K∗)n → (K∗)r given by ρ(z) = z−Vi . The components zVnWd = ρ(z)A ⋆ z correspond
then to the normalized invariants as originally defined in [6].

Example 4.7 Consider the scaling given by

(z1, z2, z3, z4, z5)→ (
η

ν3
z1,

η

µ
z2, ηz3,

ν

ηµ
z4,

ην

µ
z5)

an example used to illustrate dimensional analysis in [21]. In this case the matrix of exponents is

A =





−3 1 1 −1 1
0 −1 0 −1 −2
1 0 0 1 1



 .

The normal unimodular multiplier and its inverse are

V =













0 0 1 −1 −1

0 −1 0 −1 −2

1 1 3 −1 −2

0 0 0 1 0

0 0 0 0 1













and W =













−3 1 1 −1 1

0 −1 0 −1 −2

1 0 0 1 1

0 0 0 1 0

0 0 0 0 1













.

Thus the rewrite rules are simply z → gWd = (1, 1, 1, g1, g2). By Theorem 4.6 the associated rational section
is the variety (z3−1, z3−z2, z

3
3−z1) : z

∞. Combinations of the ideal generators show that this ideal is simply
(z1 − 1, z2 − 1, z3 − 1). This favorable situation comes from the fact that the normal unimodular multiplier
and its inverse have a (n− r)× r block of zeros at the bottom left.

The simplest case for the normalization of the unimodular multiplier V occurs when the pivot rows of
Vn are the rows of an (n− r)-identity matrix. Assuming that the pivot rows appear at the end, a situation
that can be arranged by permuting the columns of A and therefore the order of the original variables, then
the normal unimodular multiplier and its inverse are

V =

[

V ∗
i

V ∗
n

0 In−r

]

and W =

[

V ∗
i

−1 −V ∗
i

−1V ∗
n

0 In−r

]

.

The rewrite rules are then: z → gWd = (1, . . . , 1, g1, . . . , gn−r) which indicates that the equations for the
section can be made simpler than in Theorem 4.6.

Proposition 4.8 If the normal unimodular multiplier V of A for its Hermite normal form is

V =

[

V ∗
i

V ∗
n

0 In−r

]

(11)

then the variety of (z1 − 1, . . . , zr − 1) is a rational section to the scaling defined by A. There are then n− r
generating invariants g∗r+1, . . . , g

∗
n s.t. any other rational invariants can be written in terms of those with

the substitution (z1, . . . , zn) 7→ (1, . . . , 1, g∗r+1, . . . , g
∗
n).
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The proof proceeds by taking the power (V ∗
i
)−1 of (zV

+

i − zV
−
i ). The components then belong to the

ideal generated by the components of (zV
+

i − zV
−
i ) and factor as a product of (z1 − 1, . . . , zr − 1) with a

monomial in z. Then (1, . . . , 1, g∗r+1, . . . , g
∗
n) = zVn·Wd = (1r, z

Vn) = (1r, g).

Note that the form (11) is the only possibility for the n− r bottom rows of Vi to be zero. As mentioned
at the end of Subsection 2.2, the rows of Vi being zero implies that the n − r bottom rows of Vn form a
unimodular matrix, and hence can only be the identity.

5 Determining scaling symmetries

In the previous section we assumed that a scaling matrix is provided and we compute its rational invariants.
In this section we consider the reverse problem. That is, we are given a finite set of rational functions
and look for a maximal scaling matrix A ∈ Z

r×n that leaves these functions invariant. This allows us to
determine all the scaling symmetries of the dynamical systems studied in Sections 6 and 7.

Symmetries of differential systems are often determined through infinitesimal methods [21]. If we make
the infinitesimal method specific to scaling symmetries, a solution can be achieved by computing the nullspace
of a matrix [11]. However in that case we only have a local symmetry. In the case of a scaling symmetry of
a dynamical system given by rational functions we can have a global picture.

Consider f = p
q ∈ K(z), where p, q ∈ K[z] are relatively prime, and pick w in the support of p or q. By

Lemma 4.1, A · (v−w) = 0 for all v in the support of p and q. Let Kf be the matrix whose columns consist
of the vectors v−w for all v in the support of p and q (with v 6= w). Then f = p

q is invariant for the scaling
determined by A if and only if A ·Kf = 0. When f is already a Laurent polynomial one should simply take
Kf to be the matrix of exponents of f - thus considering w = 0, the exponent of the denominator which is
1.

The scaling matrix A is independent of the choice of w in the support of p or q. Indeed suppose α1, . . . , αℓ

are the integer vectors of the form v−w for all v 6= w in the support of p and q and β1, . . . , βℓ are the integer
vectors of the form v− u with v 6= u in the support and w and u distinct. Then there exists an index k such
that βj = αj − αk for all j. Then A · αj = 0 for all j implies A · βj = 0 for all j (and conversely).

Consider a vector of rational functions F (z) = [F1(z), . . . , Fm(z)]. To each component Fi we can associate
a matrix Ki as previously described. Let K = [K1, . . . ,Km]. Then the necessary and sufficient condition
for F to be an invariant map for the scaling defined by A is that A ·K = 0. For this we have the following,
which is a simple variation of a proposition found in [5, pg 72].

Proposition 5.1 Suppose K ∈ Z
n×m is a matrix of integers and that U ∈ Z

n×n is a unimodular matrix
such that U ·K is in row Hermite normal form

U ·K =

[

K1

0

]

(12)

having exactly r zero rows. Let A be the last r rows of U . Then

(i) The column Hermite normal form of A is [Ir, 0].

(ii) An integer matrix B satisfies B ·K = 0 iff there exists an integer matrix M such that B = M ·A.

proof: Let V be the inverse of U . Then A · V = [0, Ir] and so permuting the columns of V gives a
unimodular multiplier having trivial Hermite normal form. This gives (i). Property (ii) follows from the fact
that A is a basis for the integer lattice given by left kernel of K. �

The first property implies in particular that A is of full row rank. It furthermore defines a scaling without
isotropy (cf. Proposition 3.3).
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The second property shows the maximality of the scaling found. If A∗ is another matrix with the same
property then there is a unimodular matrix U∗ such that A∗ = U∗ · A. Otherwise B = U∗ · A has either
lower rank or has a nontrivial Hermite normal form.

Example 5.2 In order to find the scaling symmetry of the prey-predator model presented in the introduction
we need to determine the scalings that leave invariant the two rational functions which are the components
of

F =

[

t

(

r
(

1−
n

K

)

− k
p

n+ d

)

, s t
(

1− h
p

n

)

]

.

The first step is to normalize one of the terms of the denominators. For instance we consider:

F =

[

rt+ dtn−1 − rK−1tn− rK−1dt− ktn−1p

1 + dn−1
,
s t− hn−1 s t p

1

]

.

We can then form the matrix K with the non trivial exponents. With variable order (r,K, k, s, h, d, s, t, n, p)
this matrix is:

K =





























0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0
0 1 1 1 1 1 1 1
−1 0 −1 1 0 −1 0 −1
0 0 0 0 0 1 0 1





























.

Here the first 6 columns of K are determined from the exponents of the first component of F and the last 2
columns are determined from the second component.

Applying Proposition 5.1 we determine a 9× 9 unimodular matrix U such that U ·K is in row Hermite
normal form. The row Hermite normal form here has 3 zero rows at the end. We thus retain from U the
bottom three rows. The scalings leaving F invariant is thus given by the matrix

A =





−1 0 0 −1 −1 0 1 0 0
0 1 1 0 1 1 0 1 0
0 −1 0 0 −1 0 0 0 1



 .

6 Dynamical Systems

In this section we consider dynamical systems of the form

dz

dt
= G(t, z), (13)

where z = (z1, . . . , zn) is a vector of variables dependent on t and G is a rational map R × R
n → R

n . We
examine the simplification that can be obtained when such a system has a scaling symmetry.

The symmetry of a differential system is a group of transformations that leaves the solution set invariant
[21]. We first study the case where the scaling acts only on the z variables. We then consider the more
general case where the scaling acts on t as well as on z.

There is a common understanding that a system with symmetry can be reduced. The reduced system
is the dynamical system induced on the invariants of the group action describing the symmetry. The more
difficult part is to recover the solutions of the original system from the solutions of the reduced system.
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In the case studied here, we show how to obtain directly a reduced system and how the solution of the
original system can be deduced from the solution of the reduced system with some additional quadratures.
The reduced system and the quadratures are very simply constructed from a unimodular multiplier, and its
inverse, for the Hermite normal form of the scaling matrix.

The methodological approach of symmetry reduction in [1] applies to exterior differential systems. It is
specialised for symmetry reduction of ordinary differential equations in [7]. It requires first a quotient map
and a cross-section. In the case of scaling symmetries those are provided by the monomial maps defined by
Vi and Wd respectively. One then needs to find the semi-basic forms and the ODE structure of the reduced
system. The solution of the original system are then recovered by determining and solving equations of
Lie type. For scalings, the underlying group is Abelian so those equations can be brought to independent
quadratures. The constructive content of those steps does not appear as straightforward.

The method in [18, Section 6] applies the ingredients of the moving frame as initially introduced in [6].
It requires a (local) cross-section as input and a companion equation. In the case of scalings, there is self
evident companion equation that we actually use here. The differential equations are then rewritten in terms
of the normalized invariants and one needs to spot a differentially generating subset among those, with
the possibility of requiring syzygies. The solution of the original equations are then obtained thanks to the
solutions of the differential system bearing on the moving frame. This latter is of Lie type. It is the set of
quadratures we obtain, when there is no isotropy.

6.1 Symmetry on the dependent variables

Consider a scaling on K
n defined by A ∈ Z

r×n. The condition for the scaling defined by A to be a symmetry
of the differential system (13) is that G be equivariant with respect to z, that is, G(t, λA ⋆ x) = λA ⋆G(t, z).
In this case, if z(t) is a solution of (13) then, for any λ ∈ (R∗)r, λA ⋆ z(t) is also a solution.

For the rest of this subsection we simply write G(z), omitting t, even though we do not assume that G
is independent of t. Rather the notation is used since only the scaling is assumed to act trivially on t. With
the notation

z−1 =
[

z−1
1 , . . . , z−1

n

]

we have that z−1 ⋆G(z) is an invariant map so that there is no loss of generality in considering the dynamical
system

dz

dt
= z ⋆ F (z) where F (λA ⋆ z) = F (z). (14)

Let V = [Vi, Vn] be a unimodular matrix with inverse W =

[

Wu

Wd

]

such that A ·V is in Hermite normal

form. We consider the new variables x = zVi and y = zVn . The variables y stand for the invariants of the
scaling, while the auxiliary variables x stand for a moving frame up to isotropy (Theorems 4.2 and 4.6). The
dynamics for x and y are obtained by application of the following useful lemma.

Lemma 6.1 Suppose z = [z1, . . . , zn] is a vector of functions of time t and B ∈ Z
n×k is a matrix of

integers.Then
d

dt

(

zB
)

= zB ⋆

[(

z−1 ⋆
dz

dt

)

·B

]

. (15)

proof: Suppose first that b = [b1, . . . , bn]
T is an arbitrary column vector of integers. Then zb = zb11 · · · z

bn
n
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and so

d

dt
(zb) = b1

zb

z1
·
dz1
dt

+ · · ·+ bn
zb

zn
·
dz1
dt

= zb
(

b1
z1
·
dz1
dt

+ · · ·+
bn
zn
·
dz1
dt

)

= zb
[(

z−1 ⋆
dz

dt

)

· b

]

. (16)

The result then follows by applying (16) to each column of B. �

Proposition 6.2 Consider a map F : Rn → R
n that is invariant under the scaling defined by A ∈ Z

r×n.

Let V = [Vi, Vn] be a unimodular matrix with inverse W =

[

Wu

Wd

]

such that A · V is in Hermite normal

form. If z(t) is a solution of dz
dt = z ⋆ F (z) where none of the components vanish then

[x(t), y(t)] =
[

z(t)Vi , z(t)Vn

]

is a solution of the dynamical system:

dy

dt
= y ⋆ F (yWd) · Vn (17)

dx

dt
= x ⋆ F (yWd) · Vi. (18)

proof: From Lemma 6.1 we have that dy
dt = y ⋆ (F (z) · Vn) and, since F is invariant F (z) = F

(

zVn·Wd

)

=

F
(

yWd

)

by Theorem 4.2. The same argument gives equation (18). �

System (17) is the reduced system: it is the dynamical system bearing on the n − r variables which are
intrinsically generating invariants of the scaling. System (18) is an auxiliary system providing the dynamic
system of the moving frame as defined in [6], up to isotropy. It is actually a quadrature. For a given solution
to the system (17), a solution to (18) is obtained by integration:

x = exp

(
∫

F (yWd) · Vi dt

)

. (19)

The coupled system (17-18) thus lends itself better to solving or to analysis. The next result shows how we
can recover the solutions of the original system from the solutions of the reduced system with the help of
the auxiliary system.

Theorem 6.3 Consider a map F : Rn → R
n that is invariant under the scaling defined by A ∈ Z

r×n. Let

V = [Vi, Vn] be a unimodular matrix with inverse W =

[

Wu

Wd

]

such that A · V is in Hermite normal form.

If y(t) and x(t) are solutions of the dynamical systems

dy

dt
= y ⋆ F (yWd) · Vn,

dx

dt
= x ⋆ F (yWd) · Vi,

where none of the components vanish, then z(t) = [x(t), y(t)]W = x(t)Wu ⋆ y(t)Wd is a solution of the
dynamical system

dz

dt
= z ⋆ F (z).
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proof: By Lemma 6.1 we have

d

dt
(z(t)) =

d

dt

(

[x(t), y(t)]
W
)

= z(t) ⋆

(

[x(t), y(t)]−1 ⋆
d

dt
([x(t), y(t)]) ·W

)

.

From d
dt ([x(t), y(t)]) = [x(t), y(t)]⋆F (y(t)Wd) ·V and V ·W = In we obtain d

dt (z(t)) = z(t)⋆F (y(t)Wd). Since

W · Vn =

[

0
In−r

]

we have z(t)Vn = [x(t), y(t)]W ·Vn = y(t), and so, by Theorem 4.2, F (y(t)Wd) = F (z(t))

since F is an invariant. �

Example 6.4 Consider the dynamical system

dz1
dt

= z1(1 + z1z2),
dz2
dt

= z2

(

1

t
− z1z2

)

Then A, V and W defined by

A =
[

1 −1
]

, V =

[

1 1
0 1

]

, W =

[

1 −1
0 1

]

.

defines a scaling symmetry for this system with V a unimodular matrix such that A ·V is in Hermite normal
form and W is the inverse of V .

We introduce, as new variables, the invariant of the scaling y = zVn = z1z2 and the auxiliary variable
x = zVi = z1. The induced dynamical system for those variables are, on one hand, the reduced system -
consisting of a single equation - and a quadrature:

dy

dt
= y

(

1 +
1

t

)

,
1

x

dx

dt
= 1 + y.

It is reasonably easy to write the solution of this linear differential system:

y(t) = c1 t e
t, x(t) = c2 exp

(

t+ c1(t− 1)e2t
)

.

We can thus provide the solutions of the original system as [z1(t), z2(t)] = [x(t), y(t)]
W
, which is

z1(t) = x(t) = c2 exp
(

t+ c1(t− 1) et
)

, z2(t) =
y(t)

x(t)
=

c1
c2

t exp
(

c1(t− 1) et
)

.

6.2 General case

Consider a scaling on K
n+1 defined by Ā ∈ Z

r×(n+1). The condition for the scaling defined by Ā to be a
symmetry of the differential system (13) is that F (t, z) = t z−1 ⋆G(t, z) be an invariant map for the scaling.
Without loss of generality we therefore write our dynamical system in the form

t
dz

dt
= z ⋆ F (t, z) (20)

where F : R× R
n → R

n is an invariant map for the scaling defined by A ∈ Z
r×(n+1) .

We write Ā = [A0, A] = [A0, A1, . . . , An] so that the scaling is given by

λĀ ⋆ [t, z] =
[

λA0t, λAz
]

=
[

λA0t, λA1z1, . . . , λ
Anzn

]

.
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It is actually convenient to introduce an additional dependent variable z0, add an equation for it, and
keep time invariant in a first step. We set F̄ = [1, F ] and z̄ = (z0, z1, . . . , zn) and consider the dynamical
system:

t
dz̄

dt
= z̄ ⋆ F̄ (z̄). (21)

The first equation of this dynamical system is simply t
dz0
dt

= z0 so that t−1z0 is constant. If z̄(t) =

[z̄0(t), z̄1(t), . . . , z̄n(t)] is a solution of (21) and the constant c = t−1z̄0(t) is not zero, then z(t) =
[

z̄1
(

t
c

)

, . . . , z̄n
(

t
c

)]

is a solution of (20). Conversely, if z(t) = [z1(t), . . . , zn(t)] is a solution of (20) then [t, z1(t), . . . , zn(t)] is a
solution of (21).

If we set s = ln(t) then system (21) can be rewritten as
dz̄

ds
= z̄ ⋆ F̄ (z̄). We can then apply the reduction

of Theorem 6.3. We can also keep t as the independent variable. The statement and the proof are completely
analogous.

Theorem 6.5 Consider a map F : R×Rn → R
n that is invariant under the scaling defined by Ā ∈ Z

r×(n+1).

Let V = [Vi, Vn] be a unimodular matrix with inverse W =

[

Wu

Wd

]

such that Ā · V is in Hermite normal

form. Assume y(t) and x(t) are solutions of the dynamical systems

t
dy

dt
= y ⋆ F̄ (yWd) · Vn, (22)

t
dx

dt
= x ⋆ F̄ (yWd) · Vi, (23)

where F̄ = [1, F ], having the property that none of their components vanish. If [z̃0(t), z̃1(t) . . . , z̃n(t)] =
[x(t), y(t)]W then t−1 z̃0(t) is a nonzero constant c and z(t) =

[

z̃1
(

t
c

)

. . . , z̃n
(

t
c

)]

is a solution of the dynam-
ical system

t
dz

dt
= z ⋆ F (z).

The system (22) is the reduced system having n + 1 − r variables, which correspond to the generating
set of invariants and can be read from V . The change of time s = ln(t) makes it an autonomous system.
In addition, (23) is a quadrature. If y(t) is a solution to (22) then the complete solution is obtained by
integration:

x = exp

(
∫

F (yWd) · Vi t
−1dt

)

.

Example 6.6 Consider the dynamical system given by

t
dz1
dt

= z1

(

−
2

3
+

1

3
z51z2

)

t
dz2
dt

= z2

(

10

3
−

2

3
z51z2 +

z21z2
t

)

.

This dynamical system is invariant under the scaling defined by the matrix A = [ 3 − 1 5 ]. The normal
unimodular multiplier and its inverse for the Hermite normal form of A are given by

V =





1 1 −1
2 3 2
0 0 1



 , W =





3 −1 5
−2 1 −4
0 0 1



 .

We see that F̄ (t, z1, z2) = [ 1, − 2
3 +

z5
1z2
3 , 10

3 −
2
3z

5
1z2 +

z2
1z2
t ] and yWd = ( y1, y2)

Wd = ( 1
y2
1

, y1,
y2

y4
1

) and so

F̄ (yWd) =

[

1, −
2

3
+

y1y2
3

,
10

3
−

2

3
y1y2 + y2

]

.
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The reduced dynamical system is thus given by

t
dy1
dt

= y1 (y1y2 − 1) and t
dy2
dt

= y2 (1 + y2)

and the auxiliary equation is

t
dx

dt
= x

(

2

3
y1y2 −

1

3

)

.

Here y1 and y2 represent the invariants tz1
3 and

z2
1z2
t , respectively, while the auxiliary variable x represents

tz21 .

Using Maple one obtains closed form solutions for these equations, solving first for y2, then y1 and x:

y2(t) =
t

c1 − t

y1(t) =
c1

t (ln(t− c1)− ln(t) + c2)

x(t) =
c3

t1/3(ln(t− c1)− ln(t) + c2)2/3

with c1, c2, c3 arbitrary constants. A solution to the original dynamical system is therefore given by

(z0(t), z1(t), z2(t)) = (x(t), y(t))W =

(

x(t)3

y1(t)2
,
y1(t)

x(t)
,
x(t)5y2(t)

y1(t)4

)

=

(

c33
c21

t,
c1

c3t2/3(ln(t− c1)− ln(t) + c2)1/3
,
c53t

10/3(ln(t− c1)− ln(t) + c2)
2/3

c41(−t+ c1)

)

.

Substituting t → t/c with c =
c33
c2
1

, simplifying and renaming the constants gives the solution of the original

system as

z1(t) =
a1/3

t2/3(ln(t− a)− ln(t) + b)1/3
, z2(t) =

t10/3(ln(t− a)− ln(t) + b)2/3

a2/3(a− t)

with a, b arbitrary constants. We note that this solution is considerably simpler than that produced by Maple.

7 Models with parameters

Dynamical systems are a standard tool in modeling. The model bears on some state variables z1, . . . , zq that
evolve with time t and the equations are written with some constant parameters c1, . . . , cp that describe the
media. The parameterized dynamical system can be written

dz

dt
= G(c, t, z). (24)

Biological models typically come with more parameters than are relevant for a qualitative analysis: there is
often a way to group parameters without qualitative change to the solution [20]. The rule of thumb used
then can often be explained by a scaling symmetry. This was the case of the predator-prey model in the
introduction.

In this section we apply the results of the previous section to reduce the number of parameters in the
presence of a scaling symmetry. With a series of classical models we demonstrate our algorithmic approach
to the reduction of parameters: first compute the scaling symmetry, then produce the reduced system and
the correspondence with the solution of the original system. Each example illustrate a different aspect of
the reduction proposed.

20



7.1 Symmetry reduction of the number of parameters

Note that (24) can be recast into (13) by extending the system with the equations dc
dt = 0. The matrix

A ∈ Z
r×n, n = p + q + 1, defines a scaling symmetry of (24) if the map F (c, t, z) = t z−1 ⋆ G(c, t, z) is an

invariant: F (λA ⋆ (c, t, z)) = F (c, t, z).

We assume that the normal unimodular multiplier for the Hermite normal form of A has the form4:

V =

















V ∗
i

V †
n V 0

n V ‡
n

01×r 01×(p−r) 1 01×q

0q×r 0q×(p−r) 0q×1 Iq

















, and hence with inverse W =

















Wu

W †
d

W 0
d W ‡

d

01×p 1 01×q

0q×p 0q×1 Iq

















, (25)

where V ∗
i
, V †

n , V
0
n and V ‡

n have p rows while W †
d
, W 0

d , W
‡
d
have p− r rows. As we shall show, we can then

reduce the number of parameters by r. The appropriate combinations of parameters to consider are read
from V and the reduced system is obtained by a simple substitution given by W .

We could write an explicit scheme for reducing by r the number of parameters if the unimodular multiplier
simply had a (q + 1)× p block of zeros in the bottom left corner, that is, was of the form:









V ∗
i

V †
n V ‡

n

0(q+1)×p V ♯
n









However, in this case V ♯
n would be unimodular and the normal unimodular multiplier would be of the form

(25). The class of systems that can be reduced is thus not larger.

In light of Theorem 6.5 we introduce

• c = (c1, . . . , cp−r) = (c1, . . . , cp)
V †
n

• t = (c1, . . . , cp)
V 0
n t

• z = (z1, . . . , zq) = (c1, . . . , cp)
V ‡
n ⋆ (z1, . . . , zq)

The reduced system has p− r parameters, c, and q state variables, z. It is explicitly given by:

dz

dt
= cW

0
d c−W ‡

d ⋆ G
(

cW
†
d , cW

0
d t, cW

‡
d ⋆ z

)

. (26)

In other words, the reduced system is obtained with the following substitution:

c 7→ cW
†
d , t 7→ cW

0
d t, z 7→ cW

‡
d ⋆ z

If (c, z(t)) is a solution of (24) without vanishing components then
(

cV
†
n , cV

‡
n z

(

c−V 0
n t
))

is a solution

of (26). Conversely if (c, z(t)) is a solution of (26) with no zero components then
(

dWu ⋆
(

cW
†
d , cW

‡
d ⋆ z(c−W 0

d t)
))

is a solution of (24), for any constants d = (d1, . . . , dr) without vanishing components.

4This was the case in the many (> 40) models from mathematical biology we examined.
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7.2 Verhulst model of logistic growth

Consider first the Verhulst model of logistic growth [20, Section 1.1]

dn

dt
= r n

(

1−
n

k

)

.

The scaling symmetries of this system are the scalings that leave the Laurent polynomial r1k0t1n0−r1k−1t1n1

invariant. Following Section 5 we form the matrix K of its exponents:

K =









1 1
0 −1
1 1
0 1









.

Applying Proposition 5.1 one determines the matrix A that describes the scaling symmetry for this system,

A =

[

−1 0 1 0
0 1 0 1

]

.

One can indeed see that the system is invariant if we make any of the following change of variables parame-
terized by (µ, ν)

r 7→ µ−1 r, k 7→ ν k, t 7→ µ t, n 7→ ν n.

The normal unimodular multiplier, and its inverse, for the Hermite normal form of A are:

V =









−1 0 1 0
0 1 0 −1
0 0 1 0
0 0 0 1









, and W =









−1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









.

With the substitution read from Wd, r 7→ 1, k 7→ 1, t 7→ t, n 7→ n, we obtain the reduced system:

dn

dt
= n (1− n).

We can combine the general solution n(t) = (1 + c e−t)
−1

of the reduced system and two constants (r, k) into
the general solution of the original system as follows from W :

r =
1

r
, k = k, n(t) = k n

(

t

r

)

= k
(

1 + c e−
t
r

)−1

.

Conversely any solution of the original system n(t) = k (1 + c e−rt)
−1

provides a solution of the reduced
system by taking n(t) = 1

kn(
t

r ) as dictated by V .

7.3 Lotka-Volterra equations

The scaling symmetry reduction of a given dynamical system is not unique. For example, the dynamical
system governing a reaction kinetics described in [20, Section 6.6]

dx

dt
= k1ax− k2xy,

dy

dt
= k2xy − k3y

has parameters (a, k1, k2, k3) and variables (x, y). In [20, Section 6.6] it is reduced to the Lotka-Volterra
equations

du

dτ
= u (1− v),

dv

dτ
= α v (u− 1)
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using the variables

α =
k3
k1a

, τ = ak1t, u =
k2
k3

x, v =
k2
k1a

y.

This change of variables can be obtained through the general scheme we described in Section 6. When we
see it this way we have a simple way of rewriting the system in terms of these new variables. It is given by
an explicit substitution:

a 7→ 1, k1 7→ 1, k2 7→ 1, k3 7→ α, t 7→ τ, x 7→ αu, y 7→ v.

The first step of the algorithm is to determine the scaling symmetry of the dynamical system: these are
the scalings that leave the components of [t (k1 a− k2 y), t (k2 x− k3)] invariant. To determine those we form
the matrix K of the exponents:

K =





















1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 1
1 1 1 1
0 0 1 0
0 1 0 0





















.

A basis of the lattice left kernel of K provides the maximal scaling symmetry of the system (Section 5). It
is given by the matrix:

A =





0 −1 −1 −1 1 0 0
−1 1 0 0 0 0 0
2 −2 −1 0 0 1 1



 .

By Theorem 4.2 a minimal set of generating invariants for this scaling is given by any unimodular multiplier
V such that A · V is in Hermite normal form5. The unimodular multiplier underlying the above choice of
new variables given above is:

V =





















−1 1 1 −1 1 0 −1
−1 2 1 −1 1 0 −1
0 −2 −1 0 0 1 1
0 0 0 1 0 −1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, with inverse W =





















0 −1 −1 −1 1 0 0
−1 1 0 0 0 0 0
2 −2 −1 0 0 1 1
0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















.

This unimodular multiplier has the required shape (25) to apply the parameter reduction scheme of Sec-
tion 7.1. The reduced system is obtained by applying the substitution read from the inverse W while the
new variables are read from the unimodular multiplier V itself.

The normal unimodular multiplier (Theorem 2.3) is

V =





















−1 1 1 −1 1 −1 −1
−1 2 1 −1 1 −1 −1
0 −2 −1 0 0 1 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, with inverse W =





















0 −1 −1 −1 1 0 0
−1 1 0 0 0 0 0
2 −2 −1 0 0 1 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















.

5Here the Hermite normal form is A · V = [I3, 0] by Proposition 5.1.

23



This normal unimodular multiplier is obtained from the former simply by adding column 4 to column 6. It
leads to the reduced system

du

dτ
= u (1− v),

dv

dτ
= v (u− α)

with the substitution, which can be read from W ,

a 7→ 1, k1 7→ 1, k2 7→ 1, k3 7→ α, t 7→ τ, x 7→ u, y 7→ v

and where the new variables, which are read on V ,

α =
k3
ak1

, τ = ak1t, u =
k2
ak1

x, v =
k2
ak1

y.

On this example we have thus illustrated how the choice of a unimodular multiplier affects the new
variables and the reduced system. We do not claim that the normalization of the unimodular multiplier we
offered is the best choice. Yet this is a choice that detects when the scaling symmetry can be fully used to
reduce the number of parameters. The scheme proposed in Section 7.1, or even of Section 6, can nevertheless
be put into action with other choices of unimodular multiplier.

Also, one should remark that the normalization of the unimodular multiplier, and hence the invariants
we use as new variables, depends on the order of the parameters and variables. As a practical tip, one should
choose an order where the parameters that we want to be substituted by 1 come first.

7.4 Schackenberg model for a simple chemical reaction with limit cycle

Consider the following dynamical system which models a plausible chemical reaction [20, Section 7.4] with
parameters are c = (a, b, k, h):

dx

dt
= a− k x+ hx2y,

dy

dt
= b− hx2y.

The scaling symmetries of this system are the scalings that leave
[

a t x−1 − k t+ h t x y, b t y−1 − h t x2
]

invariant. Following Section 5 we form the matrix K of the exponents appearing in those Laurent polyno-
mials:

K =





















0 1 0 0 0
0 0 1 0 1
1 0 0 0 0
0 0 0 1 0
1 1 1 1 1
−1 0 1 0 2
0 0 1 −1 0





















.

Applying Proposition 5.1 one then determines the matrix A that describes the scaling symmetries for this
system:

A =

[

1 1 1 1 −1 0 0
0 0 −1 −3 1 1 1

]

.
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The normal unimodular multiplier V for the Hermite normal form of A has the particular simple form (25).
Together with its inverse W , they are given by:

V =





















1 1 −1 2 0 −1 −1
0 0 1 0 0 0 0
0 −1 0 −3 1 1 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















, W =





















1 1 −1 1 −1 0 0
0 0 −1 −3 1 1 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















.

The reduced model has hence two parameters (b, h) and two state variables (x, y):

dx

dt
= 1− x+ h x2y

dy

dt
= b− h x2y.

It is obtained by the substitution:

a 7→ 1, b 7→ b, k 7→ 1, h 7→ h, t 7→ t, x 7→ x, y 7→ y.

If (b, h, x(t), y(t)) is a solution of this reduced system and (a, k) is any pair of constants then
(

a, ak,
1

ab
,
ah

b3
, bx

(a

b
t
)

, by
(a

b
t
)

)

is a solution of the original system. We have intrinsically considered the invariant variables:

(b, h) = c =

(

b

a
,
a2h

k3

)

, t = k t, and (x, y) = z =

(

k

a
,
k

a

)

⋆ (x, y).

Two remarks are in order for this example. First, had we chosen to order the variables as c = (a, k, b, h),
the normal unimodular multiplier would be of the form (11). Nonetheless, with the slightly more general
form (25) we do obtain a model reduction as expected, without having to fiddle with the parameter order.

Secondly, the nondimensional model used in [20, Section 7.4] is

dx

dt
= a− x+ x2y, (27)

dy

dt
= b− x2y. (28)

It is obtained with the non dimensional variables

a =
h

1
2

k
3
2

a, b =
h

1
2

k
3
2

b, t = k t, x =
h

1
2

k
1
2

x, y =
h

1
2

k
1
2

y.

To cast this in the context of symmetry reduction, we can resort to the general approach of [6, 9, 18]. The
variety of (h− 1, k− 1) is a quasi-section: it has two points of intersection with a generic orbit. The related
replacement invariants are thus algebraic functions of degree 2 and hence the appearance of square roots.
Here, the state variables x and y are molecular concentrations of reactants that evolve with time, while a
and b reflect constant supply of some of the reactants. The parameters k and h are stochiometric coefficients.
As such, they are positive and the use of square roots is well defined. The reductions obtained with the
approach proposed in this paper are always rational. We therefore do not need to argue about the sign of
the parameters or of the state variables.
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7.5 Prey-predator model

Consider the predator-prey model given by the dynamical system

dn

dt
= n

(

r
(

1−
n

K

)

− k
p

n+ d

)

, (29)

dp

dt
= s p

(

1−
hp

n

)

(30)

which appears in the introduction. The parameters are c = (r, h,K, s, k, d) and the state variables are
z = (n, p).

The scaling symmetry of this system was determined in Example 5.2 and is given by

A =





−1 0 0 −1 −1 0 1 0 0
0 1 1 0 1 1 0 1 0
0 −1 0 0 −1 0 0 0 1



 .

The normal unimodular multiplier V for the Hermite normal form of A has the particular simple form (25).
Together with its inverse W , they are given by:

V =





























−1 0 0 −1 −1 0 1 0 0
0 0 −1 0 −1 0 0 0 1
0 1 1 0 0 −1 0 −1 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























, W =





























−1 0 0 −1 −1 0 1 0 0
0 1 1 0 1 1 0 1 0
0 −1 0 0 −1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























.

The reduced system

dn

dt
= n

(

(1− n)− k
p

n+ d

)

, (31)

dp

dt
= s p

(

1−
p

n

)

. (32)

is then obtained by the substitution: r 7→ 1, h 7→ 1, K 7→ 1, s 7→ s, k 7→ k, d 7→ d, t 7→ t, n 7→ n, p 7→ p.

If (s, k, d, n(t), p(t)) is a solution of this reduced system and (a, b, c) is any triplet of constants then
(

1

a
,
b

c
, b,

s

a
,

b

a c
k, b d, b n

(

t

a

)

, c p

(

t

a

))

is a solution of the original system. The reduced system is actually the dynamics for the invariant variables:

(s, k, d) = c =

(

s

r
,
k

rh
,
d

K

)

, t = r t, and (n, p) = z =

(

1

K
,
h

K

)

⋆ (n, p).

8 Conclusion and prospects

In this paper we have made use of the Hermite normal form of the matrix of exponents of a scaling. We
showed how a scaling symmetry can be determined and used algorithmically to reduce dynamical systems
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rationally. We demonstrated how this in particular applies to the reduction of the number of parameters in
models of mathematical biology. All the algorithms in this paper have been implemented in the computer
algebra system Maple with the code available from the authors.

There are a number of research topics that we plan to consider for future work. We have used the
Hermite normal form and a normalized unimodular multiplier as the basic algorithmic tools for computing
scaling symmetries, rational invariants and reductions. However other normal forms and normalizations for
the unimodular multiplier can also be appropriate for such computations. It nonetheless remains an open
question as to which rank revealing normal form and unimodular multiplier normalization are in fact best
for a given application.

We are also interested in scaling symmetry reductions for more general differential systems. In this
paper we treated the simplest case of evolution equation, one with a single independent variable. However
evolution equations in terms of partial differential equations are also common in physics and mathematical
biology. We would like to obtain an algorithmic parameter reduction technique as explicit as that presented
in Section 7 for such situations. A general scheme of scaling symmetry reduction of higher order (partial)
differential systems as explicit as found for dynamical system in Section 6 is a challenge.
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