BetaSAC: A New Conditional Sampling For RANSAC

Antoine Meler 1 Marion Decrouez 1, 2 James L. Crowley 1
1 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
Abstract : We present a new strategy for RANSAC sampling named BetaSAC, in reference to the beta distribution. Our proposed sampler builds a hypothesis set incrementally, select- ing data points conditional on the previous data selected for the set. Such a sampling is shown to provide more suitable samples in terms of inlier ratio but also of consistency and potential to lead to an accurate parameters estimation. The algorithm is presented as a general framework, easily implemented and able to exploit any kind of prior infor- mation on the potential of a sample. As with PROSAC, BetaSAC converges towards RANSAC in the worst case. The benefits of the method are demonstrated on the homog- raphy estimation problem.
Type de document :
Communication dans un congrès
British Machine Vision Conference 2010, Aug 2010, Aberystwyth, United Kingdom. 2010
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00669125
Contributeur : James Crowley <>
Soumis le : samedi 11 février 2012 - 15:06:10
Dernière modification le : jeudi 11 janvier 2018 - 01:48:47
Document(s) archivé(s) le : jeudi 22 novembre 2012 - 12:05:30

Fichier

BMVC2010-paper42.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00669125, version 1

Collections

Citation

Antoine Meler, Marion Decrouez, James L. Crowley. BetaSAC: A New Conditional Sampling For RANSAC. British Machine Vision Conference 2010, Aug 2010, Aberystwyth, United Kingdom. 2010. 〈hal-00669125〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

355