
HAL Id: hal-00670004
https://inria.hal.science/hal-00670004v2

Submitted on 20 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Generalized Reed-Solomon Codes Over
Commutative and Noncommutative Rings
Guillaume Quintin, Morgan Barbier, Christophe Chabot

To cite this version:
Guillaume Quintin, Morgan Barbier, Christophe Chabot. On Generalized Reed-Solomon Codes Over
Commutative and Noncommutative Rings. IEEE Transactions on Information Theory, 2013, 59 (9),
pp.5882-5897. �10.1109/TIT.2013.2264797�. �hal-00670004v2�

https://inria.hal.science/hal-00670004v2
https://hal.archives-ouvertes.fr

1

On Generalized Reed-Solomon Codes Over
Commutative and Noncommutative Rings

Guillaume Quintin, Morgan Barbier, Christophe Chabot

Abstract—In this paper we study generalized Reed-Solomon
codes (GRS codes) over commutative, noncommutative rings,
show that the classical Welch-Berlekamp and Guruswami-Sudan
decoding algorithms still hold in this context and we investigate
their complexities. Under some hypothesis, the study of non-
commutative generalized Reed-Solomon codes over finite rings
leads to the fact that GRS code over commutative rings have
better parameters than their noncommutative counterparts. Also
GRS codes over finite fields have better parameters than their
commutative rings counterparts. But we also show that given a
unique decoding algorithm for a GRS code over a finite field,
there exists a unique decoding algorithm for a GRS code over a
truncated power series ring with a better asymptotic complexity.
Moreover we generalize a lifting decoding scheme to obtain new
unique and list decoding algorithms designed to work when the
base ring is for example a Galois ring or a truncated power series
ring or the ring of square matrices over the latter ring.

Index Terms—Algebra, Algorithm design and analysis, Decod-
ing, Error correction, Reed-Solomon codes.

I. INTRODUCTION

Reed-Solomon codes (denoted by RS codes in the rest
of this paper) form an important and well-studied family
of codes. They were first proposed in 1960 by Irvin Stoy
Reed and Gustave Solomon in their original paper [36]. They
have the property to be Maximum Distance Separable (MDS)
codes, thus reaching the Singleton bound. Not only do RS
codes have the best possible parameters, they also can be
efficiently decoded. See for example [22] and [27]. They
are widely used in practice such as in compact disc players,
disk drives, satellite communications, and high-speed modems
such as ADSL. See [43] for details about applications of RS
codes. A breakthrough has been made by Madhu Sudan in
1997 about the list decoding of RS codes in his paper [41],
further improved by Venkatesan Guruswami and Madhu Sudan
in [26]. They showed that RS codes are list decodable up
to the generic Johnson bound in polynomial time. In [32],
Rasmus Refslund Nielsen and Tom Høholdt showed that the
probability of having more than one codeword returned by any
list decoding algorithm which can decode up to the generic
Johnson bound is very small, making the Guruswami-Sudan
algorithm usable in practice.

Guillaume Quintin is with the Laboratoire d’informatique de l’X (LIX),
École polytechnique, 91128 Palaiseau, FRANCE, UMR 7161 X-CNRS, e-
mail: quintin@lix.polytechnique.fr.

Morgan Barbier is with the Groupe de recherche en Informatique, Image,
automatique et Instrumentation (GREYC) at the University of Caen, 14032
Caen, FRANCE, UMR 6072 CNRS, e-mail: morgan.barbier@unicaen.fr.

Christophe Chabot was with the laboratoire Jean Kuntzmann (LJK), at the
University of Joseph Fourier, 38041 Grenoble, FRANCE, UMR 5224 CNRS,
e-mail: christophechabotcc@gmail.com.

In the present article we investigate generalized Reed-
Solomon codes (denoted by GRS codes in the rest of this
paper) over rings with unity. The latter need not be commu-
tative. We show that the main results about GRS codes still
hold in this more general situation.

A. Our contributions
In an attempt to build new good codes over Z/4Z in a

similar way as in [10] we noticed that most results about
evaluation codes still hold when we replace the ring of
matrices by any noncommutative ring. This generalization is
natural to do and permits the study of GRS codes over rings
with unity in great generality.

Moreover it allows us to design unique and list decoding
algorithms, prove their correctness and study their asymptotic
complexities in a very general framework. They are not
constraint to have as input a GRS code over a finite field
or a Galois ring. They remain valid when the alphabet is any
noncommutative ring such as matrices over a finite field or a
Galois ring.

In this article we reach the conclusion that GRS codes over
finite noncommutative rings are no better than GRS codes over
finite commutative rings which are themselves no better than
their finite fields counterparts as far as only the parameters are
concerned.

We summarize our results in the following theorems and
propositions which will be proved later in the article.

Theorem 1. Given three positive integers k < n ≤ q, let A
be a non commutative ring of cardinality q and a GRS code
over A of parameters [n, k, n − k + 1]A. Then there exists a
commutative ring B of cardinality q and a GRS code over B
of parameters [n, k, n− k + 1]B .

The same theorem holds when q is a prime power and if we
replace “noncommutative rings” by “commutative rings” and
“commutative rings” by “finite fields”. The “soft-Oh” notation
f(n) ∈ Õ(n) means that f(n) ∈ g(n) logO(1)(3 + g(n)) (we
refer the reader to [23, Chapter 25, Section 7] for details).

Proposition 2. Given a Galois ring A = GR(pr, s) and a
RS code over A with parameters [n, k, n − k + 1]A, there
exists a unique decoding with an asymptotic complexity of
Õ(rnks log p) bit-operations; and a list decoding algorithm
with an asymptotic complexity of Õ(nr+6k5sprs(r−1)) bit-
operations which can list decode up to the Johnson bound.

In this paper we provide detailed asymptotic complexities
of our decoding algorithms when the alphabet of the RS code
is a Galois ring and the ring Fq[[t]]/(tr).

2

Theorem 3. Given a finite field A, a truncated power series
ring B such that |A| = |B|, a RS code CA over A of
parameters [n, k, n−k+1]A and a unique decoding algorithm
UDec for CA. Suppose that there exists a RS code CB over
B of parameters [n, k, n − k + 1]B . Then there exists a RS
code C′B over B of parameters [n, k, n − k + 1]B such that
CB/pCB = C′B/pC′B and a unique decoding algorithm for C′B
with a better asymptotic complexity than UDec as soon as the
complexity of UDec is equal or greater than Õ(n).

Note that the asymptotic complexity of the known unique
decoding algorithms is at least Õ(n). In addition, we show
that the gain is more significant when the arithmetic of
the underlying rings is not done with asymptotically fast
algorithms which is the case for practical applications. In this
case we have a similar theorem as Theorem 3 for Galois rings.

B. Related work

Our approach for building noncommutative GRS codes is
different from the one to build “skew codes” [13]–[16], [19].
Skew polynomial rings over finite fields or Galois rings are
used for the construction of codes whose alphabets are finite
fields or Galois rings. Here we consider alphabets which are
noncommutative rings and not necessarily finite fields. GRS
codes over a commutative finite ring have been studied by
Marc André Armand in [2], [3]. To our knowledge this paper
is the first to study GRS codes over noncommutative rings.

Unique decoding algorithms for RS codes over finite fields
have been studied for example in [11], [12], [42]. List de-
coding algorithms for RS codes over finite fields have been
investigated for example in [1], [8], [26], [28], [29], [37], [41].
A unique decoding algorithm for RS codes over Galois rings
has been proposed by [4] while list decoding algorithms have
been investigated in [2], [3], [5], [6].

A lifting decoding scheme has been first proposed in [24]
then in [9], [17]. In this paper we generalize the lifting
decoding scheme to obtain unique and list decoding algorithms
for GRS code over noncommutative rings.

II. PREREQUISITES

In this article we let A be a (not necessarily commutative)
ring with unity, denoted by 1 or 1A, such that for all a, b ∈ A
• 1.a = a.1 = a,
• a.b = 1 =⇒ b.a = 1.

If ab = 1, we say that a is invertible or that a is a unit whose
inverse is b. In this paper, we will only consider rings verifying
the above conditions and by “ring” we mean a not necessarily
commutative ring unless stated otherwise. We denote by A×

the not necessarily commutative group of units of A. An
element a ∈ A is right regular if ab = 0 implies b = 0
for all b ∈ A. Similarly a is left regular if ba = 0 implies
b = 0 for all b ∈ A. If a is both left and right regular we
say that a is regular. Note that when A is finite, A× coincides
with the group of regular elements of A. Suppose now that
we have c = ab for three elements of A. Then a is called a
left divisor of c and b is called a right divisor of c.

Definition 4 (Commutative subset). A subset S of A is called
a commutative subset if for each s, t ∈ S we have st = ts.

Definition 5 (Subtractive subset). We borrow the terminology
of [33, Definition 2.2 page 3] and say that a subset S of A is
subtractive if for all s, t ∈ S with s 6= t we have s− t ∈ A×.

Let A[X] be the ring of polynomials over A and, for
a positive integer k let A[X]<k be the bimodule of all
polynomials of A[X] of degree at most k − 1. Then A[X]
is commutative if and only if A is. We denote by Z(A) the
center of A. We have Z(A[X]) = Z(A)[X].

Definition 6 (Evaluation map). Let

f =
l∑
0

fiX
i ∈ A[X]

and a ∈ A. We define the evaluation of f at a, denoted by
f(a), to be the element

l∑
0

fia
i ∈ A.

In general, the evaluation map f 7→ f(a) is not a ring
homomorphism. Note however that f 7→ f(a) is a ring
homomorphism whenever a ∈ Z(A). Let g ∈ A[X] and
suppose that the subset of A constituted by the coefficients of
g and a is commutative. Then we have (fg)(a) = f(a)g(a).
We call a a root of f if f(a) = 0.

Let f ∈ A[X] and x = (x1, . . . , xn) ∈ An. For convenience
sake the vector (f(x1), f(x2), . . . , f(xn)) of An will be
denoted by f(x). We include in this section propositions about
evaluation and interpolation of polynomials of A[X].

Lemma 7. Let f and g be nonzero polynomials over A
such that the leading coefficient of g is a unit of A. Then
there exist unique polynomials ql(X), rl(X) ∈ A[X] such
that f = qlg + rl and deg rl < deg g; and unique polyno-
mials qr(X), rr(X) ∈ A[X] such that f = gqr + rr and
deg rr < deg g.

Remark 8. Taking the same notations as in Lemma 7 note
that we have ql = qr and rl = rr whenever the coefficients of
f and of qr or ql form a commutative subset of A. It is the
case in particular when g ∈ Z(A[X]). A direct consequence
of Lemma 7 is that a ∈ A is a root of f if and only if X − a
is a right divisor of f . Moreover if a ∈ Z(A) then a is root
of f if and only if X − a is a right and left divisor of f . The
following corollary is the key ingredient of many proofs in
this paper.

Corollary 9. Let f be a polynomial over A of degree at most n
with at least n+1 roots contained in a commutative subtractive
subset of A. Then f = 0. It is the case in particular when the
considered (n+ 1) roots are in Z(A).

The next corollary of Lemma 7 allows to do Lagrange
interpolation as soon as the points at which interpolation is
done are well chosen.

Corollary 10. Let {x1, . . . , xn+1} be a commutative subtrac-
tive subset of A and {y1, . . . , yn+1} be a subset of A. Then

3

there exists a unique polynomial f ∈ A[X] of degree at most
n such that f(xi) = yi, for i = 1, . . . , n+ 1.

Proof: The proof is included to introduce some notations
that will be useful later.

The uniqueness is a direct consequence of Corollary 9. Let

Li(X) =
∏
j 6=i

(X − xj).

Note that if h ∈ A[X] and λ, x ∈ A then (λh)(x) = λ(h(x)).
Therefore the polynomial

f(X) =
n+1∑
i=1

yiLi(xi)−1Li(X), (1)

verifies f(xi) = yi for i = 1, . . . , n+ 1.
As in the commutative case, we will need to work in a

localization of A. However the operation of localization is
slightly more complicated. Let S be a multiplicative subset
of A i.e. S satisfies s, t ∈ S ⇒ st ∈ S. Following [31,
Paragraph 1.6, page 43] one can form the ring of right fractions
denoted by AS−1 under certain conditions such as the right
Ore condition.

Definition 11 (Right Ore condition). A subset S of A is said
to satisfy the right Ore condition if for all r ∈ A and s ∈ S
there exists r′ ∈ A and s′ ∈ S such that rs′ = sr′.

Following [31, Definition 1.3, page 42], we denote by
ass(S) the set {a ∈ A : as = 0 for some s ∈ S}.

Proposition 12. Let S be a multiplicative subset of A sat-
isfying the right Ore condition such that the image of S in
the quotient ring A/ ass(S) consists of regular elements of
A/ ass(S). Then the ring of right fractions of A with respect
to S exists. We will denote it by AS−1.

Proof: See [31, Theorem 1.12, page 47].

A. Error correcting codes

As in the case of linear error correcting codes over a finite
field, we define a linear error correcting code as a submodule
of An for a positive integer n. But, as A is not commutative a
priori we have to define left and right linear error correcting
codes.

Definition 13 (Left and right linear code). Let n be a positive
integer. A left (resp. right) linear error correcting code is
a left (resp. right) submodule C of A such that for each
i ∈ {1, . . . , n} there exists an element of C such that its i’th
coordinate is nonzero.

The elements of C are called codewords while the elements
of An are called words.

If C is a bi submodule of An then it is called a linear error
correcting code, or simply an error correcting code or a code
if there is no confusion on the linearity of C.

As in the finite field case, we can define the Hamming
distance and weight.

Definition 14 (Hamming weight and distance). Let u ∈ An.
We call the Hamming weight of u the number of nonzero

entries of u and denote this number by w(u). Now let v ∈ An.
The Hamming distance between u and v is the nonnegative
integer w(u − v) and denoted by dH(u, v). If there is no
confusion the Hamming distance between u and v will be
simply called the distance between u and v and denoted by
d(u, v).

Let C be a subset of An. The minimum Hamming distance
of C denoted by dC is defined as

dC = min
u,v∈C and u 6=v

d(u, v).

If there is no confusion the minimum Hamming distance of
C is simply called the minimum distance of C. Note that if
C is an additive subgroup of An we have

dC = min
u∈C\{0}

w(u).

Definition 15 (Support). Let u = (u1, . . . , un) ∈ An. The set

{i ∈ {1, . . . , n} : ui 6= 0}

is called the support of u and denoted by Supp(u).

Definition 16 (Inner product). Let u = (u1, . . . , un) and v =
(v1, . . . , vn) be two elements of An. The inner product of u
and v is defined by

〈u, v〉 =
n∑
i=1

uivi ∈ A.

Let C be a bi submodule of An. We can define the left dual
submodule ⊥C of An to be the left submodule of An defined
by

⊥C = {u ∈ An : ∀c ∈ C, 〈u, c〉 = 0} ,

and similarly the right dual submodule C⊥ of An to be the
right submodule of An defined by

C⊥ = {u ∈ An : ∀c ∈ C, 〈c, u〉 = 0} .

A priori there is no reason that ⊥C = C⊥ except under special
hypothesis.

Definition 17 (Parity-check matrix). Let C be a code such that
⊥C = C⊥. Suppose moreover that C⊥ has a base (b1, . . . , bs)
where bi is a row matrix for i = 1, . . . , s. Then the matrix

b1
b2
...
bs


is called a parity-check matrix of C.

B. Galois rings

We recall briefly basic results about Galois rings that will
be useful throughout the article. We fix for this subsection a
prime number p and two positive integers r and s.

Proposition 18. Let ϕ(X), ψ(X) ∈ (Z/prZ)[X] be monic
polynomials of degree s, irreducible modulo p. Then we have
a ring isomorphism:

(Z/prZ)[X]
(ϕ(X))

=
(Z/prZ)[X]

(ψ(X))
.

4

Proof: See [35, Statements I and II, page 207].

Definition 19 (Galois ring). With the same notation as Propo-
sition 18, the ring

(Z/prZ)[X]
(ϕ(X))

is denoted by GR(pr, s) and called a Galois ring.

Proposition 20. The Galois ring A = GR(pr, s) is a finite
local ring whose maximal ideal is generated by p. Its residue
field is Fps . Moreover all the ideals of A are principal and
generated by a power of p.

Proof: The proposition follows from [35, Paragraph 3.5,
page 212] and [39, Theorem 7, page 52].

In order to use Galois rings as a suitable alphabet for our
decoding algorithms we need the following proposition.

Proposition 21. Let Zp be the ring of p-adic integers. We let
Zps denote an unramified extension of Zp of degree s. Then
GR(pr, s) and Zps/(pr) are isomorphic as rings.

Proof: The proposition follows from [35, Paragraph 3.5,
page 212] and [39, Theorem 7, page 52].

C. Complexity model

In order to analyze the performances of our algorithms,
we let I(n) be the time needed to multiply two integers of
bit-size at most n in binary representation. It is classical (
[18], [21], [38]) that we can take I(n) ∈ O(n log n2log∗ n),
where log∗ represents the iterated logarithm of n. If A is a
commutative ring, we let MA(n) be the cost of multiplying
two polynomials of degree at most n with coefficients in A
in terms of the number of arithmetic operations in A. It is
well known ([23, Theorem 8.23, page 240]) that we can take
MA(n) ∈ Õ(n). Thus the bit-cost of multiplying two elements
of Fpn is Õ(n log p) where p is a prime number.

Finally, let us recall that the expected cost spent by a
randomized algorithm is defined as the average cost for a given
input over all the possible executions.

III. GENERALIZED REED-SOLOMON CODES

In this section, we extend the main propositions about GRS
codes over a ring. We study their parameters, duality, key
equation, weight distribution and the MacWilliams identity.

From now on and until the end of this article we fix three
positive integers k < n and d = n − k + 1, a commutative
subtractive subset {x1, . . . , xn} of A, x = (x1, . . . , xn) and
v = (v1, . . . , vn) ∈ (Z(A)×)n.

Definition 22 (Generalized Reed-Solomon code). The left
submodule of An generated by the vectors of the form

(v1f(x1), . . . , vnf(xn)) ∈ An,

with f ∈ A[X]<k is denoted by

GRSA(v, x, k) = GRSA((v1, . . . , vn), (x1, . . . , xn), k)

and is called the generalized Reed-Solomon code over A of
parameters [v, x, k] or simply [n, k] if there is no confusion

on v and x. The integer n is called the code block length or
simply length of GRSA(v, x, k). The n-tuple v = (v1, . . . , vn)
is called the weight of GRSA(v, x, k). The n-tuple x =
(x1, . . . , xn) is called the support of the code. When there
is no confusion on the ring A, the weight and the support, we
will simply write GRS(n, k) for GRSA(v, x, k). The integer k
will be called the pseudo-dimension of GRS(n, k) throughout
this paper. When v = (1A, . . . , 1A) we call GRSA(v, x, k) a
Reed-Solomon code and denote it by RSA(v, x, k) or simply
RS(n, k) if there is no confusion on the ring A, the weight
and the support.

Note that if {x1, . . . , xn} ⊆ Z(A) then the left linear code
GRSA(v, x, k) defined in Definition 22 is in fact a code (i.e.
a bi submodule of An).

Proposition 23. The left linear code GRS(n, k) is free and
has a left basis of cardinality k. In particular when A is com-
mutative the pseudo-dimension k of GRS(n, k) corresponds
to its rank.

Proof: Let

ev : A[X]<k −→ An

f(X) 7−→ (v1f(x1), . . . , vnf(xn)).

Suppose that ev(f) = 0, then f(xi) = 0 for i = 1, . . . , n.
Therefore by Corollary 9 we must have f = 0 and ev is
injective. But A[X]<k is free and has a basis of cardinality k
namely (1, X,X2, . . . , Xk−1) hence the proposition.

Corollary 24. The code GRS(n, k) has minimum distance
d = n− k + 1.

Proof: Denote by d′ the minimum distance of GRS(n, k).
Let g = (X−x1)(X−x2) · · · (X−xk−1) be of degree k−1. As
{x1, . . . , xn} is a commutative subset of A, we have g(xi) = 0
for i = 1, . . . , k − 1 and g(xi) is a product of units of A
by hypothesis, thus g(xi) 6= 0 for i = k, . . . , n. Therefore
d′ ≤ n− k + 1.

Suppose now that there exists a polynomial f ∈ A[X]<k
such that f(xi) = 0 for at least k values of i. By Corollary 9
we must have f = 0. Thus d′ ≥ n− k + 1.

Proposition 25. A generator matrix of GRSA(v, x, k) is given
by 

v1 v2 . . . vn
v1x1 v2x2 . . . vnxn
v1x

2
1 v2x

2
2 . . . vnx

2
n

. .

v1x
k−1
1 v2x

k−1
2 . . . vnx

k−1
n

 .

Proposition 26. Let S be a commutative subtractive subset of
A. Then there exists a commutative ring B such that |B| =
|A|, and a subtractive subset T of B such that |T | = |S|.

Proof: Let m = |A|. We write

m =
r∏
i=1

plii ,

where l1, . . . , lr are positive integers and p1, . . . , pr are prime
numbers. We let Z = Z(A)[S] the commutative subring of A
generated by the elements of S over Z(A).

5

We first prove that pi divides |Z| for i = 1, . . . , r. Suppose
that it is not the case, say p1 does not divide |Z|. Then p1

divides the order of the quotient additive group A/Z. Then
by [30, Lemma 6.1 page 33] there exists a ∈ A \Z such that
p1a ∈ Z. But p11A = p11Z is invertible in Z and we have
a = (p11Z)−1(p11Z)a = (p11Z)−1(p1a) ∈ Z.

Now Z is a finite commutative ring and we can write by
[7, Theorem 8.7, page 90]

Z =
s∏
i=1

Ai

in a unique way (up to isomorphism) where Ai is a finite
local commutative ring for i = 1, . . . , s. We must have s ≥ r:
by [35, Theorem 2, page 199] the cardinality of Ai is a prime
power, thus if s < r it would contradict the fact that pi divides
|Z| for i = 1, . . . , r.

Denote by mi the maximal ideal of Ai for i = 1, . . . , r.
Since S is a subtractive subset of Z we must have

|S| ≤ min
i∈{1,...,r}

|Ai/mi| . (2)

We can assume that the right hand side of the above inequality
is equal to |A1/m1| without loss of generality. There exists
a positive integer l such that |A1/m1| = pl1 and we have
|S| ≤ pl1 ≤ |Ai| ≤ p

li
i for j = 2, . . . , r and j = 1.

Now let B =
∏s
i=1 F

p
li
i

be the product ring of finite
fields. Then Inequality (2) implies that B contains a subtractive
subset T such that |T | = |S|.

We have proved Theorem 1.

Theorem 27. For a GRS code over a finite ring A with
parameters [n, k, n − k + 1]A, there exists a GRS code over
a commutative ring B with |B| = |A| and of parameters
[n, k, n− k + 1]B .

Proof: It is a direct consequence of Proposition 26.

Theorem 28. Suppose that A is finite and that {x1, . . . , xn} ⊆
Z(A). Then ⊥GRSA(v, x, k) = GRSA(v, x, k)⊥ =
GRSA(v′, x, n− k) where v′ = (v′1, . . . , v

′
n) with

v′i =

vi∏
j 6=i

(xi − xj)

−1

∈ Z(A).

Proof: In short: we let C = GRSA(v, x, k), bi =
(v1xi1, v2x

i
2, . . . , vnx

i
n) ∈ Z(A)n for i = 0, . . . , k − 1 and

C ′ = GRSA(v′, x, n− k).
We first prove that C ′ ⊆ C⊥. Let f(X) ∈ A[X]<k and

g(X) ∈ A[X]<n−k. Then fg ∈ A[X]<n−1. According to
Equation (1) we have

f(X)g(X) =
n∑
i=1

f(xi)g(xi)Li(xi)−1Li(X).

Equating coefficients of degree n− 1, we get

0 =
n∑
i=1

vif(xi) (viLi(xi))
−1
g(xi).

Hence C ′ ⊆ C⊥. Doing the same with gf instead of fg, we
also get C ′ ⊆ ⊥C.

We now have to prove that C ′ = C⊥. Let c′ =
(c′1, . . . , c

′
n) ∈ An. Then c′ ∈ C⊥ if and only if
v1 v2 . . . vn
v1x1 v2x2 . . . vnxn
v1x

2
1 v2x

2
2 . . . vnx

2
n

. .

v1x
k−1
1 v2x

k−1
2 . . . vnx

k−1
n



c′1
c′2
...
c′n

 = 0. (3)

The matrix has its coefficients in the commutative ring Z(A)
thus we can compute the determinant of

V =


v1 v2 . . . vk
v1x1 v2x2 . . . vkxk
v1x

2
1 v2x

2
2 . . . vkx

2
k

. .

v1x
k−1
1 v2x

k−1
2 . . . vkx

k−1
k

 .

And we have

detV =

(
k∏
i=1

vi

)∏
i 6=j

(xi − xj)

 .

This determinant is a unit of Z(A) by the hypothesis made
on the weight v and the support x of the code C. Thus V
has an inverse in Mk(Z(A)) and therefore V −1 is also the
left and right inverse of V in Mk(A). As a consequence given
(c′k+1, . . . , c

′
n) ∈ An−k there exists one and only one k-tuple

(c′1, . . . , c
′
k) ∈ Ak such that Equation (3) is satisfied. Thus the

number of solutions in An of Equation (3) is equal to |A|n−k
which is also the number of elements of C ′.

Using the fact that (bi)i=0,...,k−1 is a basis of C as a right
module and the following system of equations

(
c′1, c

′
2, . . . , c

′
n

)
v1 v1x1 . . . v1x

k−1
1

v2 v2x2 . . . v2x
k−1
2

. .
vn vnxn . . . vnx

k−1
n

 = 0,

(which is the transposed system of system (3)) instead of the
system (3) of equations, we get C ′ = ⊥C.

Corollary 29. Suppose that A is finite and that
{x1, . . . , xn} ⊆ Z(A). Then there exists a parity-check
matrix for GRSA(v, x, k) equal to

v′1 v′2 . . . v′n
v′1x1 v′2x2 . . . v′nxn
v′1x

2
1 v′2x

2
2 . . . v′nx

2
n

. .

v′1x
n−k−1
1 v′2x

n−k−1
2 . . . v′nx

n−k−1
n


where the v′i are defined as in Theorem 28.

Lemma 30 (Goppa formulation for GRS codes). When A
is finite and {x1, . . . , xn} ⊆ Z(A), we have, for c =
(c1, . . . , cn) ∈ An,

c ∈ GRSA(v, x, k)⇐⇒
n∑
i=1

civ
′
i

1− xiX
= 0 mod Xn−k

(4)
where the v′i are defined as in Theorem 28.

6

Proof: We check that equation 4 makes sense. First, The
ideal generated by Xn−k is a two sided ideal. Secondly, in
A[[X]] the power series (1− f(X)) where f(X) ∈ XA[[X]]
has a two-sided inverse given by

∑∞
i=0 f(X)iXi. This can be

shown by direct computation.
The rest of the proof is also a direct computation and is left

to the reader.

Proposition 31 (Key equation for GRS codes). Suppose
that A is finite and that {x1, . . . , xn} ⊆ Z(A). Let y =
(y1, . . . , yn) ∈ An be the received word such that there
exists a unique codeword c = (c1, . . . , cn) ∈ GRS(n, k) at
distance at most

⌊
n−k

2

⌋
. We let e = (e1, . . . , en) = y− c and

E = Supp(e). Let

σ(X) =
∏
i∈E

(1− xiX),

ω(X) =
∑
i∈E

eiv
′
i

 ∏
j∈E and j 6=i

(1− xjX)


and

S(X) =
n∑
i=1

yiv
′
i

1− xiX
mod Xn−k.

Then we have σ(X)S(X) = ω(X) mod Xn−k.

Proof: This is a direct computation using Lemma 30.
The following proposition will be useful to compute

the complexities of the proposed algorithms and to prove
MacWilliams identity for GRS codes over non commutative
rings.

Proposition 32. Suppose that A is finite. Let Cs be the number
of codewords from GRS(n, k) of weight s. Then C0 = 1, Cs =
0 for 1 ≤ s ≤ d− 1 and

Cs =
(
n
s

) s−n+k∑
i=0

(−1)i
(
s
i

)(
|A|s−n+k+1−i − 1

)
(5)

for d ≤ s ≤ n.

Proof: The result is obvious for C0 and Cs for 1 ≤ s ≤
d − 1. So now let d ≤ s ≤ n and denote by N(i1, . . . , is)
the number of codewords with zeros at coordinates i1, . . . , is.
Then |N(i1, . . . , is)| = |A|k−s by Remark 8 and Corollary 9.
The rest of the proof is identical to [34, paragraph 3.9,
page 79].

Proposition 33. Suppose that A is finite and that
{x1, . . . , xn} ⊆ Z(A). With the notations of Proposition 32,
let C = GRSA(v, x, k),

WC(X,Y) =
n∑
i=0

CiXn−iY i,

and

WC⊥(X,Y) =
n∑
i=0

(C⊥)iXn−iY i.

Then

WC(X,Y) =
1

|A|n−k
WC⊥(X + (|A| − 1)Y,X − Y).

Proof: By Proposition 26 there exists a RS code over a
commutative ring B of cardinality |A|. We denote by D this
code. It has parameters [n, k, n−k+1]B over B. We can take
B to be a product of finite fields by 26 again. Seen as module
over itself, B is semisimple and thus by [40, Paragraph 1,
page 989] is injective. Now by [44, Theorem 1.2 page 4]
and [44, Remark 1.3, page 4] B is a Frobenius ring and [44,
Theorem 8.3 page 18] can be applied. By Proposition 32 the
weight distribution of C is the same as the one of D.

Gathering the above results we finally get

WC(X,Y) = WD(X,Y)

=
1

|B|n−k
WD⊥(X + (|B| − 1)Y,X − Y)

=
1

|A|n−k
WC⊥(X + (|A| − 1)Y,X − Y).

IV. UNIQUE DECODING OF GENERALIZED
REED-SOLOMON CODES

A. Unique decoding over certain valuation rings

In this section we design a unique decoding algorithm for
GRS codes over a discrete valuation ring. We suppose that A
has the following property:

(∗) there exists a regular element p which is not a unit
such that p ∈ Z(A) and such that every element a ∈ A
can be uniquely written as

∑∞
i=0 aip

i where, for all i ∈
N, ai is in a set of representatives of A/(p).

It is the case for example for the two rings Zq and M`(Zq)
where Zq denotes an unramified extension of the p-adic
numbers or for the power series ring κ[[t]] and the ring of
matrices M`(κ[[t]]). We will need in this section and the rest
of this paper to divide elements of A by p, which is provided
by the following lemma.

Lemma 34. The ring of right fractions with respect to the
subset S of A formed by the powers of p exists.

Proof: Clearly S is a multiplicative subset of A. The fact
that p is in the center of A and regular implies that S satisfies
the right Ore condition (Definition 11) and that ass(S) = {0}.
Therefore we can apply Proposition 12.

Lemma 34 in combination with [31, Paragraph 1.3 (iii),
page 42] shows that we have a natural injection A ⊆ AS−1

and we will freely use this injection to identify elements of A
and their images in the ring AS−1.

We let Λ = A/(p) be the residual ring of A. In the sequel
for a vector b = (b1, . . . , bn) ∈ An, we will denote by b
mod p the vector (b1 mod p, . . . , bn mod p) ∈ (A/(p))n

and if f ∈ A[X], recall that we denote by f(b) the vector
(f(b1), . . . , f(bn)) ∈ An.

Let C = GRSA(v, x, k) be a generalized Reed-Solomon
code. Then C/prC = GRSA/(pr)(v mod pr, x mod pr, k).

Lemma 35. Let c ∈ C such that c/p ∈ An. Then c/p ∈ C.

Proof: Let f ∈ A[X]<k such that c = f(x). Then f(x)
mod p = 0. By Corollary 9 we have f mod p = 0 and there
exists g ∈ A[X]<k such that f(X) = pg(X).

7

We now give an algorithm of unique decoding for GRS
codes over B = A/(pr) for a positive integer r. We let τ =⌊
n−k

2

⌋
. The idea of the algorithm is to do a Hensel lifting.

We first look at the received word modulo p. Then we call a
decoding algorithm for the GRS code modulo p. It then returns
the component of degree 0 of the wanted codeword and the
error. We subtract these to the received word and then can
divide the result by p to reiterate the process and obtain the
component of degree 1, 2 up to r − 1. We first precise what
is the black box algorithm.

Algorithm 1 Black box unique decoding algorithm

Input: a received vector y of Λn with at most
⌊
n−k

2

⌋
errors.

Output: the message m ∈ Λk such that the corresponding
codeword is within distance

⌊
n−k

2

⌋
of y and the error e ∈

Λn.

In the following algorithm we denote by G a generator
matrix of C.

Algorithm 2 Unique decoding over a valuation ring
Input: a received vector y = (y1, . . . , yn) ∈ Bn with at most

τ errors, and a black box unique decoding algorithm for
C/pC as Algorithm 1.

Output: the unique codeword of C/prC within distance τ of
y.

1: Compute y0 ∈ A such that y0 mod pr = y.
2: for i = 0→ r − 1 do
3: Call the black box with input yi mod p and obtain

mi ∈ Λk and e′i ∈ Λn.
4: ci ← miG ∈ C.
5: ei ← a representative of e′i such that Supp(ei) =

Supp(e′).
6: yi+1 ← (yi − ci − ei)/p.
7: end for
8: return

∑r−1
i=0 p

ici mod pr.

Proposition 36. Algorithm 2 is correct and can decode up to
τ errors.

Proof: We let c ∈ C and e ∈ An be such that w(e) ≤ τ
and y = c + e. We will show by induction on i that the
following items holds after step 7 of Algorithm 2:

1) y0 =
∑i
j=0 p

j(cj + ej) + pi+1yi+1,
2) yi+1 = (yi − ci − ei)/p = c′′ + e′′ where c′′ ∈ C and

e′′ ∈ An with Supp(e′′) ⊆ Supp(e).
For i = 0 item 1 is trivially satisfied and we have at step 4

y mod p = (c+ e) mod p = c′ + e′

where c′ ∈ C/pC and e′ ∈ Λn such that w(e′) ≤ τ . By
unicity of c′ we must have c mod p = c′ and e mod p = e′.
Therefore we have after step 6

(y0 − c0 − e0)/p = (c− c0)/p+ (e− e0)/p

and by Lemma 35 we have (c − c0)/p ∈ C. Moreover
Supp(e0) ⊆ Supp(e) thus item 2 is satisfied.

Now suppose that the induction holds for i ≥ 0. Then we
get from item 2 of the inductive hypothesis and from step 4

yi+1 mod p = (c′′ + e′′) mod p = c′ + e′

where c′′ ∈ C and e′′ ∈ An such that Supp(e′′) ⊆ Supp(e),
thus w(e′′) ≤ τ . Therefore by unicity of c′ we must have c′′

mod p = c′ and e′′ mod p = e′. Therefore we deduce

(yi+1 − ci+1 − ei+1)/p = (c′′ − ci+1)/p+ (e′′ − ei+1)/p

and by Lemma 35 (c′′−ci+1)/p ∈ C. Moreover Supp(ei+1) ⊆
Supp(e′′) ⊆ Supp(e) and item 2 is satisfied. As for item 1,
we have

pi+2yi+2 = pi+1(yi+1 − ci+1 − ei+1)

= y0 −
i∑

j=0

pj(cj + ej)− pi+1(ci+1 + ei+1).

Now taking i = r, we get

y = y0 mod pr =
r−1∑
j=0

pjcj +
r−1∑
j=0

pjej mod pr.

We have cj ∈ C for j = 1, . . . , r − 1 thus
r−1∑
j=0

pjcj mod pr ∈ C/prC.

As Supp(ej) ⊆ Supp(e) for j = 1, . . . , r − 1 we have

w

r−1∑
j=0

pjej mod pr

 ≤ τ.
Therefore the unicity of c implies that

c =
r−1∑
j=0

pjcj mod pr.

Proposition 37. Let UDec(C) be the complexity of the black
box decoding algorithm for C/pC in terms of the number of
bit-operations given as input of Algorithm 2 and Lift(C) the
complexity of lifting a codeword from C/pC into C (i.e. the
bit-cost of step 4 of Algorithm 2). Then Algorithm 2 performs
a number of r(UDec(C) + Lift(C)) bit-operations.

Lemma 38. Suppose that v = (1B , . . . , 1B). If B =
GR(pr, s) we can take Lift(C) = O(nkMFp

(s)I(log p)) bit-
operations. If B = Fps [[t]]/(tr) we can take Lift(C) = O(nk)
arithmetic operations in Fps ; in the situation where the
support of C is contained in Fps we can take Lift(C) =
O(MFps (n) log n) arithmetic operations in Fps .

Proof: Lifting a codeword from C/pC into C can be done
by the matrix-vector product mG where G is a generator
matrix of C and
• m ∈ Bk is a representative of the message modulo p

whose coefficients have the same bit-size as elements of
Fp when B = GR(pr, s),

• m ∈ Fps is a representative of the message modulo t
when B = Fps [[t]]/(tr).

8

In the situation where B = Fps [[t]]/(tr) and that the support
of C is included in Fps we can use fast multipoint evaluation
of a polynomial of degree at most n with coefficients in Fps

in n points of Fps which is done in O(MFps (n) log n) by [23,
Corollary 10.8, page 295].

Corollary 39. Suppose that B is the ring Fps [[t]]/(tr). Then
there exists a unique decoding algorithm for RSA(v, x, k)
where x ∈ Fps with an asymptotic complexity of Õ(rn)
arithmetic operations in Fps .

Proof: This is a direct consequence of Proposition 37,
Lemma 38 and [27].
Remark 40. Taking the notations as Corollary 39 note that,
given any GRS code C over B, we can always find a GRS code
C ′ over B with same parameters as C such that its support is
included in Fps .

Theorem 41. Given a finite field A, a truncated power series
ring B such that |A| = |B|, a RS code CA over A of
parameters [n, k, n−k+1]A and a unique decoding algorithm
UDec for CA. Suppose that there exists a RS code CB over
B of parameters [n, k, n − k + 1]B . Then there exists a RS
code C′B over B of parameters [n, k, n − k + 1]B such that
CB/pCB = C′B/pC′B and a unique decoding algorithm for C′B
with a better asymptotic complexity than UDec as soon as the
complexity of UDec is equal or greater than Lift(C′B).

Note that the classical unique decoding algorithms over a
finite fields F have a complexity of O(MF(n) log n) so that
the theorem holds when UDec is the algorithm of [22] or of
[27].

Corollary 42. Suppose that B is the Galois ring
GR(pr, s). Then there exists a unique decoding algorithm for
RSA(v, x, k) with an asymptotic complexity of Õ(rnks log p)
bit-operations.

Proof: This is a direct consequence of Proposition 37,
Lemma 38 and [27].
Remark 43. We show that the gain is more significant when the
arithmetic of the underlying rings and fields is not done with
asymptotically fast algorithms which is the case for practical
applications. By [20, Table 1, page 5] the complexity of the
unique decoding black box algorithm is O(n2) arithmetic
operations over the alphabet when the latter is a finite field
of characteristic 2.
• If B = GR(pr, s) then Algorithm 2 performs at most
O(rn2s2 log2 p) bit-operations.

• If B = Fps [[t]]/(tr) then Algorithm 2 performs at most
O(rn2s2) arithmetic operations over Fp.

Note that if B is a finite field of cardinality prs the cost
of unique decoding is O(n2r2s2 log2 p) bit-operations. The
unique decoding becomes cheaper when the alphabet is a ring
and we have a similar theorem as Theorem 41 for Galois rings.
Example 44. Let now C be the RS code over Z/113Z with sup-
port (1, 2, 3, 4, 5, 6, 7) of dimension 3. Thus C has parameters
[7, 3, 5]Z/113Z by Corollary 24. Therefore its unique decoding
radius is 2. Let y = (133, 158, 163, 181, 201, 344, 247) be a
received word. Executing algorithm 2 we get the following:

1) i = 0 and y0 = y mod 11 = (1, 4, 9, 5, 3, 3, 5) ∈ F11.
The black box algorithm returns
• c0 mod p = (1, 4, 9, 5, 3, 3, 5) ∈ C/11C ⊆ F7

11 and
• e0 mod p = (0, 0, 0, 0, 0, 0, 0) ∈ F7

11,
which can be lifted to
• c0 = (1, 4, 9, 16, 25, 36, 49) ∈ C ⊆ (Z/113Z)7 and
• e0 = (0, 0, 0, 0, 0, 0, 0) ∈ (Z/113Z)7.

2) i = 1 and y1 = (y0 − c0 − e0)/11 mod 11 =
(1, 3, 3, 4, 5, 6, 7).
The black box algorithm returns
• c1 mod p = (1, 2, 3, 4, 5, 6, 7) ∈ C/11C and
• e1 mod p = (0, 1, 0, 0, 0, 0, 0) ∈ F7

11,
which can be lifted to
• c1 = (1, 2, 2, 4, 5, 6, 7) ∈ C and
• e1 = (0, 1, 0, 0, 0, 0, 0) ∈ (Z/113Z)7.

3) i = 2 and y2 = (y1 − c1 − e1)/11 mod 11 =
(1, 1, 1, 1, 1, 2, 1).
The black box algorithm returns
• c2 mod p = (1, 1, 1, 1, 1, 1, 1) ∈ C/11C and
• e2 mod p = (0, 0, 0, 0, 0, 1, 0) ∈ F7

11,
which can be lifted to
• c2 = (1, 1, 1, 1, 1, 1, 1) ∈ C and
• e2 = (0, 1, 0, 0, 0, 1, 0) ∈ (Z/113Z)7.

4) We then build the codeword from its homoge-
neous components y0 + 11y1 + 112y2 mod 113 =
(133, 147, 163, 181, 201, 223, 247).

In this example the error is e = e0+11e1+112e2 mod 113 =
(0, 11, 0, 0, 0, 112, 0).

B. The Welch-Berlekamp algorithm

Before giving the Welch-Berlekamp decoding algorithm, we
need to define what the evaluation of a bivariate polynomial
over A is. Let Q =

∑
Qi,jX

iY j ∈ A[X,Y] be such a
polynomial. We define the evaluation of Q at (a, b) ∈ A2

to be
Q(a, b) =

∑
Qi,jb

jai ∈ A.

Be careful of the order of a and b. This choice will be
explained in the proof of Lemma 45. Let f ∈ A[X], we define
the evaluation of Q at f to be

Q(X, f(X)) =
∑

Qi,j(f(X))jXi ∈ A[X].

As in the univariate case, the evaluation maps defined above
are not ring homomorphisms in general.

Lemma 45. Let g ∈ A[X], Q ∈ A[X,Y] of degree at most 1
in Y and a ∈ A. Then

(Q(X, g(X)))(a) = Q(a, g(a)).

Proof: We write

Q(X,Y) = Q0(X) +Q1(X)Y

= Q0(X) +

(∑
i

Q1iX
i

)
Y.

9

The proof is an easy calculation:

(Q(X, g(X)))(a) =

(
Q0(X) +

∑
i

Q1ig(X)Xi

)
(a)

= Q0(a) +
∑
i

Q1ig(a)ai

= Q(a, g(a)) by definition.

We now adapt the Welch-Berlekamp algorithm [12] to
noncommutative GRS. By Corollary 24, we have

⌊
d−1
2

⌋
=⌊

n−k
2

⌋
. We let τ =

⌊
n−k

2

⌋
.

Algorithm 3 Welch-Berlekamp
Input: a received vector y of An with at most τ errors.
Output: the unique codeword within distance τ of y.

1: z = (z1, . . . , zn)← (v−1
1 y1, . . . , v

−1
n yn).

2: Find Q = Q0(X) + Q1(X)Y ∈ (A[X])[Y] of degree 1
such that

1) Q(xi, zi) = 0 for all 1 ≤ i ≤ n,
2) degQ0 ≤ n− τ − 1,
3) degQ1 ≤ n− τ − 1− (k − 1).
4) The leading coefficient of Q1 is 1A.

3: f ← the unique root of Q in A[X]<k.
4: return (v1f(x1), . . . , vnf(xn)).

In order to prove the correctness of the Welch-Berlekamp
algorithm, we start with the following lemmas.

Lemma 46. Let y = (y1, . . . , yn) ∈ An be such that τ ≤⌊
n−k

2

⌋
. Then there exists a nonzero bivariate polynomial Q =

Q0 +Q1Y ∈ A[X,Y] satisfying

1) Q(xi, zi) = 0 for i = 1, . . . , n.
2) degQ0 ≤ n− τ − 1.
3) degQ1 ≤ n− τ − 1− (k − 1).
4) The leading coefficient of Q1 is 1A.

Proof: We can write y = c + e uniquely with c =
(v1f(x1), . . . , vnf(xn)) ∈ GRS(n, k) for a polynomial f ∈
A[X]<k and e ∈ An, w(e) ≤ τ . Let E = Supp(e)
and Q1(X) =

∏
i∈E(X − xi). Then take Q0(X) =

−f(X)Q1(X). Then Q(X,Y) = Q0(X) +Q1(X)Y satisfies
the conditions of the lemma.

Lemma 47. Let Q ∈ A[X,Y] be a bivariate polynomial
satisfying the four conditions of Lemma 46 and f ∈ A[X]<k
be such that d(z, f(x)) ≤ τ . Then Q(X, f(X)) = 0.

Proof: The polynomial Q(X, f(X)) has degree at most
n − τ − 1. By Lemma 45 we have (Q(X, f(X)))(xi) =
Q(xi, f(xi)) = Q(xi, zi) = 0 for at least n − τ values
of i ∈ {1, . . . , n}. And by Corollary 9 we must have
Q(X, f(X)) = 0.

The correctness of the algorithm is a direct consequence of
Lemma 46 and 47.

Proposition 48. Algorithm 3 works correctly as expected and
can correct up to

⌊
n−k

2

⌋
errors.

Example 49. Let C be the RS code over M2(F7) with support((
1 0
0 1

)
;
(

2 0
0 2

)
;
(

3 0
0 3

)
;
(

4 0
0 4

)
;
(

5 0
0 5

))
of dimension 3. Thus C is a [5, 3, 2]M2(F7) linear code by
Corollary 24. Therefore its unique decoding radius is 2. Let

y =
((

5 3
2 2

)
;
(

2 2
4 1

)
;
(

4 0
0 4

)
;
(

2 3
3 3

)
;
(

5 5
0 6

))
be a received word. Executing algorithm 3 we get the follow-
ing:

1) By Lemma 46, Q is found using linear algebra with the
affine systems of equations

1 0 1 0 1 0 1 0 5 3 5 3
0 1 0 1 0 1 0 1 2 2 2 2
1 0 2 0 4 0 1 0 2 2 4 4
0 1 0 2 0 4 0 1 4 1 1 2
1 0 3 0 2 0 6 0 4 0 5 0
0 1 0 3 0 2 0 6 0 4 0 5
1 0 4 0 2 0 1 0 2 3 1 5
0 1 0 4 0 2 0 1 3 3 5 5
1 0 5 0 4 0 6 0 5 5 4 4
0 1 0 5 0 4 0 6 0 6 0 2



×



a0 b0
u0 v0
a1 b1
u1 v1
a2 b2
u2 v2
a3 b0
u3 v3
a4 b4
u4 v4
1 0
0 1



= 0.

From this we find a solution and therefore polynomials

Q0(X) =
(
a0 b0
u0 v0

)
+
(
a1 b1
u1 v1

)
X +

(
a2 b2
u2 v2

)
X2

+
(
a3 b3
u3 v3

)
X3

=
(

2 1
2 6

)
+
(

0 5
0 3

)
X +

(
2 4
0 5

)
X2+

+
(

6 3
2 4

)
X3.

and

Q1(X) =
(
a4 b4
u4 v4

)
+
(

1 0
0 1

)
X

=
(

4 0
0 4

)
+
(

1 0
0 1

)
X.

2) Q(X,Y) = Q0(X) + Q1(X)Y has only one root
in M2(F7)[X] by Lemma 7. It is computed with the
classical Euclidean division algorithm. Thus we get the
following root of Q(

3 5
3 2

)
+
(

1 1
1 4

)
X +

(
1 4
5 3

)
X2.

10

And then retrieve the corresponding codeword

c =
((

5 3
2 2

)
;
(

2 2
4 1

)
;
(

1 2
2 6

)
;
(

2 2
2 3

)
;(

5 5
0 6

))
.

We can modify Algorithm 3 so that it also returns the error.
In this example the error is

e =
((

0 0
0 0

)
;
(

0 0
0 0

)
;
(

3 5
5 5

)
;
(

0 0
0 0

)
;
(

0 0
0 0

))
.

We now give an example of a Reed-Solomon code defined
over M2(Z/52Z). We use Algorithm 2 together with Algo-
rithm 3 to decode a word.
Example 50. Let A = M2(Z/52Z). The ideal generated by

p =
(

5 0
0 5

)
is two sided and p satisfies the condition (∗) of

Subsection IV-A. Therefore we can apply Algorithm 2 to the
Reed-Solomon code whose support is((

1 0
0 1

)
;
(

2 0
0 2

)
;
(

3 0
0 3

)
;
(

4 0
0 4

))
and of dimension 2. Let

y =
((

21 14
14 22

)
;
(

20 8
15 7

)
;
(

5 17
5 1

)
;
(

22 6
13 3

))
be a received word. Executing Algorithm 2 we get

1) i = 0 and

y0 mod p = y mod p =((
1 4
4 2

)
;
(

0 3
0 2

)
;
(

0 2
0 1

)
;
(

2 1
3 3

))
.

Algorithm 3 with input y0 returns

c0 mod p =((
1 4
4 2

)
;
(

3 3
2 4

)
;
(

0 2
0 1

)
;
(

2 1
3 3

))
and the error

e0 mod p =((
0 0
0 0

)
;
(

2 0
3 3

)
;
(

0 0
0 0

)
;
(

0 0
0 0

))
which can be lifted to the codeword

c0 =((
6 4
4 2

)
;
(

8 8
7 4

)
;
(

10 12
10 6

)
;
(

12 16
13 8

))
.

We then compute

y1 = (y0 − c0 − e0)/p =((
3 2
2 4

)
;
(

2 0
1 0

)
;
(

4 1
4 4

)
;
(

2 3
0 4

))
.

2) i = 1 and

y1 mod p =((
3 2
2 4

)
;
(

2 0
1 0

)
;
(

4 1
4 4

)
;
(

2 3
0 4

))
.

Algorithm 3 with input y1 mod p returns

c0 mod p =((
3 2
2 4

)
;
(

1 4
3 4

)
;
(

4 1
4 4

)
;
(

2 3
0 4

))
and the error

e0 mod p =((
0 0
0 0

)
;
(

1 1
3 1

)
;
(

0 0
0 0

)
;
(

0 0
0 0

))
which can be lifted to the codeword

c0 = ((
3 2
2 4

)
;
(

6 4
3 4

)
;
(

9 6
4 4

)
;
(

12 8
5 4

))
.

3) We then return the codeword

c = c0 + c1p mod p2 =((
21 14
14 22

)
;
(

13 3
22 24

)
;
(

5 17
5 1

)
;
(

22 6
13 3

))
.

In this example the error is

e =
((

0 0
0 0

)
;
(

7 5
18 8

)
;
(

0 0
0 0

)
;
(

0 0
0 0

))
.

V. LIST DECODING OF GENERALIZED REED-SOLOMON
CODES

A. List-decoding over certain valuation rings

In this subsection, as in Subsection IV-A we let A be a
ring satisfying (∗), S be the set formed by the powers of p,
C = GRSA(v, x, k) be a GRS code and G a generator matrix
of C and Λ = A/(p) be the residual ring. We precise our black
box list decoding algorithm.

Algorithm 4 Black box list decoding algorithm
Input: a received vector y of Λn with at most τ errors.
Output: a subset S of Λk × Λn such that (m, e) ∈ S ⇔
mG+ e = y and w(e) ≤ τ .

The list decoding algorithm we propose is recursive and the
following algorithm is its recursive step.

Proposition 51. Algorithm 5 is correct and can decode up to
τ errors.

Proof: The proof is done by descending induction on i.
If i = r − 1 the proposition holds.

Now let i < r−1, c ∈ U , e = y−c. There exists (m0, e0) ∈
S such that c0 = m0G = c mod p. Then by Lemma 35
(c0 − c)/p ∈ C. Moreover we have Supp(e0) ⊆ Supp(e)
and w(e) ≤ τ . Therefore w((e0 − e)/p) ≤ τ . We have yc0 =
(y−(c0+e0))/p = (c−c0)/p+(e0−e)/p and by the inductive
hypothesis there exists c1 ∈ Sc0 such that (c − c0)/p = c1
mod pr−(i+1).

The complexity of Algorithm 5 will be studied in detail in
Subsection V-C when the ring A is finite. We now give an

11

Algorithm 5 List decoding from valuation i up to valuation
r.
Input: two nonnegative integers i ≤ r, a received vector y

of An with at most τ errors. A black box list decoding
algorithm as specified by Algorithm 4 for the code C/pC
for decoding up to τ errors.

Output: The set U
def
= {c ∈ C : d(c mod pr−i, y

mod pr−i) ≤ τ}.
1: if i = r then
2: return {0}.
3: end if
4: Call the black box algorithm with input (y mod p) to

obtain a subset S ⊆ Λk × Λn.
5: for each (m0, e0) ∈ S do
6: c0 ← m0G.
7: Call recursively Algorithm 5 with arguments i + 1, r

and yc0 = (y − c0 − e0)/p to get the set Sc0 of all the
codewords in the ball centered in yc0 of radius τ .

8: end for
9: return {c0 + c1p : c0 ∈ S and c1 ∈ Sc0 and d(c0 + pc1

mod pr−i, y mod pr−i) ≤ τ}.

Algorithm 6 List decoding over a valuation ring.
Input: a positive integer τ , a received vector y of Bn with at

most τ errors and a black box unique decoding algorithm
for C/pC.

Output: the list of codewords within distance τ of y.
1: z ← a representative of y in An.
2: Call Algorithm 5 with parameters 0, r, and z and obtain

the set T .
3: return {c mod pr : c ∈ T}.

algorithm for list decoding a GRS code over B = A/(pr) for
a positive integer r.

Proposition 52. Algorithm 6 works correctly as expected.

Proof: This is a direct consequence of Proposition 51

Example 53. In this example we work with the RSZ/72Z(6, 2)
code whose support is (1, 2, 3, 4, 5, 6). The unique decoding
radius is 2 while the list decoding algorithm radius is 3.
Suppose we received the word y = (8, 15, 22, 11, 12, 13) ∈
(Z/72Z)6. We skip steps 1, 2 and 4 of Algorithm 6 and
identify the elements of Z7 up to precision 2 with the elements
of Z/72Z for the clarity of the example. The execution of
Algorithm 6 is as follows:

• We enter Algorithm 5 with y = (8, 15, 22, 11, 12, 13).
• At step 4, the call to the black box algorithm with y

mod 7 = (1, 1, 1, 4, 5, 6) returns two codewords and their
corresponding errors (step 5):

1) The codeword (1, 1, 1, 1, 1, 1) which can be lifted
to (1, 1, 1, 1, 1, 1) and the error (0, 0, 0, 3, 4, 5).

2) The codeword (1, 2, 3, 4, 5, 6) which can be lifted
to (1, 2, 3, 4, 5, 6) and the error (0, 1, 2, 0, 0, 0).

• We have a list of two candidates, for each one we do a
recursive call of Algorithm 5.

• For item 1:
– We enter recursively Algorithm 5 with

[y − (1, 1, 1, 1, 1, 1) − (0, 0, 0, 3, 4, 5)]/7 =
(1, 2, 3, 1, 1, 1).

– At step 4 the call to the black box algorithm
with (1, 2, 3, 1, 1, 1) returns the two codewords
(1, 1, 1, 1, 1, 1, 1) and (1, 2, 3, 4, 5, 6) which can
be lifted to (1, 1, 1, 1, 1, 1, 1) and (1, 2, 3, 4, 5, 6)
(step 5).

– At step 9, we return (1, 1, 1, 1, 1, 1, 1) and
(1, 2, 3, 4, 5, 6).

• For item 2:
– We enter recursively Algorithm 5 with

[y − (1, 2, 3, 4, 5, 6) − (0, 1, 2, 0, 0, 0)]/7 =
(1, 1, 1, 1, 1, 1).

– At step 4 the call to the black box al-
gorithm with (1, 1, 2, 1, 1, 1) returns the code-
word (1, 1, 1, 1, 1, 1, 1) which can be lifted to
(1, 1, 1, 1, 1, 1, 1).

– At step 9, we return (1, 1, 1, 1, 1, 1, 1).
• Due to the condition of step 9 of Algorithm 5 we return

only the two codewords
– (1, 1, 1, 1, 1, 1) + 7 × (1, 2, 3, 4, 5, 6) mod 72 =

(8, 15, 22, 29, 36, 43) and
– (1, 2, 3, 4, 5, 6) + 7 × (1, 1, 1, 1, 1, 1) mod 72 =

(8, 9, 10, 11, 12, 13).
The codeword (1, 1, 1, 1, 1, 1) + 7 × (1, 1, 1, 1, 1, 1) =
(8, 8, 8, 8, 8, 8) is not returned at step 9 because
d(y, (8, 8, 8, 8, 8, 8)) = 5 > J = 3.

B. The Guruswami-Sudan algorithm
We now extend the Guruswami-Sudan [26] algorithm to

noncommutative GRS codes. We assume in this section that
{x1, . . . , xn} ⊆ Z(A). Almost nothing has to be changed from
the original algorithm. In this subsection we do the following
assumption on A: every linear system with coefficients in A
with more unknowns than equations has a nonzero solution
(with coefficients also in A). This is the case for example
when A is any commutative ring or the ring of square matrices
over any commutative ring (and therefore any field). We let
J = n−

√
(k − 1)n.

Lemma 54. Let y ∈ An be a received word with at most
τ errors with τ < J . Then there exists a nonzero bivariate
polynomial Q ∈ A[X,Y] satisfying the three conditions of
step 3 of Algorithm 7.

Proof: As usual we consider the coefficients of Q to
be unknowns satisfying the equations Q(xi, zi) = 0 and
[Q(X + xi, Y + zi)]s′ = 0 for i = 1, . . . , n and s′ =
0, . . . , s−1 where [Q]s′ denotes the homogeneous component
of degree s′ of Q.

First note that the value of s in step 2 together with τ < J
imply [

(n− τ)2 − (k − 1)n
]
s2 − (k − 1)s− 1 > 0,

which in turn implies

s2(n− τ)2 − 1 > n(k − 1)(s2 + s),

12

Algorithm 7 Guruswami-Sudan
Input: a positive integer τ < J and a received vector y of

An with at most τ errors.
Output: all the f ∈ A[X]<k such that d(y, f(x)) ≤ τ .

1: s←
⌊

(k−1)n+
√

(k−1)2n2+4((n−τ)2−(k−1)n)

2((n−τ)2−(k−1)n)

⌋
+ 1.

2: L←
⌈
s(n−τ)−1

k−1

⌉
− 1.

3: z = (z1, . . . , zn)← (v−1
1 y0, . . . , v

−1
n yn).

4: Find Q =
∑L
i=0Qi(X)Y i ∈ (A[X])[Y] of degree at most

L such that
1) Q(xi, zi) = 0 for all 1 ≤ i ≤ n.
2) Q(X + xi, Y + zi) has valuation at least s.
3) degQi ≤ s(n− τ)− 1− i(k− 1) for all 0 ≤ i ≤ L.

5: Z ← Roots of Q in A[X]<k such that d(z, f(x)) ≤ τ .
6: return {(v1f(x1), . . . , vnf(xn) : f ∈ Z}

and then gives(
s(n− τ)− 1

k − 1

)(
s(n− τ) + 1

2

)
> n

(
s+ 1

2

)
.

Counting the coefficients of Q we get

(L+ 1)
(
s(n− τ)− (k − 1)

L

2

)
unknowns which is greater or equal than(

s(n− τ)− 1
k − 1

)(
s(n− τ) + 1

2

)
.

On the other hand conditions 1 and 2 of step 3 of Algorithm 7

give n
(
s+ 1

2

)
equations. And we have a nonzero solution

by the hypothesis made on A.

Lemma 55. Let g ∈ A[X], Q ∈ A[X,Y] and z ∈ Z(A).
Then

(Q(X, g(X)))(a) = Q(a, g(a)).

Proof: According to the definition we took for evaluating
polynomials in Subsection IV-B, we have:

(Q(X, g(X)))(a) =
∑

(Qij(g(X))jXi)(a)

=
∑

Qij(g(a))jai because a ∈ Z(A)

= Q(a, g(a)) by definition.

Remark 56. Note that for the Guruswami-Sudan algorithm we
could have defined the evaluation of bivariate polynomials in
the “usual way” that is, for f ∈ A[X], Q ∈ A[X,Y] and
a, b ∈ A,

Q(a, b) =
∑
i,j

Qija
ibj

and
Q(X, f(X)) =

∑
i,j

QijX
i(f(X))j .

As the evaluation is done at points from the center of A both
definitions for evaluation give the exact same result.

Lemma 57. Let Q ∈ A[X,Y] verifying the three condi-
tions of step 1 of Algorithm 7. Let f ∈ A[X]<k such that
f(xi) = zi for a fixed i ∈ {1, . . . , n}. Then (X−xi)s divides
Q(X, f(X)).

Proof: By assumption we have

Q(X + xi, Y + zi) =
∑
λ≥s

∑
j+l=λ

QjlX
jY l

with Qjl ∈ A and where s′ ≥ s is the valuation of Q. By
Remark 8, there exists a polynomial g(X) ∈ A[X] such that
f(X)− zi = g(X)(X − xi). As xi ∈ Z(A) we have

Q(X, f(X)) = Q((X − xi) + xi, (f(X)− zi) + zi)

=
∑
λ≥s′

∑
j+l=λ

Qjl(g(X)(X − xi))l(X − xi)j

=
∑
λ≥s′

∑
j+l=λ

Qjlg(X)l(X − xi)λ

= (X − xi)s
′
h(X)

where h(X) ∈ A[X].

Lemma 58. Let Q ∈ A[X,Y] be a bivariate polynomial
satisfying the three conditions of step 4 of Algorithm 7
and let f ∈ A[X]<k be such that d(y, f(x)) ≤ τ . Then
Q(X, f(X)) = 0.

Proof: Let f ∈ A[X]<k be a polynomial such that
d(y, f(x)) ≤ τ . Then Q(X, f(X)) is a polynomial of degree
at most s(n − τ) − 1. We have f(xi) = zi for at least
n − τ values of i. By Lemma 55, (Q(X, f(X)))(xi) =
Q(xi, f(xi)) = 0 for at least n− τ values of i.

Denote by E the set {i ∈ {1, . . . , n} : Q(xi, f(xi))) = 0}
and by Pr(X) the polynomial

∏
i∈E(X − xi)r. We prove

by induction on r ≤ s that Pr(X) divides Q(X, f(X)). For
r = 1 it is a consequence of Remark 8 and the assumption
we made on the support x of the code. By induction there
exists R(X) ∈ A[X] such that Q(X, f(X)) = R(X)Pr(X).
Let i0 ∈ E, by Lemma 57 we also have Q(X, f(X)) =
S(X)(X−xi0)r+1. By Lemma 7 we have S(X)(X−xi0) =
R(X)

∏
i∈E,i6=i0(X − xi)r, whence R(xi0) = 0. This is true

for all i0 ∈ E and by Remark 8 and the property of the support
x we deduce that Pr+1(X) divides Q(X, f(X)).

It follows that Q(X, f(X)) is divisible by a monic poly-
nomial of degree s(n − τ) which implies Q(X, f(X)) = 0.

Proposition 59. Algorithm 7 works correctly as specified and
can correct up to dJe − 1 errors.

Proof: This is direct consequence of Lemma 54 and
Lemma 58.

C. Complexities for list decoding algorithms

In order to study the complexity of Algorithm 6, we need
a result about the number of codewords that can be returned
by Algorithm 7. The results of [32, Section 5] remain valid
in our context. In other words, they do not depend on the
algebraic structure of the alphabet. We recall them in the
following proposition for the sake of completeness. We assume

13

r (nilpotency index of p = 3) Upper bound
1 0.001310
2 1.386× 10−6

3 1.850× 10−9

4 2.530× 10−12

5 3.469× 10−15

6 4.759× 10−18

7 6.528× 10−21

8 8.954× 10−24

9 1.228× 10−26

10 1.685× 10−29

Fig. 1. Table for RSGR(3r,2)[8, 4, 5] and a codeword of weight 6.

throughout this subsection that all errors with weight at most
τ occur with the same probability regardless of the weight of
the transmitted codeword.

Proposition 60. We let C = GRSA(n, k), c ∈ C, w = w(c);

N(c, a, i) = 0 if w > a+ i,

and

N(c, a, i) =
min(b i−(w−a)

2 c,n−w)∑
j=0

[(
w

w − a+ j

)(
n− w
j

)
(|A| − 1)j

(
a− j

i− (w − a)− 2j

)
(|A| − 2)i−(w−a)−2j

]
else. We now let

M(τ) =
min(2τ,n)∑
u=d

τ∑
a=u−τ

τ∑
i=u−a

N(c, a, i).

Then the probability that Algorithm 7 returns more than one
codeword is at most

M(τ)∑τ
i=0

[(
n
i

)
(|A| − 1)i

] .
Proof: The proof is identical to [32, Proposition 12,

page 9].
In Tables 1 and 2 we give examples of this upper bound

as it is difficult to get a simple asymptotic equivalent. These
calculations have been made for finite fields in [32, Section 5]
and for Galois rings in [3, Section 5]. As shown in the tables
the probability is very small.
Remark 61. As pointed out in the introduction of this subsec-
tion the upper bound on the probability given in Proposition 60
is independent of the algebraic structure of the alphabet.
Therefore there is no gain in taking the Galois ring or a matrix
ring (over a finite field or a Galois ring) instead of the finite
field of same cardinality. In fact the advantage resides in the
asymptotic complexity of the decoding algorithms given in
Subsection IV-A and V-A.

We now let, as in Subsection V-B, J = n−
√

(k − 1)n be
the generic Johnson bound. We recall the following proposi-
tion:

` (matrix size) Upper bound
1 0.001310
2 2.530× 10−12

3 1.228× 10−26

4 1.123× 10−46

5 1.930× 10−72

6 6.247× 10−104

7 3.804× 10−141

8 4.358× 10−184

9 9.396× 10−233

10 3.812× 10−287

Fig. 2. Table for RSM`(F9)[8, 4, 5] and a codeword of weight 6.

Proposition 62. Let y ∈ An. Then there exist at most n(|A|−
1) codewords within distance J from y.

Proof: See [25, Corollary 3.3 page 36].
We can now state the proposition about the complexity of

Algorithm 6.

Proposition 63. With the same notations as in Subsection V-A,
let LDec(C) be the complexity in terms of the number of bit-
operations of a list decoding algorithm for GRSA/(p)(C) and
ρ be the probability that the latter algorithm returns more than
one codeword. We suppose that LDec(C) does not depend on
ρ. Then Algorithm 6
• performs at most

[n(|A| − 1)]r − 1
n(|A| − 1)− 1

(LDec(C) + Lift(C))

= (n|A|)r−1(LDec(C) + Lift(C)).

bit-operations.
• performs an expected number of at most

[(1− ρ) + ρ(n(|A| − 1))]r − 1
[(1− ρ) + ρ(n(|A| − 1))]− 1

(LDec(C) + Lift(C)).

bit-operations.

Proof: It is a direct consequence of Proposition 60 and 62.

Remark 64. Taking the notations of Proposition 63 Recall that
LDec(C) does not depend on ρ. Heuristically it is interesting
to see that as ρ→ 0 we have

[(1− ρ) + ρ(n(|A| − 1))]r − 1
[(1− ρ) + ρ(n(|A| − 1))]− 1

(LDec(C) + Lift(C))

→ (r + ρo(1)) (LDec(C)+Lift(C)) = r(LDec(C)+Lift(C))

Therefore the complexity of Algorithm 6 is heuristically
polynomial in r, n and |A| whenever LDec(C) and Lift(C)
are polynomial in r, n and |A|. This heuristic analysis is
reasonable according to Tables 1 and 2. Therefore we can
notice, as in Proposition 39, that if we denote by B the Galois
ring GR(pr, s) then the asymptotic complexity given above
is better than the complexity of the corresponding decoding
algorithm over the finite field of size prs.

14

Corollary 65. Suppose that A is the Galois ring GR(pr, s).
Then there exists a list decoding algorithm for GRS(v, x, k)
with an asymptotic complexity of

Õ

(
nr(ρrs − 1)r − 1
n(ρrs − 1)− 1

n7k5s log p
)

= Õ(nr+6ρr(r−1)sk5s log p)

arithmetic operations in Fp, or heuristically an expected
number of Õ(rn7k5s log p) bit-operations which can decode
up to the generic Johnson bound.

Proof: This is a direct consequence of Proposition 63,
Remark 64, Lemma 38 and [25, Lemma 6.13, page 111].

Note that the algorithm presented in [25, Algorithm Poly-
Reconstruct, page 102] applied to a RS code over Fprs per-
forms at most Õ(n7k5rs) arithmetic operations in Fp. We have
an heuristical result for list decoding similar to Theorem 3:

Heuristical Result 66. Given a finite field A, a Galois ring
B such that |A| = |B|, a RS code CA over A of parameters
[n, k, n−k+1]A and a list decoding algorithm LDec for CA.
Suppose that there exists a RS code CB over B of parameters
[n, k, n− k+ 1]B . Then there exists a list decoding algorithm
for CB with a better asymptotic complexity than LDec.

VI. CONCLUSION

In this paper we showed that, with strong constraints on their
supports, GRS codes can be considered over non commutative
rings. But this generalization does not lead to better codes than
GRS codes over commutative rings in terms of the parameters.

We also proposed two new decoding algorithms with a low
complexity for GRS codes over Galois rings and rings of
matrices over a Galois ring. Using these algorithms we showed
that given a prime power q and a unique (resp. list) decoding
algorithm for a GRS code over Fq there exists a unique (resp.
list) decoding algorithm for a GRS code with same parameters
(provided that the GRS code exists with our conditions on its
support) over Z/qZ with a better asymptotic complexity.

ACKNOWLEDGMENT

The authors would like to thank Daniel Augot for his
precious advices and Alain Couvreur and Grégoire Lecerf for
their careful readings of this article.

REFERENCES

[1] M. Alekhnovich, “Linear Diophantine equations over polynomials and
soft decoding of Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 51, no. 7, pp. 2257–2265, 2005.

[2] M. A. Armand, “Improved list decoding of generalized Reed-Solomon
and alternant codes over rings,” in IEEE International Symposium on
Information Theory 2004 (ISIT 2004), 2004, p. 384.

[3] ——, “List decoding of generalized Reed-Solomon codes over commu-
tative rings,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 411–419,
2005.

[4] ——, “Solving the Welch-Berlekamp key equation over a Galois ring,”
in WSEAS Transactions on Mathematics, vol. 4, no. 1, 2005, pp. 319–
326.

[5] M. Armand, “Improved list decoding of generalized reed-solomon and
alternant codes over galois rings,” IEEE Trans. Inform. Theory, vol. 51,
no. 2, pp. 728–733, feb 2005.

[6] M. Armand and O. de Taisne, “Multistage list decoding of generalized
reed-solomon codes over galois rings,” Communications Letters, IEEE,
vol. 9, no. 7, pp. 625–627, jul 2005.

[7] M. Atiyah and I. MacDonald, Introduction to commutative algebra, ser.
Addison-Wesley series in mathematics. Westview Press, 1994.

[8] D. Augot and A. Zeh, “On the Roth and Ruckenstein Equations for
the Guruswami-Sudan Algorithm,” in IEEE International Symposium
on Information Theory - ISIT 2008. Toronto, Canada: IEEE, Jul. 2008,
pp. 2620–2624.

[9] N. Babu and K.-H. Zimmermann, “Decoding of linear codes over galois
rings,” Information Theory, IEEE Transactions on, vol. 47, no. 4, pp.
1599–1603, may 2001.

[10] M. Barbier, C. Chabot, and G. Quintin, “On Quasi-Cyclic Codes as a
Generalization of Cyclic Codes,” ArXiv:1108.3754, Aug. 2011.

[11] E. R. Berlekamp, Algebraic coding theory, ser. M-6. Aegean Park
Press, 1984.

[12] E. R. Berlekamp and L. R. Welch, “Error correction for algebraic block
codes,” 1986, patent 4633470.

[13] D. Boucher, W. Geiselmann, and F. Ulmer, “Skew-cyclic codes,” Appli-
cable Algebra in Engineering, Communication and Computing, vol. 18,
pp. 379–389, 2007.

[14] D. Boucher, P. Solé, and F. Ulmer, “Skew constacyclic codes over Galois
rings,” Advances in mathematics of communications, vol. 2, no. 3, pp.
273–292, 2008.

[15] D. Boucher and F. Ulmer, “Codes as modules over skew polynomial
rings,” in Cryptography and Coding, ser. Lecture Notes in Computer
Science, M. Parker, Ed. Springer Berlin / Heidelberg, 2009, vol. 5921,
pp. 38–55.

[16] ——, “Coding with skew polynomial rings,” Journal of Symbolic
Computation, vol. 44, no. 12, pp. 1644–1656, 2009.

[17] E. Byrne, “Lifting decoding schemes over a galois ring,” in Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, ser. Lecture
Notes in Computer Science, S. Boztas and I. Shparlinski, Eds. Springer
Berlin / Heidelberg, 2001, vol. 2227, pp. 323–332.

[18] D. G. Cantor and E. Kaltofen, “On fast multiplication of polynomials
over arbitrary algebras,” Acta Inform., vol. 28, pp. 693–701, 1991.

[19] L. Chaussade, P. Loidreau, and F. Ulmer, “Skew codes of prescribed
distance or rank,” Designs, Codes and Cryptography, vol. 50, pp. 267–
284, 2009.

[20] N. Chen and Z. A Yan, “Complexity analysis of reed-solomon decoding
over GF(2m) without using syndromes,” EURASIP Journal on Wireless
Communications and Networking, vol. 2008, 2008.

[21] M. Fürer, “Faster Integer Multiplication,” in Proceedings of the Thirty-
Ninth ACM Symposium on Theory of Computing (STOC 2007). ACM,
2007, pp. 57–66.

[22] S. Gao, “A new algorithm for decoding Reed-Solomon codes,” in
Communications, Information and Network Security, V. Bhargava, H.V.
Poor, V. Tarokh, and S. Yoon. Kluwer, 2002, pp. 55–68.

[23] J. von zur Gathen and J. Gerhard, Modern computer algebra, 2nd ed.
Cambridge University Press, 2003.

[24] M. Greferath and U. Vellbinger, “Efficient decoding of Zpk -linear
codes,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 1288–1291,
may 1998.

[25] V. Guruswami, List decoding of error-correcting codes: winning thesis
of the 2002 ACM doctoral dissertation competition, ser. Lecture Notes
in Computer Science. Springer, 2004.

[26] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45,
pp. 1757–1767, 1998.

[27] J. Justesen, “On the complexity of decoding Reed-Solomon codes
(corresp.),” IEEE Trans. Inform. Theory, vol. 22, no. 2, pp. 237–238,
Mar. 1976.

[28] R. Kötter, “On Algebraic Decoding of Algebraic-Geometric and Cycling
Codes,” Ph.D. dissertation, Linköping University, Sweden, 1996.

[29] R. Kötter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–
2825, 2003.

[30] S. Lang, Algebra, 3rd ed., ser. Graduate Texts in Mathematics. Springer-
Verlag, 2002, vol. 211.

[31] J. McConnell, J. Robson, and L. Small, Noncommutative Noetherian
rings, ser. Graduate studies in mathematics. American Mathematical
Society, 2001.

[32] R. R. Nielsen and T. Hoeholdt, “Decoding Reed-Solomon codes beyond
half the minimum distance,” in Coding Theory, Cryptography and
Related Areas, J. Buchmann, T. Hoeholdt, H. Stichtenoth, and H. Tapia-
Recillas, Eds. Springer-Verlag, Apr. 2000.

15

[33] G. Norton and A. Salagean-Mandache, “On the key equation over a
commutative ring,” Designs, Codes and Cryptography, vol. 20, pp. 125–
141, 2000.

[34] W. Peterson and E. Weldon, Error-correcting codes. MIT Press, 1972.
[35] R. Raghavendran, “Finite associative rings,” Compositio Math., vol. 21,

pp. 195–229, 1969.
[36] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[37] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon
codes beyond half the minimum distance,” in IEEE Trans. Inform.
Theory, 1998, p. 56.

[38] A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,”
Computing, vol. 7, pp. 281–292, 1971.

[39] J.-P. Serre, Corps locaux, ser. Actualités scientifiques et industrielles.
Hermann, 1962, no. ns 1296 à 1297.

[40] P. Smith, “Injective modules and prime ideals,” Communications in
Algebra, vol. 9, no. 9, pp. 989–999, 1981.

[41] M. Sudan, “Decoding Reed-Solomon codes beyond the error-correction
diameter,” in the 35th Annual Allerton Conference on Communication,
Control and Computing, 1997, pp. 215–224.

[42] T. K. Truong, W. L. Eastman, I. S. Reed, and I. S. Hsu, “Simplified
procedure for correcting both errors and erasures of Reed-Solomon code
using Euclidean algorithm,” IEEE Proc. Comput. and Digit. Tech., vol.
135, no. 6, pp. 318–324, 1988.

[43] S. Wicker and V. Bhargava, Reed-Solomon Codes and Their Applica-
tions. John Wiley & Sons, 1999.

[44] J. Wood, “Duality for modules over finite rings and applications to
coding theory.” American Journal of Mathematics, vol. 121, no. 3, pp.
555–575, 1999.

