N

N

From a Store-collect Object and () to Efficient
Asynchronous Consensus
Michel Raynal, Julien Stainer

» To cite this version:

Michel Raynal, Julien Stainer. From a Store-collect Object and €2 to Efficient Asynchronous Consen-
sus. [Research Report] PI-1987, 2011. hal-00670076

HAL Id: hal-00670076
https://inria.hal.science/hal-00670076
Submitted on 21 Feb 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00670076
https://hal.archives-ouvertes.fr

o
> IRISA

Publications Internes de ’IRISA o GOV
ISSN : 2102-6327 . Sy | s
PI 1987 — December 2011 @ R BIR e

From a Store-collect Object and () to Efficient Asynchronous Consensus

Michel Raynal>X< ** Julien Stainer”

Abstract: This paper presents an efficient algorithm that builds a consensus object. This algorithm is based on an €2 failure detector
(to obtain consensus liveness) and a store-collect object (to maintain its safety). A store-collect object provides the processes with
two operations, a store operation which allows the invoking process to deposit a new value while discarding the previous value it has
deposited and a collect operation that returns to the invoking process a set of pairs (i, val) where val is the last value deposited by the
process p;. A store-collect object has no sequential specification.

While store-collect objects have been used as base objects to design wait-free constructions of more sophisticated objects (such as
snapshot or renaming objects), as far as we know, they have not been explicitly used to built consensus objects. The proposed store-
collect-based algorithm, which is round-based, has several noteworthy features. First it uses a single store-collect object (and not an
object per round). Second, during a round, a process invokes at most once the store operation and the value val it deposits is a simple pair
(r,v) where r is a round number and v a proposed value. Third, a process is directed to skip rounds according to its view of the current
global state (thereby saving useless computation rounds). Finally, the algorithm benefits from the adaptive wait-free implementations
that have been proposed for store-collect objects, namely, the number of shared memory accesses involved in a collect operation is O (k)
where £ is the number of processes that have invoked the store operation. This makes the proposed algorithm particularly efficient and
interesting for multiprocess programs made up of asynchronous crash-prone processes that run on top of multicore architectures.

Key-words: asynchronous shared memory system, building block, concurrent object, consensus, distributed algorithm, eventual
leader, failure detector, fault-tolerance, modularity, multicore system, process crash, store-collect object

Consensus asynchrone efficace a partir des objets distribués) et Store-collect

Résumé : Cer article présente un algorithme efficace qui implémente un objet consensus sans attente (wait-free). Cet algorithme
s’appuie sur un détecteur de fautes Q) pour garantir la vivacité du consensus et sur un objet store-collect qui en assure la sireté. Cette
approche permet de bénéficier des implémentations adaptatives existantes de I’objet store-collect, ce qui fait de I’algorithme proposé
une alternative intéressante pour résoudre le probleme du consensus dans les systémes asynchrones sujets aux défaillances construits
sur des architectures multiprocesseur.

Mots clés : systeme asynchrone, brique de base, mémoire partagée, objets distribués, consensus, algorithme distribué, leader
inéluctable, détecteur de fautes, tolérance aux fautes, modularité, systeme multiprocesseur, défaillances de processus, objet store-collect

* Institut Universitaire de France
" ASAP : équipe commune avec 1’Université de Rennes 1 et Inria

(©IRISA — Campus de Beaulieu — 35042 Rennes Cedex — France — +33 2 99 84 71 00 — www.irisa.fr

2 M. Raynal & J. Stainer

1 Introduction

1.1 On the implementation of consensus objects

Consensus object and its universality An implementation of any object (or service) is wait-free if the crash of any number of
processes does not prevent the other processes from terminating their operation invocations on the constructed object [14]. It has
been shown by M. Herlihy [14] that consensus objects are universal when one has to design wait-free implementation of any object
(or service) defined from a sequential specification. This means that, as soon as we are provided with consensus objects and atomic
read/write registers, it is possible to design algorithms (called universal constructions) that build wait-free implementations of any
concurrent object defined by a sequential specification. Such implementations are said to be linearizable [15].

A consensus object is a one-shot object that provides the processes with a single operation denoted propose() (one-shot means that
a process invokes at most once the operation propose() on a consensus object). When a process invokes propose(v), we say that it
“proposes v”. A consensus object allows processes to agree (if the processes of a multiprocess program do not have to agree in one way
or another, they are independent and do not constitute a distributed computation). More specifically a consensus object is defined as
follows. Each process is assumed to propose a value and has to decide a value in such a way that the following properties are satisfied:
each correct process which invokes propose() decides a value (wait-free termination), a decided value is a proposed value (validity) and
no two processes decide different values (agreement).

Consensus impossibility and ways to circumvent it While consensus objects are fundamental objects for the design and the imple-
mentation of crash-prone distributed systems, the bad news is that they cannot be wait-free implemented in asynchronous systems where
any number of processes may crash be the underlying communication medium a read/write shared memory [19] or an asynchronous
message-passing system [8]).

Several approaches to circumvent this impossibility have been investigated in the context of read/write shared memory systems.
One consists in enriching the system model by providing the processes with registers stronger (from a computability point of view) than
read/write atomic registers. This approach has given rise to the notion of consensus number introduced and developed by Herlihy [14].
An object X has consensus number n if n is the largest integer such that it is possible to wait-free implement n-process consensus
objects from atomic read/write registers and objects X . If X allows to wait-free implement n-process consensus for any value of n > 0,
the consensus number of the object X is 4+-occ. It is shown it in [14] that there are objects (such as compare&swap or LL/SC registers)
whose consensus number is 4-00.

Another approach consists in enriching the base read/write system with a failure detector [4]. Intuitively, a failure detector can be
seen as a distributed module that provides each process with information on failures. According to the type and the quality of this
information, several failure detectors can be defined. Failure detectors have initially been proposed for message-passing systems before
being used in shared memory systems [18]. One of the most important result associated with the failure detector-based approach is
the proof that the failure detector denoted {2 is the one that captures the minimal information on failures that allows processes to wait-
free implement a consensus object despite asynchrony and process crashes [3]. A failure detector 2 is characterized by the following
behavioral property: after a finite but unknown and arbitrary long period,) provides forever the processes with the same (non-crashed)
leader.

Modular approach: on the liveness side Implementations of consensus objects have to ensure that a single among the proposed
values is decided (safety) and that each process that proposes a value and does not crash eventually decides despite the behavior of the
other processes (wait-freedom).

Interestingly, when considering round-based algorithms (i.e., algorithms in which the processes execute asynchronously a sequence
of rounds), the safety and wait-freedom properties of a consensus object can be ensured by different means, i.e., by different object
types. More precisely, the eventual leadership property provided by {2 can be used to ensure that at least one process will terminate
(thereby entailing the termination of the other processes). Hence, an 2 failure detector constitutes a liveness building block on which
implementations of consensus objects can rely in order to obtain the wait-freedom property.

Modular approach: on the safety side To our knowledge three types of read/write-based objects that ensure the safety properties of
a consensus object have been proposed.

The first (which is given the name alpha in [13, 22]) has been proposed by Lamport in [17] in the context of message-passing
systems and adapted to the read/write shared memory model by Lamport & Gafni [10]. An alpha object is a round-based abstraction'
which is implemented with an array of n shared single-writer/multi-reader registers where n is the total number of processes. Each
register contains two round numbers plus a proposed value or the default value L.

! An alpha object has a single operation denoted deposit() which takes a value and a round number as input parameters and returns a proposed value or a default value
L indicating that the current invocation is aborted. Round-based abstraction means that the specification of deposit() involves the round number which is passed as a
parameter.

Collection des Publications Internes de I'Irisa ©IRISA

Efficient Asynchronous Consensus from Store-collect Object & €} 3

The second object, denoted adopt-commit has been introduced by Gafni [9]. It is a round-free object? whose implementation requires
two arrays of size n which are accessed by each process asynchronously and one after the other. As adopt-commit objects are round-
free, each round of an adopt-commit-based consensus algorithm requires its own adopt-commit object and, when it executes a round, a
process accesses only the corresponding adopt-commit object.

A third object that has used to ensure the safety property of a consensus object is the weak set object type proposed by Delporte &
Fauconnier [5]. This object is a set from which values are never withdrawn. Similarly to adopt-commit objects, these sets are round-
free objects but, differently from them, during each round a process is required to access three distinct sets (the ones associated to the
previous, the current and the next rounds).

1.2 Content of the paper

Step complexity and number of objects The step complexity (number of shared memory accesses) involved by each invocation of
an operation on an alpha, adopt-commit or weak set object is O(n).

On another side, the consensus algorithms based on adopt-commit or weak set objects requires one such object per round and, due
the very nature of €2, the number of rounds that have to be executed before processes decide is finite but can can be arbitrary large. This
means that the number of adopt-commit or weak set objects used in an execution cannot be bounded and, consequently, these objects
have to be dynamically created®. Interestingly, alpha-based consensus algorithms (e.g., [10, 12, 17]) needs a single alpha object.

A question Hence, the question: Is it possible to design a consensus object from 2 (for the consensus liveness part) and (for the
consensus safety part) an object such that (a) a single instance of this object is necessary (as in alpha-based consensus) and (b) whose
step complexity of each operation is adaptive (i.e. depends on the number of processes that have invoked operations and not on the total
number of processes)? The paper answers positively the previous question. To that end it considers store-collect objects.

Store-collect object Such an object, which can be seen as an array with an entry per process, provides processes with two operations
denoted store() and collect(). The first operation allows a process to deposit a new value in the store-collect object, this new value
overwriting the value it has previously deposited. The second operation is an asynchronous read of the last values deposited by each
process. A store-collect object has no sequential specification.

While a store-collect object has a trivial wait-free implementation based on an array of size n with operations whose step complexity
is O(n), in a very interesting way, efficient adaptive wait-free implementations have been proposed. As an example, when considering
the implementation described in [2], the step complexity of each invocation of collect() is O(k) where k, 1 < k < n, is the number of
processes that have previously invoked the operation store()) and the step complexity of each invocation of store() by a process is O(1)
but for its first invocation which can be up to O(k).

A variant of a store-collect object is one in which the operations store() and collect() are merged to obtain a single operation denoted
store_collect() (whose effect is similar to store() followed by collect()). A wait-free implementation of such a variant is described in [6]
where it is shown that in some concurrency patterns the step complexity of store_collect() is O(1).

Content of the paper The paper presents an algorithm that wait-free implements a consensus object from 2 (building block for
wait-free termination) and a single store-collect object (building block for consensus safety).

When compared to consensus algorithms that needs an unbounded number of adopt-commit or weak set objects, the proposed
algorithm (similarly to alpha-based consensus algorithms [10, 13, 17]) needs a single base (store-collect) object. Moreover, when
compared to alpha-based algorithms, it has several noteworthy features. (a) A better step complexity (measured as the number of
accesses to the shared memory) during each round. (b) The fact that an entry of the store-collect object has only two components (a
round number plus a proposed value) while an entry of an alpha object has three components (two round numbers plus a proposed
value). And (c) the fact that the next round executed by a process is dynamically computed from its current view of the global state and
not a priori defined from a predetermined sequence (thereby allowing a process to skip useless computation rounds).

Hence, the paper presents a new consensus algorithm suited to shared memory systems which, from an efficiency point of view,
compares favorably with existing algorithms. It is important to notice that, with the advent of multicore architectures, the design of such
efficient fault-tolerant algorithms become a real challenge.

Roadmap The paper is made up of 5 sections. Section 2 presents the computation model (base read/write registers, store-collect
object and (), and the consensus object. Then, Section 3 describes, discusses and proves correct an efficient algorithm that builds a
consensus object from (2 and a single store-collect object as underlying building blocks. Finally, Section 5 concludes the paper.

2Which means that its specification does not depend on round numbers.
3Due to the distributed nature of the computation and the possibility of failures, such dynamic object creations are much more difficult to manage than iterative or
recursive objects creation in sequential or parallel failure-free computing.

Collection des Publications Internes de I'Irisa ©IRISA

4 M. Raynal & J. Stainer

2 Computation model

2.1 Crash-prone asynchronous processes

The system is made up of a set II of n sequential processes denoted pq,...,p,. The integer ¢ is the index of the process p;. The
processes are asynchronous which means that each process proceeds at its own speed which can vary arbitrarily. The execution of a
sequential process is represented by a sequence of steps which are accesses to its local memory or to the shared memory (see below).

Any number of processes may crash. A crash is a premature halt. After it has crashed (if ever it does) a process executes no more
step. It is only assumed that a process that does not crash eventually executes its next step as defined by the code of its algorithm. Given
an execution, a process that crashes is said to be faulty, otherwise it is correct.

2.2 Cooperation model

From a notational point of view, the names of the objects shared by the processes are denoted with upper case letters (e.g., DEC) while
the name of a local variable of a process p; is denoted with lower case letters with ¢ as a subscript (e.g., set;).

Cooperation objects: an atomic register and a store-collect object The processes cooperate through an atomic multi-writer/multi-
reader register denoted DEC (initialized to the default value) and a store-collect object denoted M EM defined below.

A store-collect object contains a set of pairs (i, v) where i is a process index and v a value. For any i, this set contains at most one
pair (¢, —). Initially, a store-collect object is empty.

The operation store() and collect() As indicated in the introduction, such an object has two operations denoted store() and collect().
A process p; invokes MEM .store(val) to deposit the value val, i.e., the pair (¢,val) is added to the store-collect and overwrites the
previous pair (i, —) (if any)*. Hence, when (i, val) belongs to the store-collect object, val is the last value stored by the process p;.

A process invokes MEM .collect() to obtain a value of the store-collect object. The set that is returned is called a view and contains
the latest pairs deposited by the processes that have invoked MEM .store().

Partial order on the views To define precisely the notion of “latest” pairs returned in a view, we use the following partial order
relation on views. Let view] and view?2 be two views.

viewl < wiew?2 if, for every process p; such that (i,v1) € viewl, we have (i,v2) € view2, where the invocation MEM .store(v2)
by p; is issued after (or is) its invocation MEM .store(v1).

Properties of the operations store() and collect() The invocations of these operations satisfy the following properties.

e Validity. Let col be an invocation of collect() that returns the set view. For any (i,v) € view, there is an invocation store(v)
issued by the process p; that has started before the invocation col terminates.

This property means that a collect() operation can neither read from the future, nor output values that have never been deposited.

o Partial order consistency. Let coll and col2 be two invocations of the operation collect() that return the views viewl and view?2,
respectively. If coll terminates before col2 starts, then viewl < view?2.

This property expresses the mutual consistency of non-concurrent invocations of the operation collect(): an invocation of collect()
cannot obtain values older than the values obtained by a previous invocation of collect(). On the contrary, there is no constraint
on the views returned by concurrent invocations of collect() (hence the name partial order for that consistency property).

o Freshness. Let st and col be invocations of store(v) and collect() issued by p; and p;, respectively, such that st has terminated
before col starts. The view returned by p; contains a pair (¢, v") such that v’ is v or a value deposited by p; after v.

This property expresses the fact that the views returned by the invocations of collect() are up o date in the sense that, as soon as
a value has been deposited, it cannot be ignored by future invocations of collect(). If store(v) is executed by a process p;, the pair
(i, v) must appear in a returned view (provided there are enough invocations of collect()) unless v has been overwritten by a more
recent invocation of store() issued by p;.

e Wait-free termination. Any invocation of an operation by a process that does not crash terminates.

It is easy to see from these properties that a store-collect object has no sequential specification (two invocations of collect() which
obtain incomparable views cannot be ordered).

“In the algorithm proposed in Section 3 a value val is a pair made up of a round number and a proposed value v. To prevent confusion, the notation (—, —) is used
for a pair written into a store-collect object, while the notation (—, —) is used for a pair val.

Collection des Publications Internes de I'Irisa ©IRISA

Efficient Asynchronous Consensus from Store-collect Object & €} 5

Wait-free implementations of store-collect objects Such implementations are described in several papers (see Chapter 7 of [22] for
a survey). The implementations described in [1, 2] are based on atomic read/write registers. As noticed in the introduction, they are
adaptive to the number & of processes that have invoked the operation store(). Let the step complexity of an operation be the maximum
number of shared memory accesses it can issue. When considering the implementation presented in [2], the step complexity of an
invocation of collect() or of the first invocation of store() by a process is O(k) and the step complexity of the other invocations of
store() by the same process is O(1).

Fast store-collect object Such an object, introduced in [6], is a store-collect object where the store() and the collect() operations are
merged into a single operation denoted store_collect(). This object is particularly interesting when a process invokes repeatedly store()
followed by collect() without executing other steps in between, which is exactly what the store-collect-based consensus algorithm
presented in Section 3 does.

An implementation of such a store-collect object is presented in [6], where the step complexity of an invocation of store_collect()

converges to O(1) when, after some time, a single process invokes that operation’.

2.3 The failure detector Omega

This failure detector, which has been informally defined in the Introduction, has been proposed and investigated in [3]. It provides
each process p; with a read-only variable denoted leader; that always contains a process index. The set of these variables satisfies the
following property.

e Eventual leadership. There is a finite time 7 after which the local variables 1eader; of all the correct processes contain the same
process index and this index is the index of a correct process.

It is important to notice that, before time 7, there is an anarchy period during which the variables 1eader; can have arbitrary values
(e.g, there no common leader and crashed processes can be leaders). Moreover, T can be arbitrarily large and is never explicitly known
by the processes.

As already indicated, €2 is the weakest failure detector that allows a consensus object to be wait-free implemented [3]. Moreover, as
consensus cannot be solved in a pure asynchronous read/write system prone to process crashes, it follows that such a system has to be
enriched with time-related behavioral assumptions in order €2 can be built. Examples of such assumptions and associated 2 algorithms
are described in [7].

Notation The previous read/write system model enriched with the additional computability power provided by €2 is denoted ASM].

3 The store-collect-based consensus algorithm

This section presents and proves correct an algorithm that implements the operation propose() of a consensus object CONS. As
previously announced, this construction is based on a store-collect object to ensure the consensus safety properties and a failure detector
) to guarantee its wait-free termination property.

3.1 Description of the algorithm

Internal representation of the consensus object The two base objects used in the algorithm have been introduced in Section 2.2.
The aim of the atomic register DEC' is to contain the decided value. The aim of the store-collect object MEM is to guarantee that no
two different values are decided.

The algorithm implementing the operation propose() Algorithm 1 is a round-based asynchronous algorithm. A process p; invokes
CONS .propose(v;) where v; is the value it proposes. Its invocation terminates when it executes the statement return(DEC') where
DEC contains the value it decides (line 17).

The local variable r; contains the current round number of p; while est; contains its current estimate of the decision value (these
local variables are initialized at line 1). A process executes a while loop (lines 2-16) until it decides (or crashes). Moreover, it executes
the loop body (lines 4-14) only if it is currently considered as a leader by (2 (predicate of line 3).

When it is considered as a leader, p; does the following. First it stores its current local state (r;, est;) into the store-collect object
MEM and then reads its current content by invoking MEM .collect() (line 4). (Let us observe that line 4 can be replaced by the single
statement mem,; < MEM .store_collect({r;, est;)) if one wants to use a fast store-collect object instead of a more general store-collect
object.) Let us notice that line 4 is the only line where p; accesses the store-collect object, i.e., the part of the shared memory related

Collection des Publications Internes de I'Irisa ©IRISA

6 M. Raynal & J. Stainer

operation CONS .propose(v;) is
() 7y < 1;est; < vy

(2) while (DEC = 1)do

3) if (leader; = 7) then

(€)) MEM .store((r;, est;)); view; < MEM .collect();

5) mem; <+ { (r,v) | (—, (r,v)) € view; };

(6) rmax; < max{r | (r,—) € mem;};

@) if (r; = rmax;)

8) then set; < {v | (r,v) € mem; where r € {rmaz;, rmax; — 1}};
9 if (r; > 1) A (set; = {est;})

(10) then DEC+ est;

an else r; —r;i+1

(12) end if

(13) else est; < v such that (rmax;,v) € mem;; r; < rmaz;
(14) end if

(15) end if

(16) end while;
(17) return(DEC)
end operation.

Algorithm 1: The store/collect-based consensus operation propose()

to the consensus safety property. All the other statements executed by p; in a round (but the write into DEC if it decides) are local
statements.

Then, p; stores into mem, the pairs (r,v) contained in the view view; it has obtained (line 5) and computes the greatest round
rmax; that, from its point of view, has ever been attained (line 6). Its behavior depends then on the fact that it is or not late with respect
to rmax;.

o Ifitis late (r; < rmax;), p; jumps to the round rmax; and adopts as new estimate a value that is associated with rmax; in the
view it has previously obtained (line 13).

e Ifitis “on time” from a round number point of view (r; = rmax;), p; checks if it can write a value into DEC' and decide. To that
end, it executes lines 8-12. It first computes the set set; of the values that are registered in the store-collect object with a round
number equal to rmax; or rmaz; — 1, i.e., the values registered by the processes that (from p;’s point of view) have attained one
of the last two rounds.

If p; has passed the first round (r; > 1) and its set set; contains only the value kept in est;, it writes it into DEC (line 10) just
before deciding at line 17. If it cannot decide, p; proceeds to the next round without modifying its estimate est; (line 11).

Hence, the base principle on which rests this algorithm is pretty simple to state. (It is worth noticing that this principle is encountered
in other algorithms that solve other problems such as termination detection of distributed computations). This principle can be stated as
follows: processes execute asynchronous rounds (observation periods) until a process sees two consecutive rounds in which “nothing
which is relevant has changed”.

3.2 Discussion

A particular case It is easy to see that, when all processes propose the same value, no process decides in more than two rounds
whatever the pattern failure and the behavior of (2. Similarly, only two rounds are needed when (2 elects a correct common leader from
the very beginning. In that sense, the algorithm is optimal from a “round number” point of view [16].

On the management of round numbers In adopt-commit-based or alpha-based consensus algorithms, the processes that execute
rounds do execute a predetermined sequence of rounds®.

Differently, the proposed algorithm allows a process p; that executes rounds to jump from its current round r; to the round rmax;
which can be arbitrarily large (line 13). These jumps make the algorithm more efficient. More specifically, let us consider a time 7 of an
execution such that (a) up to time 7, when a process executes line 9, the decision predicate is never satisfied, (b) processes have executed
rounds and mr is the last round that has been attained at time 7, (c) from time 7, {2 elects the same correct leader py at any process p;,
and (d) py starts participating at time 7. It follows from the algorithm that p, executes the first round during which it updates r, to mr,
and then (according to the values in the store-collect MEM) at most either the rounds m» and mr + 1 or the rounds mr, mr + 1 and
mr + 2. As the sequence of rounds is not predetermined, p, saves at least mr — 2 rounds.

5 As we will see, this is exactly what does occur in the proposed algorithm after € elects forever the same correct process.
%In an adopt-commit-based algorithm each process that executes rounds does execute the predetermined sequence of rounds numbered 1, 2, etc., while, in an alpha-
based algorithm each process p; that executes rounds does execute the predetermined sequence of rounds numbered 4, i + n, ¢ + 2n, etc.

Collection des Publications Internes de I'Irisa ©IRISA

Efficient Asynchronous Consensus from Store-collect Object & €} 7

3.3 Proof of the algorithm

This proof is based only on the properties of {2 and the store-collect object MEM . It does not require MEM to be built from atomic
registers.

Lemma 1 [fa process p; invokes MEM .store({r, —)) and later invokes MEM .store({r’, —)), we have r' > r.

Proof Let us first observe that, due to lines 4-6, for any process p; we always have r; < rmaxz;. The lemma then follows directly from
the fact that, for any r, if a process p; neither crashes nor writes into DEC' after it has stored (r;, —) into MEM (line 4), it proceeds to
the round r; + 1 if r; = rmax; (line 11) or to the round rmax; if r; < rmax; (line 13). OLemma 1

Lemma 2 Letr > 1. If a process p; invokes MEM .store((r,v)) at time T, then there is a process p; that has invoked MEM .store({r —
1,v)) at a time 7’ < T.

Proof Let p; be the first process that starts MEM .store({r, v)) and i the last value of r; before r; = r. There are two cases.

e Process p; executes line 13 and updates r; from i to r. In that case, p; adopts the pair (r, v) when it executes that line. If follows
that there is a process p; that has previously invoked MEM .store((r, v)) at some time 7/ < 7. But this contradicts the fact that p;
is the first process that invokes MEM .store((r, v)). Hence, this case cannot occur.

e Process p; executes line 11 and updates r; from 7 = r — 1 to r. In that case, p; does not modify est; and consequently it has

previously invoked MEM .store((r, v}) at some time 7/ < .
ULemma 2

Lemma 3 A decided value is a proposed value.

Proof Let us observe that a decided value is a value that has been written into the atomic register DEC and a process p; can write into
DEC only at line 10 where it assigns it the current value of its local variable est;. The proof amounts consequently to show that any
est; is assigned only proposed values.

Let us first observe that a local variable est; is initially assigned the value proposed by p; (line 1) from which we conclude that any
pair (1, v) written into MEM is such that v is a proposed value. The proof follows then directly from Lemma 2. OLemma 3

Lemma 4 No two processes decide different values.

Proof As a decided value is a value that has been written into DEC' and a process writes at most once into DEC', the proof consists in
showing that distinct processes do not write different values into DEC.

Preliminary definitions. Let view] be the value of view; obtained by p; during round r. Let 7(i, r, b, st) and 7 (4, r, e, st) be the time
instants at which process p; starts and terminates, respectively, the invocation of the operation store() during round 7. 7(i,7, b, ¢f) and
7(i,r, e, cf) have the same meaning when considering the invocation of the operation collect().

Let r be the first round during which processes write into DEC, p; one of these processes and v the value it writes. Let us observe
that, due to line 9, » > 1; hence r — 1 exists. We claim that, for any w such that (—, (r, w)) is returned by an invocation of collect() we
have w = v (Claim C1). It follows (a) from this claim that no process can decide a value different from v at round r and (b) from this
claim, Lemma 1 and Lemma 2 that no process ever writes (r', w) with 7/ > r and w # v. Consequently, no value different from v can
be decided which proves the consensus agreement property.

Proof of the claim CI. Let w be any value such that (—, (r, w)) is returned by an invocation of collect(). To prove the claim (i.e.,
w = v), let us consider the following definition given for each value w.

1. Let 7(Ku, v, €, ¢f) be the first time instant at which a process (let py,, denote this process) returns from an invocation of collect()
(let r,, denote the corresponding round) and the view it obtains is such that (—, (r, w)) € view;*.

2. Let j,, be a process index such that (j, (r,w)) € view," (hence p;,, invokes store((r,w))).
We claim that (a) p;,, executes round r — 1, and during that round (b) invokes store({r — 1,w)) and (c) executes line 11, i.e., it
executes r;, < 1, -+ 1 (Claim C2 whose proof is given below).

To prove the claim C1, let us consider any process p; that writes into DEC' at round r (the first round during which processes write
into DEC). This process obtained view] when it invoked collect() at round . Considering any value w and its associated process p;,,
as previously defined, we analyse the different cases which can occur according to value 7’ such that (j,,, (', v’)) € view! or the fact
that no pair (j,,, —) belongs to view? .

® (juw, (r’,—)) is such that 7' > r. This case is not possible because otherwise we would have rmaz; > ' > r when p; executes

round 7 and it would consequently execute line 13 and not line 10 (the line at which it writes into DEC).

Collection des Publications Internes de I'Irisa ©IRISA

8 M. Raynal & J. Stainer

® (juw, (r',v")) is such that ' = r. In that case, it follows from line 8 and the predicate evaluated by p; at line 9 that we necessarily
have v' = v. Moreover, as p;, writes at most once in a round (Lemma 1), it follows from the definition of j,, (see Item 2 above)
that v’ = w. Hence, w = v.

o (juw, (r',v")) is such that v’ = r — 1. In that case, it follows from Item (b) of Claim C2 that p;_ has invoked store((r — 1, w}).
Then the proof is the same as in the previous case, and we have w = v.

o (juw, (r',v")) is such that ' < r — 1 or there is no pair (j,, —) in view].
It then follows from Item (a) of Claim C2 that p;, executes the round — 1 and we have then 7(¢,7,b, cl) < T(ju, 7 — 1, €, st)

(otherwise the freshness property of the store-collect object would be violated). According to the sequential code executed by p;,,
and p; we consequently have

7(i,7,e,8t) < 7(1,7,b,¢l) < T(juw,T — 1,e,8t) < T(juw,™ — 1,b,cl).

It then follows from the previous line, the freshness property of the store-collect object and the fact that p; does not write the
store-collect object after it has written into DEC, that (4, (r,v)) € fuiew;u_yl. Consequently, p;,, reads (r, —) during round r — 1,
it executes line 13 which contradicts Item (c) of Claim C2 (which states that p; executes line 11 during round r — 1). Hence, this
case cannot appear, which concludes the proof of Claim CI.

Proof of the claim C2. Considering the context of Claim C1, C2 states that (a) p;, executes round r — 1, and during that round (b)
invokes store((r — 1, w)) and (c) executes 7, < rj, + 1.

Let us first observe that r > 1 (because p; does not decide during the first round). As r > 1 and no process skips the first round, p;,,
executes at least one round 7’ such that 1 < 7/ < r. Let rj be the last of these rounds.

The proof is by contradiction. let us assume that p; executes line 13 during round rj before proceeding to round r. Due to its
definition, p;, invokes store((r,w)) during round r. As it stores the value w = est;,, it follows that during the previous round it has
executed (namely round 77), p;, has updated est;, to w and we conclude that (—, (r, w)) € view;i.

It follows from the definition of py, (first process that obtains (—, (r,w)) in a view) that we have 7(ky,, 7w, €, cl) < 7(juw, 17, €, cl).
Moreover, due to the definition of p,, and p;,, (more explicitly, because (j., (r,w)) € view,") and the validity of the store-collect
object, we have 7(jy, 7, b, st) < T(kuy, T, €, cl).

It follows from the two previous inequalities that 7(j,, 7, b, st) < T(kw, Tw, e, cl) < 7(jw, 77, €, cf). But this contradicts the fact
that p; executes the round rj before the round 7, i.e., the fact that 7(j,, rj, e, cl) < T(jw,, b, st). Hence, during the round 77, p;,
does not execute line 13 but line 11. Consequently, we have rj = r — 1 and p;,, does not modify its estimate est;, during the round
rj = r — 1. Moreover, as p;, has not changed its estimate during round r — 1, it has invoked store({r — 1, w)) at the beginning of that
round.

It follows that p;, (a) executes round r — 1 and during that round, (b) invokes store((r — 1,w}) and (c) executes r;, < 7, + 1,
which concludes the proof of the claim C2. OrLemma 4

Lemma 5 Let assume that the eventual leader elected by) participates. Any correct process decides a value.

Proof Let us first observe that, as soon as a process has written a value into DEC), all correct processes decide. Hence, let us assume
by contradiction that no process ever writes into DEC'.

It follows from the definition of {2, that there is a time 7 after which there is a single correct process, say py, such that leader, = /.
Hence, there is a finite time 7/ > 7 after which only p, executes the lines 4-15. This means that p, executes an infinite number of rounds
while each other correct process loops forever but executes a finite number of rounds. Let be the first round such that py is the only
process that executes the rounds r, + 1, etc. Moreover, let v be the value of est, when it starts round 7.

It follows that {r, v) is the only pair (r, —) stored in MEM at round . Moreover, we have then r; = rmax, = r and, consequently,
p; executes the lines 8-12. If the predicate of line 9 is satisfied, p, writes v into DEC' which contradicts the fact that it executes an
infinite number of rounds. Hence, this predicate is false and p, proceeds to the next round and ¢ = r + 1 (line 11). As py is the only
process which executes the round r + 1 and est, has not been modified, (r + 1, v) is the only pair that p, can store into MEM. As
r¢ = rmaxy = r + 1 when py check the predicate of line 7, it executes the lines 8-12.

As the only pairs (r,v’) and (r + 1,v") ever stored into MEM are the ones stored by p, we have v’ = v" = v i.e., set; = {v}. As
esty has not been modified by p; during the rounds r and r + 1, it follows that set, = {est;} and consequently p, executes line 10, a
contradiction which concludes the proof of the lemma. OLemma 5

Theorem 1 Let assume that the eventual leader elected by §) participates. Algorithm 1 is a wait-free implementation of a consensus
object in the system model ASM|SQ)].

Proof The proof follows from Lemma 3, Lemma 4 and Lemma 5. OTheorem 1

Collection des Publications Internes de I'Irisa ©IRISA

Efficient Asynchronous Consensus from Store-collect Object & €} 9

4 When the Omega-defined leader does not participate

The problem It is possible that, in some executions, the participating processes decide before an eventual correct leader has been
elected by {2 which is consequently useless in these executions. But, there are executions in which 2 is required to ensure the wait-
freedom property. This is why the previous construction requires that the correct leader eventually elected by the failure detector 2
participate in the algorithm. This (sometimes left implicit) requirement is common to all the 2-based constructions of a consensus
object, be them designed for shared memory systems (e.g. [5, 10, 13] or message-passing systems (e.g.,[12, 20, 21]).

Hence the question: How to modify €2 in such a way that the eventually common leader that is elected be always a correct partici-
pating process?

The failure detector () x (eventually restricted leadership) Let X be a non-empty set of processes. The failure detector associated
with this set X and denoted 2 x provides each process with a read-only local variable leader;(X) such that the following properties
are satisfied.

e Validity. At any time, leader;(X) contains a process index, i.e., leader; € {1,...,n}.

o Restricted eventual leadership. If X contains correct processes, there is a finite time 7 and a correct process py such that (a)
¢ € X and (b) after 7 we have forever leader;(X) = ¢ for each correct process p; of X.

It is easy to see that Qp (IT is the whole set of processes) is nothing else than €. Qy is the instance of €2 customized for the set of
processes X.

This failure detector has been proposed independently in [11] and [23]. It is used in [11] to boost an obstruction-free object
implementation into a non-blocking implementation and it is also shown that this failure detector is the weakest that allows such a
boosting. It is used in [23] to solve the k-set agreement problem when the participating processes can be any subset of processes.

Modifying the construction When the participating processes can be any subset of processes, the system is enriched with a failure
detector (2x, for any non-empty subset X C II, and Algorithm 1 is modified as follows.

e A new store-collect object, denoted PART and initially empty, is introduced. Moreover, the statement PART .store() is added to
line 1 to indicate that, from now on, p; is a participating process.

e The statement X < PART .collect() is introduced between line 3 and 4. Hence, X denotes the set of participating processes as
currently known by p;. X is initialized to any non-empty subset of II (the set of process indexes).

e Finally the predicate of line 3 is replaced by leader;(X) = 4, i.e., p; checks if it is leader among the processes it sees as
participating processes.

The extended construction is correct The fact that this extended algorithm is correct follows from from the correction of the base
algorithm plus the following two observations.

1. The fact that two processes p; and p;, while executing the same round r, are such that leader;(X) = ¢ and leader;(X’) = j
with X # X', does not create a problem. This is because the situation is exactly as if X = X’ and Q2 x has not yet stabilized to a
single leader. Hence, the consensus safety property cannot be compromised.

2. The consensus termination property cannot be compromised for the following reason. There is a finite time after which each
participating process p; has executed PART .store() . When, this has occurred, All the correct participating processes have the
same set X and, due to the restricted eventual leadership property of 2y, one of them will be elected as their common leader.

5 Conclusion

This paper was motivated by the use of store-collect objects to build a consensus object. It has presented such an algorithm based on
a single store-collect object in which a value stored by a process is a simple pair made up of a round number and a proposed value.
Due to the fact that it uses a single store-collect object, the algorithm is practically interesting. Moreover, as it can benefit from the
adaptive wait-free implementations that have been proposed for store-collect objects and it directs processes to skip rounds (thereby
saving “useless” computation), this consensus algorithm is also particularly efficient and relevant for practical implementations. These
features, together with its simplicity, make it attractive for multiprocess programs made up of asynchronous crash-prone processes that
run on top of multicore architectures.

Collection des Publications Internes de I'Irisa ©IRISA

10 M. Raynal & J. Stainer
References
[1] Afek Y., Stupp G., Touitou D., Long-lived adaptive collect with applications. Proc. 40th IEEE Symposium on Foundations of Computer Science
Computing (FOCS’99), IEEE Computer Press, pp. 262-272, 1999.
[2] Attiya H., Fouren A. and Gafni E., An adaptive collect algorithm with applications. Distributed Computing, 15(2):87-96, 2002.
[3] Chandra T., Hadzilacos V. and Toueg S., The weakest failure detector for solving consensus. Journal of the ACM, 43(4):685-722, 1996.
[4] Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225-267, 1996.
[5] Delporte-Gallet C. and Fauconnier H., Two consensus algorithms with atomic registers and failure detector 2. Proc. 10th Int’l Conference on
Distributed Computing and Networking (ICDCN’09), Springer Verlag #5408, pp. 251-262, 2009.
[6] Englert B. and Gafni E., Fast collect in the absence of contention. Proc. IEEE Int’l Conference on Distributed Computing Systems (ICDCS’02),
IEEE Press, pp. 537-543, 2002.
[7] Ferndndez A., Jiménez E., Raynal M. and Trédan G., A timing assumption and two t-resilient protocols for implementing an eventual leader
service in asynchronous shared-memory systems. Algorithmica, 56(4):550-576, 2010.
[8] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382,
1985.
[9] Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc. 17th ACM Symposium on Principles of Distributed Com-
puting (PODC’98), ACM Press, pp. 143-152, 1998.
[10] Gafni E. and Lamport L., Disk Paxos. Distributed Computing, 16(1):1-20, 2003.
[11] Guerraoui R., Kapalka M. and Kuznetsov P., The weakest failure detectors to boost obstruction-freedom. Distributed Computing, 20(6): 415-433,
2008.
[12] Guerraoui R. and Raynal M., The information structure of indulgent consensus. /EEE Transactions on Computers. 53(4):453-466, 2004.
[13] Guerraoui R. and Raynal M., The alpha of indulgent consensus. The Computer Journal, 50(1):53-67, 2007.
[14] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124-149, 1991.
[15] Herlihy M.P. and Wing J.L., Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463-492, 1990.
[16] Keidar I. and Rajsbaum S., On the cost of fault-tolerant consensus when there are no faults. ACM SIGACT News, Distributed Computing Column,
32(2):45-63, 2001.
[17] Lamport L., The part-time parliament. ACM Transactions on Computer Systems, 16(2):133-169, 1998.
[18] Lo W.-K. and Hadzilacos V., Using failure detectors to solve consensus in asynchronous shared memory systems. Proc. 8th Int’l Workshop on
Distributed Algorithms (WDAG’94), Springer Verlag #857, pp. 280-295, 1994.
[19] Loui M. and Abu-Amara H., Memory requirements for for agreement among Unreliable Asynchronous processes. Advances in Computing
Research, 4:163-183, JAI Press Inc., 1987.
[20] Mostéfaoui A. and Raynal M., Leader-based consensus. Parallel Processing Letters, 11(1):95-107, 2001.
[21] Raynal M., Communication and agreement abstractions for fault-tolerant asynchronous distributed systems. Morgan & Claypool Publishers, 251
pages, 2010 (ISBN 978-1-60845-293-4).
[22] Raynal M., Concurrent programming: algorithms, principles and foundations. 7o appear, Springer, 420 pages, 2012.
[23] Raynal M. and Travers C., In search of the Holy Grail: looking for the weakest failure detector for wait-free set agreement. Proc. 10th Int’l

Conference On Principles Of Distributed Systems (OPODIS’11), Springer Verlag #4305, pp. 3-19, 2006.

Collection des Publications Internes de I'Irisa ©IRISA

