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BP 239, F-54506 Vandoeuvre-les-Nancy, France.

Kazuhiro Yasuda

Faculty of Science and Engineering

Hosei University

3-7-2, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan.

Abstract

In this paper, weak approximations of multi-dimensional stochastic differential equa-

tions with discontinuous drift coefficients are considered. Here as the approximated pro-

cess, the Euler-Maruyama approximation of SDEs with approximated drift coefficients

is used, and we provide a rate of weak convergence of them. Finally we present a rate

of weak convergence of the Euler-Maruyama approximation of the original SDEs with

constant diffusion coefficients.

1 Introduction

In mathematical finance, one describes asset price processes as the solution to the following

stochastic differential equations (SDEs):

dXt = b(t, Xt) dt + σ(t, Xt) dWt. (1.1)

where b and σ are certain functions and Wt is a Brownian motion. Then we consider a

function f , which represents a payoff function in financial derivatives, and one write its

associated option price as the expectation E[ f (XT )], where T is a maturity of the option and

XT is the asset price at T . Note that we are using the interpretation of the expectation using a

financial situation, but, of course, it is also important in many other fields and applications.

It is rare the occasion when one is able to calculate the previous expectation analytically.

Therefore in order to obtain its value, one resorts to computer simulations and tries to obtain

an approximated value. In practice, two kinds of approximations are needed to simulate this

1This paper is an abbreviated and preliminary version of A. Kohatsu-Higa, A. Lejay and K. Yasuda [5].

1



expectation. One is an approximation of the SDEs (1.1) and the other is an approximation

of the expectation. For the latter, one can typically use the Monte-Carlo method, which is

based on law of large numbers in probability theory. On the other hand, for the former, the

Euler-Maruyama approximation is often used. The Euler-Maruyama approximation can be

described as follows: For simplicity, we split the interval [0,T ] equally in n subintervals and

let the length of each time subinterval ∆t be equal to T
n
,

X̄0 = x, X̄i+1 = X̄i + b(i∆t, X̄i)∆t + σ(i∆t, X̄i)
√
∆tξi,

where the random variables ξi, i = 0, 1, · · · , n − 1, are independent of each other and are

distributed according to a N(0, Id) law, where 0 is the d-dimensional zero vector and Id is

d × d-unit matrix. When we approximate stochastic processes, one needs a criteria in order

to determine the quality of the approximation. One mainly uses the following two criteria

(strong error and weak error): the definition of an approximation with strong error of order

γ > 0 is that there exists a positive constant C, which does not depend on ∆t, such that

E
[∣

∣

∣XT − X̄n

∣

∣

∣

]

≤ C∆tγ.

Under enough regularity for coefficients b and σ, the strong error has the order 1/2 for the

above Euler-Maruyama approximation. For more details, readers can refer Exercise 9.6.3 in

Kloeden and Platen [4]. The definition of weak error with order γ > 0 is that for all functions

f in a certain class, there exists a positive constant C, which does not depend on ∆t, such

that
∣

∣

∣

∣

E
[

f (XT )
] − E

[

f
(

X̄n

)]

∣

∣

∣

∣

≤ C∆tγ.

Here under enough regularity on the coefficients σ and b and on f , we have the weak error

with order 1 for the Euler-Maruyama approximation.

The purpose of this paper is to treat an SDE with discontinuous drift coefficients and

obtain an order of weak error for its approximation. Precisely speaking, we consider an SDE

with an approximated drift coefficient bǫ , which is approximated using the Euler-Maruyama

approximation. Then, one uses the approximated process as the approximation of the original

SDEs. Then we estimate an order of the weak error between the original SDEs and the

approximated process. In the latter part of this article, we deal with an SDE with constant

diffusion coefficients and obtain an order of the weak error between the SDEs and their

approximated process to which the Euler-Maruyama approximation is directly applied.

SDEs with discontinuous drift coefficients are of course used in various fields. For in-

stant, in mathematical finance, if one wants to model a stock price process whose trend

dramatically changes when a factor goes down a threshold value. In this case, the drift can

be modeled as taking two values specified by some indicator function. This kind of SDE

also appears in some control problems.

Weak error of SDEs with discontinuous coefficients (not only drift coefficients, but also

diffusion coefficients) have been studied in Chan and Stramer [2] and Yan [12]. However in

their papers, they only proved weak convergence of the Euler-Maruyama approximation, not

2



mentioned an order of the weak convergence. And also strong error and the rate are studied

in Przybylowicz [10] for SDEs with some type of discontinuous coefficients. Note that in

this paper, the diffusion coefficients of our SDEs have enough regularity.

This paper is organized as follows: Some notations and assumptions are given in Sec-

tion 2. We provide our main result on a rate of weak errors under SDEs with discontinuous

drift and nonlinear diffusion coefficient in Section 3, and also give results under constant dif-

fusion coefficients in Section 4. Finally we give some numerical results in Section 5. Proofs

of theorems and so on below can be found in Kohatsu-Higa, Lejay and Yasuda [5].

2 Notations and Hypotheses

Let d ∈ N. The space of continuous functions that are slowly increasing is denoted byCS l(R
d).

A function f in CS l(R
d) is such that for every k > 0,

lim
|x|→∞
| f (x)|e−k|x|2 = 0.

Fix T > 0. Let H be the set [0,T ) × R
d and H = [0,T ] × R

d.

Let σ be a measurable function on [0,T ] × R
d with values in the space of symmetric

d × d-matrices. We set a = σσ∗ and assume that

there exist some positive constants Λ and λ (Λ ≥ λ > 0)

such that λ|ξ|2 ≤ ξ∗a(t, x)ξ ≤ Λ|ξ|2, for all (t, x) ∈ H, and all ξ ∈ R
d,

(H1)

σ is uniformly continuous on H. (H2)

Remark 2.1 Note that (H1) gives a lower and upper bound on the eigenvalues of a, which

are from the very construction equal to the eigenvalues of σ (we have chosen σ to be sym-

metric) for which (H1) holds with λ and Λ replaced by
√
λ and

√
Λ.

Let us also consider a measurable function b from [0,T ] × R
d to R

d such that

|b(t, x)| ≤ Λ for all (t, x) ∈ H. (H3)

From now on, we always assume (H1), (H2) and (H3) for b and σ.

Now, we give some notations. Fix α > 0. Let Hα(Rd) be the space of continuous,

bounded functions with continuous, bounded derivatives up to order ⌊α⌋ and such that ∂
⌊α⌋
x f is

(α−⌊α⌋)-Hölder continuous. Let Hα/2,α(H) be the set of continuous functions with continuous

derivatives ∂r
t∂

s
xu for all 2r + s < α and such that

‖u‖Hα/2,α =
∑

2r+s≤⌊α⌋
sup

(t,x)∈H
|∂r

t∂
s
xu(t, x)| +

∑

2r+s=⌊α⌋
sup

(t,x),(t,y)∈H

|∂r
t∂

s
xu(t, x) − ∂r

t∂
s
xu(t, y)|

|x − y|α−⌊α⌋

+
∑

0<α−2r−s<2

sup
(t,x),(v,x)∈H

|∂r
t∂

s
xu(t, x) − ∂r

t∂
s
xu(v, x)|

|t − v|(α−2r−s)/2

is finite.
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3 Main Theorems

Let σ and b satisfy (H1)–(H3). These conditions are sufficient to ensure the existence of a

unique weak solution (X, (Ft)t≥0,Px) to

Xt = x +

∫ t

0

σ(s, Xs) dBs +

∫ t

0

b(s, Xs) ds (3.1)

for a Brownian motion B.

Remark 3.1 If Xt = x+
∫ t

0
σ(s, Xs) dBs has a strong solution, then (3.1) also admits a strong

solution (See Veretennikov [11]).

Let bǫ be a family of measurable coefficients on H with |bǫ(t, x)| ≤ Λ for (t, x) ∈ H. Let

us consider the unique weak solution (Xǫ , (Ft)t≥0,Px) to

Xǫt = x +

∫ t

0

σ
(

s, Xǫs
)

dBs +

∫ t

0

bǫ
(

s, Xǫs
)

ds. (3.2)

Since bǫ and b are bounded, the distribution of Xǫ may be deduced from the distribution

of X through a Girsanov transform.

For T > 0, let X
ǫ

be the continuous solution of the Euler-Maruyama scheme of step size

T/n. If φ(s) = sup{t ≤ s | t = k/n for k ∈ N}, then

X
ǫ

t = x +

∫ t

0

σ
(

φ(s), X
ǫ

φ(s)

)

dBs +

∫ t

0

bǫ
(

φ(s), X
ǫ

φ(s)

)

ds. (3.3)

Whenσ and bǫ belong to an appropiate class of functions M (for example M = Hα/2,α(H)

for some α > 0 or M = C1,3

b
(H)), and when f belongs to a proper class of functions F (for

example, F = H2+α(Rd) or F = C3(Rd) ∩ CS l(R
d)), a rate of weak convergence of the Euler-

Maruyama scheme X
ǫ

is known. This means that there exists some constant Cǫ such that

∣

∣

∣

∣

E
[

f
(

XǫT
)] − E

[

f
(

X
ǫ

T

)]

∣

∣

∣

∣

≤ Cǫ

nδ
.

Assume that Cǫ = O(ǫ−β). This is in general the case when one chooses to use a regularization

bǫ of b by using mollifiers.

On the other hand, as we will show below in Proposition 3.2 and Remarks 3.3 and 3.5,

one has

∣

∣

∣E
[

f (XT )
] − E

[

f
(

XǫT
)]

∣

∣

∣ ≤ C′E















(∫ T

0

|b(s,Ys) − bǫ(s,Ys)|p ds

)q/p












1/q

(3.4)

for some appropriate values of p and q and positive constant C′.

Assume that the quantity in the right-hand side of (3.4) decreases to 0 as O(ǫγ). Optimiz-

ing over the choice of ǫ leads to the following theorem.
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Assume that f belongs to some appropriate class of functions F, and an approximation

bǫ of the drift b belongs to some class of functions M in a way such that

∣

∣

∣E
[

f (XT )
] − E

[

f
(

XǫT
)]

∣

∣

∣ = O(ǫγ) (3.5)

and
∣

∣

∣

∣

E
[

f
(

XǫT
)] − E

[

f
(

X
ǫ

T

)]

∣

∣

∣

∣

= O

(

1

ǫβnδ

)

. (3.6)

Then for ǫ = O(n−δ/(γ+β)),

∣

∣

∣

∣

E
[

f (XT )
] − E

[

f
(

X
ǫ

T

)]

∣

∣

∣

∣

≤ O(n−κ)where κ =
δγ

γ + β
.

Under the assumptions (3.5) and (3.6), we have the order κ of the weak error among the

SDEs (3.1) and the approximated process (3.3). Therefore, from now on, our interest is to

find some conditions that the assumptions (3.5) and (3.6) hold.

3.1 A Perturbation Formula

Through Theorem 3.2 and the remarks below, we can find some situations where Assump-

tion (3.5) holds.

Let X be the solution to (3.1) and Xǫ be the solution to (3.2).

Theorem 3.2 For α > 2 and p > 2 such that 1/α + 1/p < 1/2 and f ∈ CS l(R
d),

∣

∣

∣E
[

f (XT )
] − E

[

f
(

XǫT
)]

∣

∣

∣ ≤ C2(α, p,T )AT (ǫ)
√

VarP( f (XT ))

with

C2(α, p,T ) = T 1/2−1/p exp



















TΛ2λ−1



















α − 1

2
+

(

1 − 2

α

)

α
(

1
2
+ 1

p

)

− 1

α
(

1
2
− 1

p

)

− 1





































,

AT (ǫ) = E
0

[∫ T

0

|bǫ(s,Ys) − b(s,Ys)|p ds

]1/p

,

where (Y,P0) is the weak solution to Yt = x +
∫ t

0
σ(s,Ys) dWs for some Brownian motion W.

Remark 3.3 Let us assume that an upper Gaussian estimate holds for the transition density

function p(t, x, y) of Y defined by Yt = x+
∫ t

0
σ(s,Ys) dWs. This means that for some constants

C1 and C2,

p(t, x, y) ≤ C1

td/2
exp

(

−C2|y − x|2
t

)

, (3.7)
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for all (t, x, y) ∈ R+ × R
d × R

d. Then for any 1 < r, q ≤ +∞ satisfying d/2r + 1/q < 1, it

follows that

AT (ǫ) ≤ C3













∫ T

0

(∫

Rd

|b(s, y) − bǫ(s, y)|pq dy

)r/q

ds













1/rp

≤ C3‖b − bǫ‖Lrp,qp(H),

where for r < +∞ set

‖ f ‖Lr,q(H) =















∫ T

0

(∫ T

0

| f (s, x)|q dx

)r/q

ds















1/r

,

and also set ‖ f ‖L∞,q(H) = supt∈[0,T ] ‖ f (t, ·)‖Lq .

Remark 3.4 Such estimate (3.7) holds for example if the diffusion coefficient a belongs to

Hα/2,α(H) for some α > 0 (See for example Ladyženskaja [7, § IV.13, p. 377]).

Remark 3.5 Even in absence of a Gaussian upper bounds, the Krylov estimate (Krylov [6]

or Bass [1, Theorem 7.6.2, p. 114]) could also be used with Hypothesis (H1) in order to get

an estimate on AT (ǫ). In this case of a homogeneous coefficient b, from the Krylov estimate,

we have

|AT (ǫ)| ≤ C(λ,Λ)eT ‖b − bǫ‖Ldp .

In case of a time-inhomogeneous coefficient, a similar estimate could be obtained but on the

bounded domain case and one should then estimate the exit time from such domains.

3.2 Rates of Convergence of the Euler-Maruyama Approximation with

Regular Enough Coefficients

We now exhibit some situations where Assumption (3.6) holds, under the weakest possible

assumptions on the regularity of the coefficients. Note that other results may hold (See

Theorem 4.3 below).

3.2.1 Case of Hölder continuous coefficients

The weak rate of convergence of the Euler scheme when the coefficients of the PDE are

Hölder continuous has been studied by R. Mikulevicius and E. Platen [9].

Theorem 3.6 (R. Mikulevicius and E. Platen [9]) If for α ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), b and a

belongs to Hα/2,α(H) and f ∈ H2+α(Rd), then there exists a constant K such that
∣

∣

∣

∣

E
[

f (XT )
] − E

[

f
(

XT

)]

∣

∣

∣

∣

≤ K

nE(α)

with

E(α) =



























α/2 if α ∈ (0, 1),

1/(3 − α) if α ∈ (1, 2),

1 if α ∈ (2, 3).

Besides, the constant K is linear in ‖b‖Hα/2,α and ‖a‖Hα/2,α .
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3.2.2 Case of smooth coefficients

Theorem 3.6 requires the coefficients to be Hölder continuous. Of course, the convergence

rate is better for smooth coefficients. But in order to achieve a rate equal to 1, it requires a

to be in Hα/2,α(H) with α > 2 and a terminal condition in H2+α(Rd) and then with a better

regularity than C4
p.

With a bit more regularity on a and b (if we use molifier for the approximation, bε has

enough regularity), we see that we achieve a convergence rate equal to 1 provided that f in

only in C3(Rd) ∩ CS l(R
d) by using Malliavin calculus.

Theorem 3.7 Assume that f in C3(Rd) ∩ CS l(R
d), bǫ ∈ C1,3

b
(H) and σ ∈ C1,3

b
(H). Then for a

uniform step size T/n,
∣

∣

∣

∣

E
[

f (XǫT )
] − E

[

f
(

X
ǫ

T

)]

∣

∣

∣

∣

≤ C

n
‖bǫ‖3,∞,

where C is some positive constant and ‖bǫ‖3,∞ is defined as follows;

‖bǫ‖3,∞ =
3

∑

j=0

∥

∥

∥

∥

∥

∥

∂ jbǫ

∂x j

∥

∥

∥

∥

∥

∥

∞
.

3.3 Example

Here we provide an example of order of ǫ in the case of the indicator function b(t, x) =

1[ζ1,ζ2](x) for x ∈ R and ζ1 < ζ2. If we use the following bǫ for an approximation of b, bǫ has

the Lipschitz continuity: for ǫ > 0,

bǫ(x) =















































0, (−∞, ζ1 − 2ǫ) ∪ (ζ2 + 2ǫ,∞),
1

2ǫ
x − ζ1 − 2ǫ

2ǫ
, [ζ1 − 2ǫ, ζ1),

− 1

2ǫ
x +
ζ2 + 2ǫ

2ǫ
, (ζ2, ζ2 + 2ǫ],

1, [ζ1, ζ2].

Then we have the following orders: for p > 2,

(∫ ∞

−∞
|bǫ(x) − b(x)|p dx

)
1
p

=

(

4ǫ

p + 1

)
1
p

= O
(

ǫ
1
p

)

. (3.8)

And the rate of the divergence of ‖bǫ‖Hα is ǫ−1.

If we use a mollifier with the Gaussian kernel as bǫ:

bǫ(x) =

∫ ∞

−∞
b

(

x − u

ǫ

)

1
√

2πǫ
exp

(

− u2

2ǫ2

)

du,

then we have the same order of the convergence as the above (3.8) and this bǫ has enough

regularity. And also the rate of the divergence of ‖bǫ‖3,∞ is ǫ−3.
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4 Constant Diffusion Case

We now consider a simple case of a time-homogeneous coefficient and a constant diffusion

coefficient. To keep it simple, we assume that σ is the identity matrix and then that X is

solution to

Xt = x + Bt +

∫ t

0

b(Xs) ds (4.1)

for a Brownian motion B with distribution P. Let bǫ be a family of approximations of b

satisfying (H3).

Let X and X
ǫ

be the continuous Euler-Maruyama schemes

Xt = x + Bt +

∫ t

0

b
(

Xφ(s)

)

ds and X
ǫ

t = x + Bt +

∫ t

0

bǫ
(

X
ǫ

φ(s)

)

ds.

Lemma 4.1 For p > 2, there exists a constant C3(p,Λ,T ) such that

∣

∣

∣

∣

E

[

f
(

XT

)]

− E

[

f
(

X
ǫ

T

)]

∣

∣

∣

∣

≤ C3(p,Λ,T )
√

Var( f (x + BT ))‖b − bǫ‖Lp .

The next lemma is a direct consequence of Theorem 3.2 and the Hölder inequality of the

Gaussian density.

Lemma 4.2 For p > d ∨ 2, there exists a constant C4(p,Λ,T ) such that

∣

∣

∣E
[

f (XT )
] − E

[

f
(

XǫT
)]

∣

∣

∣ ≤ C4(p,Λ,T )
√

Var( f (x + BT ))‖b − bǫ‖Lp .

The rate of weak convergence of the Euler-Maruyama scheme to the solution to (4.1) has

been studied by V. Mackevičius in [8] for a drift coefficient which is Lipschitz continuous.

The proof is given for the dimension d = 1, but it is remarked in the article that it is suitable

whatever the dimension (See Remark below Theorem 1 in [8]).

Let us denote by C3
p(Rd) the space of functions on R

d that are three times continu-

ously differentiable with all the derivatives up to order 3 of polynomial growth. Of course,

C3
p(Rd) ⊂ CS l(R

d).

Theorem 4.3 (R. Mackevičius, [8, Theorem 1]) If bǫ is bounded Lipschitz continuous with

constant Lip(bǫ) and f ∈ C3
p(Rd), then there exists a constant C5(T,Λ, f ) such that

∣

∣

∣

∣

E
[

f
(

XǫT
)] − E

[

f
(

X
ǫ

T

)]

∣

∣

∣

∣

≤ C5(T,Λ, f )

n
Lip(bǫ).

Remark 4.4 The statement of Theorem 1 in Mackevičius [8] is slightly different since b is

not assumed to be bounded. Yet it is clear from the proof that the constant is linear in Lip(bǫ)

if b is also bounded.

For a set G in R
d, we define G(ǫ) = {x ∈ R

d|d(x,G) ≤ ǫ}, where d(x,G) = infy∈G |x − y|
is the distance between x and G.
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Theorem 4.5 Let b be a bounded function on R
d which is Lipschitz except on a set G such

that the Lebesgue meas(G(ǫ)) = O(ǫd). Then for any f ∈ C3
p(R) and p > d ∨ 2,

∣

∣

∣

∣

E
[

f (XT )
] − E

[

f
(

XT

)]

∣

∣

∣

∣

= O
(

n−
d

p+d

)

.

Remark 4.6 We see that the rate of weak error converges to 1/2 (resp. 1/3) when d > 2

(resp. d = 1) when p → d (resp. p → 2). However, the constants hidden in the O(n−d/(p+d))

explode to infinity as p → d ∨ 2. This means that with our estimates, a better rate of

convergence is obtained at the cost of a bigger constant in front of the rate.

Remark 4.7 In the proof of Theorem 4.5, we choose an optimal size of ǫ as O(n−
p

p+d ). Then

we obtain the above rate of the weak error.

5 Numerical Results

In this section, we give some preliminary numerical experiments in order to determine if the

rates of weak convergence are optimal and to which extent the slower rate of convergence

can be observed. Here we consider the following SDE:

Xt = x +

∫ t

0

b(Xs) ds +Wt, (5.1)

where

b(x) =

{

θ1, x ≤ 0,

θ0, x > 0.

This process is called a Brownian motion with two-valued, state-dependent drift, which is

related to a stochastic control problem. Then from Karatzas and Shreve [3, Section 6.5], the

transition density function is given as follows:

pt(x, z) =



















































2

∫ ∞

0

∫ t

0

e2bθ1h(t − s; y − z,−θ1)h(s; x + y,−θ0) ds dy, x ≥ 0, z ≤ 0,

2

∫ ∞

0

∫ t

0

e2(bθ1+zθ0)h(t − s; y,−θ1)h(s; x + y + z,−θ0) ds dy

+
1
√

2πt

{

exp

(

− (x − z + θ0t)2

2

)

− exp

(

− (x + z − θ0t)2

2
− 2θ0x

)}

, x ≥ 0, z > 0,

where set

h(t; x, µ) =
|x|
√

2πt3
exp

(

− (x − µt)2

2t

)

, t > 0, x , 0, µ ∈ R.

Note that if θ1 = −θ0 = θ > 0 and x = 0, the distribution of Xt is symmetric with respect to

y-axis. So that when f is an odd function, we have E[ f (Xt)] = 0.
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Two approximated processes are attempted: one is the Euler-Maruyama approximation

of the original SDE (5.1), and the other is the Euler-Maruyama approximaton of SDE with

the approximated drift coefficient

bǫ(x) =



























θ1, x ≤ −ǫ,
θ0 − θ1

2ǫ
x +
θ0 + θ1

2
, −ǫ < x ≤ ǫ,

θ0, x > ǫ,

for ǫ > 0. From Remark 4.7, set ǫ = n−
2
3 , where n is a number of time steps of the Euler-

Maruyama approximation.

5.1 Case: θ1 = −θ0 = 1 and f (x) = x

In this section, we show a numerical result in the case of θ1 = −θ0 = 1, f (x) = x and the

initial value X0 = 0. Then the true value of E[ f (X1)] = 0 since f (x) = x is an odd function.

Through Figure 1 to Figure 3, x-axis denotes the number of time steps n until time 1

from 10 to 103 with logarithmic scale. Weak errors of simulation results are reported at

a logarithmic scale on the y-axis, that is |E[ f (X1)] − E[ f (X1)]| (thin line) and |E[ f (X1)] −
E[ f (X

ǫ

1)]| (dotted line), where to obtain their expectation values, we use the Monte-Carlo

method with 107 simulations for each n. If they are parallel to the thick straight line, the

convergence rate has the order 1.

The numerical result in the case of f (x) = x is the following:

 1e-005

 0.0001

 0.001

 0.01

 0.1

 10  100  1000

E
rr

or
 (

lo
g-

sc
al

e)

Number of time steps (log-scale)

Weak convergence rate (f(x)=x)

Euler-Maruyama
Approximation

Gradient  -1

Figure 1: No. of time steps – weak error ( f (x) = x).

From Figure 1, it is easy to find that the convergence rate of the Euler-Maruyama method

has order 1, but for the Euler-Maruyama method with the approximated drift, the approxi-

mation converges much faster than the uncorrected one.
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5.2 Case: θ1 = −θ0 = 1 and f (x) = x2

Here we use the same values of parameters in the previous section and let f (x) = x2. From

Karatzas and Shreve [3, Exercise 6.5.3, pp.441], we have

E

[

X2
t

]

=
1

2
+

√

t

2π
(|x| − t − 1) exp

(

− (|x| − t)2

2t

)

+

{

(|x| − t)2 + t − 1

2

}

Φ

(

|x| − t
√

t

)

+ e2|x|
(

|x| + t − 1

2

) [

1 − Φ
(

|x| + t
√

t

)]

,

where set

Φ(x) =
1
√

2π

∫ z

−∞
e−

u2

2 du.

And in the case of x = 0 and t = 1, we obtain E[ f (X1)] = 0.333369.

The numerical result in the case of f (x) = x2 is the following:

 0.0001

 0.001

 0.01

 0.1

 10  100  1000

E
rr

or
 (

lo
g-

sc
al

e)

Number of time steps (log-scale)

Weak convergence rate (f(x)=x^2)

Euler-Maruyama
Approximation

Gradient  -1

Figure 2: No. of time steps – weak error ( f (x) = x2).

From Figure 2, we easily find that the rate of convergence in the both methods is 1.

5.3 Case: θ1 = −θ0 = 1 and f (x) = 1(x > 0) − 1(x ≤ 0)

In this section, we use f (x) = 1(x > 0) − 1(x ≤ 0) which does not have regurality and does

not belong to our theorem. Note that the funciton f is symmetric with respect to the origin

a.e. and Xt has the continuous and symmetric density function so that we have E[ f (X1)] = 0.

The numerical result in the case of f (x) = 1(x > 0) − 1(x ≤ 0) is the following:

From Figure 3, it is easy to find that the convergence rate of the Euler-Maruyama method

has order 1, but as before the Euler-Maruyama method with the approximated drift, con-

verges faster.
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 1e-005

 0.0001

 0.001

 0.01

 0.1

 10  100  1000

E
rr

or
 (

lo
g-

sc
al

e)

Number of time steps (log-scale)

Weak convergence rate (f(x)=indicator)

Euler-Maruyama
Approximation

Gradient  -1

Figure 3: No. of time steps – weak error ( f (x) = 1(x > 0) − 1(x ≤ 0)).

We have tested three cases above, the weak convergence rate of the Euler-Maruyama ap-

proximation in all of them is 1. And in the case of the Euler-Maruyama approximation with

the approximated drift, we could not obtain the rate of convergence because the approxima-

tion converges too fast for f (x) = x and 1(x > 0) − 1(x ≤ 0), but for f (x) = x2, we find that

the convergence rate is 1. This is probably due to how ǫ is chosen. In this case, we have

chosen this example because we can obtain the weak limit in closed form. In order to have

slower orders, we need to consider more complicated situations.
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