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Abstract—Occupancy grids are a very convenient tool for
environment representation in robotics. This paper will detail a
novel approach to compute occupancy grids from stereo-vision,
and shows its application for the field of intelligent vehicles. In the
proposed approach, occupancy is initially computed directly in
the stereoscopic sensor's disparity space. The calculation formally
accounts for the detection of obstacles and road pixels in disparity
space, as well as partial occlusions in the scene. In a second
stage, this disparity-space occupancy grid is transformed into
a Cartesian space occupancy grid to be used by subsequent
applications. This transformation includes spatial and temporal
filtering. The proposed method is designed to be easily processed
in parallel. Consequently, we chose to implement it on GPU,
which allows real-time processing for the demanding application.
In this paper, we present this method and we propose an applica-
tion to the problem of perception in a road environment. Results
are presented with real road data, comparing qualitatively this
approach with others.

I. INTRODUCTION

Occupancy grids have been used for a variety of
applications in the field of robotics, particularly for mapping
the environment. Recent approaches for dynamic grid
processing allow efficient use of occupancy grids for the
monitoring of highly dynamic scenes, so that grids become
a great tool for generic obstacle detection. Occupancy grids
have typically been created based on data provided by range
sensors such as laser or ultrasound. Current practice is to
create the grids based on a probabilistic sensor model such
as [1]. The use of stereo-vision to create occupancy grids
is somewhat less common, but has recently raised a great
interest in the community.

This paper presents a novel approach for the construction
of occupancy grids using a stereo camera pair, which has
been specifically created for the application of an on-road
intelligent vehicle - as such, the occupancy grid created
will be a plane representing the area in front of the vehicle.
The method presented here provides a formal probabilistic
model to calculate the probability of occupancy based on
the disparity space of the stereoscopic sensor. The method
formally considers the geometrical visibility of the different
regions of the image in the calculation, and thus can deal
with partially-occluded objects. It also accounts for the
possibility of the road and obstacles being visible in the
same cell of a grid. Because of its usage of the disparity
space, it is computationally efficient, especially on a parallel

architecture. It also considers the reduction in accuracy of the
disparity measurements with distance from the sensor. After
occupancy grid mapping, the Bayesian Occupancy Filter
(BOF) framework is used to filter the grid over time. The
paper will detail the methodology, and show results with real
road data.

Section II provides a brief review of related work, deal-
ing with stereo-vision based environment modeling and grid
mapping. Section III gives some reminders on the use of the
disparity data, with specifics related to the intelligent vehicle
application. Section IV explains the methodology used for
building an occupancy grid in this disparity space. Section V
presents how this occupancy grid is transformed and filtered to
obtain a usable occupancy grid in the Cartesian space. Section
VI briefly describes the implementation, shows results, and
compares the method with other approaches. Finally, section
VII concludes and discusses future work.

II. RELATED WORK

In the field of mobile robotics, occupancy grids [2]
are frequently used for modeling the environment. In this
representation, each cell of a grid represents a region of
the environment and is associated to a probability of the
region being occupied by an object. The occupancy grid
framework is popular for mapping static environments, and
recent advances have improved this framework by adding the
ability to represent dynamic environments. For this purpose,
the Bayesian Occupancy Filter (BOF) [3] [4] combines
the occupancy grids with velocity grids, and implements
the Bayesian filtering methodology in this framework. An
extension of this approach, which adds prior knowledge from
a map, is proposed in [5]. A particle-based approach to such
dynamic grids is also presented in [6].

Occupancy grids are typically constructed from beam-type
range sensors, such as laser [1] or ultrasound [2]. Stereo
camera pairs have been less commonly used for the creation
of occupancy grids, because of the necessary processing
time and the limited accuracy. Stereo-vision is more often
considered for obstacle detection [7] [8] [9]. In this case,
the idea is to convert the stereo data into an object-based
representation. Two main categories of algorithms can be
considered for that. The first category works in Cartesian
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space: the disparity data is first converted into a large point
cloud of 3D data, and then used for processing. In this
category, many methods have been proposed. For example,
in [10], the authors project this cloud vertically on a plane
and apply a threshold for detection. In [11], the authors find
positions where a fixed-size volume contains a sufficient
number of points. In [12] the point cloud is clustered through
the computation of histograms. Typically with Cartesian-based
approaches, the problem of segmentation is not very different
between using a laser or vision, particularly for short range
where the data can be very precise. For medium to long
range, data becomes very sparse, due to the sampling over
integer pixel and disparity values. The sparse data causes
the connectivity of points from the same object to be lost
and algorithms based on proximity may fail. Before this
aggregation step the authors in [9] propose to re-sample these
points to ensure that their density is independent of the range.
To avoid the problem of non-constant accuracy of stereo-
vision, the second category of approaches focuses on working
directly in the disparity space. This is the case for the
u-v-disparity approach [7] or for approaches based on
connectivity [13].

Similar to these object-based approaches, both 3D-based
and disparity-based approaches exist for building occupancy
grids using stereo-vision. With 3D-based approaches, the
stereo cameras are used purely as a distance sensor, with a
similar approach to a laser sensor [14]. Some authors have
used more stereo-specific methods, but have not completely
considered the nature of the stereoscopic data. In [15] or
[16], the authors only consider the first detected object for
each column and suppose that it occludes the field ahead.
The first object is obtained by finding the highest disparity
value for each column of the image. The result is a ternary
grid (free/occupied/unknown) and the approach is sensitive
to outliers in the disparity map. A great improvement has
been proposed in [17], where the authors propose to build
such a grid in the u-disparity plane. Occupancy is then
robustly estimated using dynamic programming. The result is
a ternary grid, specifically designed for free field estimation.
This approach is used in [18] to build a medium level
decomposition, called stixels, combining the advantages of
disparity approach (pixels, connectivity) and 3D approaches
(objects dimensions) in a compact representation.

The method proposed in this paper differs from the ap-
proaches outlined above in that it works in the u-disparity
plane and provides a probabilistic grid (not ternary). It also
takes advantage of some of the capabilities of a visual sensor,
notably the ability to find partially occluded objects, and the
ability to detect the road.

III. THE DATA IN THE DISPARITY SPACE

A. Geometrical considerations

In this paper the stereoscopic sensor is considered as per-
fectly rectified. Cameras are supposed identical and classically
represented by a pinhole model, (αu, αv, u0, v0) being the

intrinsic parameters. Pixel coordinates in left and right cameras
are respectively named (ul, v) and (ur, v). The length of the
stereo baseline is bs.
A world coordinate system is denoted Rw. Each point P of
coordinates Xw = (xw, yw, zw) can be projected onto the left
and right image planes, respectively on positions (ul, v) and
(ur, v). Consequently, in the disparity space associated to the
stereoscopic sensor, the coordinates of P are U = (u, d, v),
with u = ul and d = ul − ur, namely the disparity value of
the pixel. The u, d and v axes define the disparity coordinate
system R∆. The transform U = F (Xw) is invertible, so the
coordinates in Rw can be retrieved from images coordinates
through a reconstruction function.
For simplicity in notation and without loss of generality (see
section III-B4), the yaw, pitch and roll angles of the camera,
relative to Rw, are set to zero. Assuming that the center of the
stereo baseline is situated at position (xo, yo, zo), the transform
from the world coordinate system to disparity space is given
by [19]: 

u = u0 + αu
xw−xo−bs/2

yw−yo

v = v0 + αv
zw−zo

yw−yo

d = αu
bs

yw−yo

(1)

B. The u-disparity approach

1) The idea: The u-disparity approach [20] is a complement
to the v-disparity originally described in [7]. The idea is to
project the pixels of the disparity map along the columns,
with accumulation. The resulting image is similar to a bird’s
eye view representation of the scene in the disparity space.

2) The detection plane: For occupancy grid computation,
we have to consider a detection plane PD, which is the
support for the grid. PD is chosen to be parallel to the plane
defined by the baseline and the optical axes. A coordinate
system RD(OD, ~xd, ~yd) is associated with the detection plane.
For a given point P of the space, xd = xw and yd = yw.
Arbitrarily, one can decide to set the detection plane to zw = 0.

Considering equation 1, it can be seen that an orthogonal
projection on PD is equivalent to an orthogonal projection in
R∆ on any plane of constant v. Therefore, since computation
of u-disparity images is not costly, this approach directly
implements the vertical projection on PD of the observed
points from the scene. Moreover, it is equivalent to process
the data in the u-disparity plane or in PD. For the reminder
of this paper, we will call UD the coordinates of a point in
the u-disparity plan and XD its coordinates in the detection
plane. The transform between UD and XD is given by the
reconstruction function GD:

GD : R2 → R2

UD 7→ XD
(2)

with: {
xd = xo + b

2 + b(u−uo)
d

yd = yo + αubs
d

(3)
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3) The alignment of rays: A major reason for calculating
the occupancy in u-disparity space is that it allows us to
represent all the optical directions of light rays passing
through the camera’s sensor as parallel (something that
cannot be done on a discretized Cartesian grid). Then a
set of vertically aligned rays is represented by a column in
the u-disparity image. This provides major advantages for
our approach, notably allowing for quick calculation of the
visibility and occlusion of the image at varying distances
from the camera.

4) Alternative detection planes: The proposed definition
of the detection plane is not restrictive. If the stereoscopic
sensor cannot be mounted parallel to the detection plane, an
homography can be applied to the images in order to retrieve
the expected geometrical configuration. Readers interested in
this classical computer vision problem can refer to [21].

C. Road-obstacle separation

Critical to the performance of the method described below
is the assumption that pixels appearing in the disparity image
can be distinguished as being from the road surface or from
the obstacles. This has been accomplished in several ways,
such as estimating the road surface and thresholding the height
of the pixels [14]. We choose to use a double correlation
framework, which exploits different matching hypotheses
for vertical and horizontal objects, as described in [22] and
detailed in [19]. It provides immediate classification of the
pixels during the matching process, without defining any
threshold. After this classification, we obtain two disparity
images Iobstd and Iroadd and two u-disparity images, IobstU and
IroadU , respectively containing pixels from the obstacles and
from the road surface.

IV. OCCUPANCY GRID COMPUTATION IN THE DISPARITY
SPACE

A. The approach

The approach presented here is to compute an occupancy
grid directly in the u-disparity plane. This grid will later
be transformed into a Cartesian grid, explicitly modeling the
uncertainty of the stereoscopic sensor. There are two main
advantages to this approach. First, it allows estimation of the
visibility of each portion of the disparity space. Second, it
allows the use of equally-spaced measurement points to create
the initial grid. By contrast, moving to a Cartesian space first
would give a varying density of measurements.

B. Notations

In this paper, we will use binary random variables. Con-
sidering such a variable B, we will write P (B) and P (¬B)
the probability density functions respectively associated to the
hypotheses B = 1 and B = 0.
We will also use the notation UD to represent either a pixel
of coordinates (u,d) in the u-disparity plan or a cell in the
u-disparity grid (which has pixel-wise resolution).

For each cell UD of the grid, let us define a set of binary
random variables:

• VU : visibility of the cell. VU = 1 means that the cell is
visible,

• CU : ”obstacle confidence” of the cell. CU = 1 means
that an obstacle is seen in the cell,

• RU : ”road confidence” of the cell. RU = 1 means that
the road surface is seen in the cell,

• OU : occupancy of the cell, based on obstacle pixels.
OU = 1 means that the cell is occupied by obstacle
pixels,

• TU : total occupancy of the cell. TU = 1 means that
the cell is occupied, according to both obstacle and road
pixels.

C. Estimation of the occupancy of a cell, using obstacle pixels

We seek to calculate P (OU ), the probability that a cell
UD is occupied, based on the obstacle disparity map. This
probability will depend on the visibility, VU , and on the
“obstacle confidence” CU . In order to estimate the shape of
the probability density function P (OU |VU , CU ), that is, the
probability of a cell being occupied knowing VU and CU , some
boundary conditions of P (OU |VU , CU ) are fixed intuitively.
For example, if the cell is not visible, nothing is known about
its occupancy, so:

∀c ∈ {0, 1}, P (OU |¬VU , CU = c) = 0.5 (4)

Similarly, if a cell is fully visible and there is full confidence
that an obstacle was observed, then:

P (OU |VU , CU ) = 1− PFP (5)

that is, the only way the cell is not occupied is in the event
of a false positive. Also:

P (OU |VU ,¬CU ) = PFN (6)

that is, a cell can only be occupied, when nothing is observed,
if there was a false negative. PFP and PFN are respectively
the probability that a false positive or a false negative can
occur during the matching process. These are assumed to be
constant and known.
Finally, the laws of probability are used to obtain the full
decomposition of P (OU ):

P (OU ) =
∑
v,c

P (VU = v)P (CU = c)P (OU |VU = v, CU = c)

(7)
VU and CU being boolean variables, this means:

P (OU ) = P (VU )P (CU )(1− PFP )
+P (VU )(1− P (CU ))PFN

+(1− P (VU )) · 0.5
(8)

So to compute the occupancy probability, it is necessary to
estimate the values P (VU ) and P (CU ) with respect to the
disparity data.
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1) Classification of the pixels: For a given cell UD = (u, d)
of the grid, we propose to define three sets of pixels in Iobstd :
possible pixels, visible pixels and observed pixels.
Possible pixels for UD are defined as:

SP (UD) = {(u, v), v ∈ [vh(d), v0(d)]} (9)

v0(d) and vh(d) being respectively the v-coordinates of the
pixels situated on the ground (zw = 0) and at the maximum
detection height (zw = −h) for the value d of the disparity.
Then the cardinality of SP (UD) is simply:

NP (UD) = vh(d)− v0(d) (10)

Visible and observed pixels are obtained by classifying the
possible pixels of UD according to the following heuristic:
For a pixel P (u, v) ∈ SP (UD),

• if Iobstd (u, v) > d, P is occluded,
• if Iobstd (u, v) = 0, there is no observation for the ray

(u, v) (i.e. P is not visible),
• else P is said to be visible. In this case, if Iobstd (u, v) = d,

P is an observed pixel for UD.
This allows measurement of the number of observed pixels
NO(UD) and visible pixels NV (UD) for the cell UD.

2) Estimation of the visibility of a cell: The probability of
visibility is estimated to be the ratio between visible pixels
and possible pixels:

P (VU ) =
NV (UD)

NP (UD)
(11)

3) Estimation of the confidence of observation: We choose
to express the “obstacle confidence” as a function of the ratio:

rO(UD) =
NO(UD)

NV (UD)
(12)

This means that if more of the visible pixels are filled with
an observation, we are more confident we have observed
an obstacle. An exponential function is used to represent
the knowledge that the confidence should grow quickly with
respect to the number of observed pixels:

P (CU ) = 1− e
− rO(UD)

τO (13)

where τO is a constant parameter.

4) Resulting probability density function: Figure 1 illus-
trates equation 8, the probability density function of occupancy
with respect to the visibility and to rO, for τO = 0.1. Knowing
this function, the computation of the obstacle occupancy grid
in the u-disparity image is straightforward.

D. Improving the occupancy estimation, using road pixels

As stated earlier, part of the matching involves separating
the road pixels from the obstacle pixels in the disparity
image. The prior sections described finding the probability
of occupancy by an obstacle. However, the quality of the
occupancy grid can be improved based on the use of the road
pixels. Call P (TU ) the total occupancy probability for cell
UD, considering both road and obstacle pixels, and call RU

Fig. 1. Probability density function P (OU ).

the binary random variable meaning that cell UD only belongs
to the road surface. We begin with the logical assertion that the
cell is totally occupied if it is occupied by an actual obstacle
and not by the road surface:

P (TU ) = P (OU ) · P (¬RU ) = P (OU ) · (1− P (RU )) (14)

To compute P (RU ), we consider both obstacle and road
pixels. This is because road pixels are often found at the
base of obstacles, meaning that P (RU ) must remain low when
P (OU ) is high.
Contrary to obstacle pixels, road pixels do no accumulate
much over the u-disparity plane (they are not vertically
aligned). Therefore, instead of using the accumulation value
IroadU (UD) we prefer measuring the number of road pixels in
the neighborhood of UD. Let us call rR(UD) the ratio of non-
zero road pixels in the 3 ∗ 3 neighborhood of UD. Note that
this value can be efficiently computed using a basic image
filtering operation, with an all-one 3 ∗ 3 convolution kernel.
We propose to compute P (RU ) as:

P (RU ) = e
− 1−rR(UD)

τR · e−
rO(UD)

τO (15)

τR being a constant parameter. Figure 2 shows the resulting
probability density function for P (RU ), with τR = 0.1.

Fig. 2. Probability density function P (RU ).
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a)

b)

c)

d)

e)

f)

g)

Fig. 3. Computation of the occupancy grid in the u-disparity plane: a)
left image from the stereo pair; b) obstacle u-disparity image; c) road u-
disparity image; d) visibility map (black represents visible parts); e) ”obstacle
confidence” map (black represents high confidence); f) ”road confidence”
map (black represents high confidence); g) resulting occupancy grid in the
u-disparity plane (black is occupied, white is free).

E. Resulting occupancy grid

Figure 3 shows the basic application of this algorithm.
a) shows the image from the left camera. b) and c) show
the separated u-disparity images IobstU and IroadU ; d) e) and
f) respectively show the “visibility”, “obstacle confidence”
and “road confidence” maps; and g) shows the u-disparity
occupancy grid. In b), what you see are the fronts of obstacles,
resulting in (mostly) straight black lines. Note that in the u-
disparity images, you get closer to the camera as you get lower
in the image, so the lower obstacle in the center of the image
is corresponding to the pedestrian on the center, the upper
line corresponds to the buildings, etc. It is also worth noting
that the relationship between distance in the u-disparity image
and Cartesian space is nonlinear, since pixels further from
the camera represent larger areas. The road u-disparity image
(c), meanwhile, shows much more detail where there is dense
information on the road, such as on the crosswalk. You can

see that in the occupancy grid g) black pixels represent high
probability of occupancy, and white ones very low probability.
This occupancy grid maintains strong information from the
obstacles (they remain black lines), while a cell is empty
(white) in areas where the road was detected. Most areas
behind obstacles are completely unknown (gray), meaning
they are assigned a value of P (TU ) = 0.5. Note however
that partially-occluded objects (such as the building behind
the pedestrian) are still found.

V. COMPUTATION OF THE OCCUPANCY GRID IN
CARTESIAN SPACE

A. Inverse mapping

The Cartesian occupancy grid is obtained by remapping
the u-disparity grid over the detection plane, similar to stereo
inverse perspective mapping [23]. This requires the calculation
of which pixels from the occupancy grid in u-disparity have an
influence on a given cell of the Cartesian grid. Let us define the
surface SurfU (UD) of a pixel UD = (u, d) as the region of the
u-disparity image delimited by the intervals [u− 0.5, u+0.5[
and [d−0.5, d+0.5[. The area of influence of this pixel in the
detection plane is: SurfX(UD) = G(SU (UD)). To compute
the occupancy grid, the occupancy probability of a pixel UD

is simply attributed to the area SurfX(UD) of the detection
plane.
For short distances, several pixels can have an influence on
the same cell of the metric grid. It is necessary to estimate the
occupancy according to this set of data. For this purpose, we
choose to use a max estimator, which ensures a conservative
estimation of the probability of occupancy:

P (TX) = max(P (TU )/X ∈ SurfX(UD)) (16)

B. Filtering the occupancy grid

1) Spatial filtering: The occupancy grid obtained from
the proposed method presents strong discretization effects,
due to the pixel-level sampling and to the estimation of the
disparity on integer values. We propose to apply a filter
to this occupancy grid, in order to obtain a smoother and
more realistic representation. To filter the occupancy grid an
image-like filter, based on the convolution with a Gaussian
kernel, is used. The problem is that a constant convolution
kernel for the complete grid cannot be used, since the
uncertainty of measurement is related to the range. Indeed,
considering a constant kernel would require a strong trade-off
when choosing the standard deviation of the filter. A small
value would be accurate for close cells (low value of yd) but
inaccurate for distant cell, while a large value would suppress
many details in the near environment.
Considering this fact, it is better to consider a constant
Gaussian kernel in the u-disparity plane. The standard
deviation σ2

d along the d axis is related to the disparity
discretization (e.g. σd = 0.5). It can be relevant to consider
that the standard deviation σ2

u along the u axis is related to
the width of the correlation window to model effects like
foreground fattening, as presented in [19].
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2) Temporal filtering: The Bayesian Occupancy Filter
(BOF) framework provides filtering capability, as well as the
ability to estimate a velocity distribution for each cell of the
grid. The BOF [3] is an adaptation of the Bayesian filtering
methodology to the occupancy grid framework. It is based
on a prediction-estimation paradigm. As an input, it uses
an observed occupancy grid. On its output, it provides an
estimated occupancy grid and also velocity grids, representing
the probability distribution over possible velocities for each
cell. In our case, we use the BOF for taking advantage of
the time consistency among successive frames. This strategy
allows removal of errors dues to short-lived matching errors.
It also reinforces the estimated occupancy probabilities after
several observations. An example of filtering with the BOF is
displayed on figure 4

Fig. 4. Effect of the BOF for filtering a Cartesian Grid: the grid on the right
is filtered. It appears that the temporal filtering reinforces both the confidence
on the free space on the left and the confidence on the occupied area on the
right.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

Our experimental platform is a Lexus LS600h equipped
with a TYZX stereo camera placed behind the windshield.
The stereo baseline is 22cm, with a field of view of 62◦.
Camera resolution is 512 × 320 pixels with a focal length
of 410 pixels. The on-board computer is equipped with 8GB
of RAM, an Intel Xeon 3.4GHz processor and an NVIDIA
GeForce GTX 480 for GPU.

The observed region is 20m long by 20m wide, with a
maximum height of 1.8m. Cell size for the occupancy grids
is 0.2 × 0.2m2. The correlation window used for matching
measures 21pixels in width and in height. The occupancy
grid computation parameters are set to: PFP = 0.02 and
PFN = 0.02, τO = 0.1 and τR = 0.1.
The vehicle is also equipped with two IBEO Lux laser
scanners. Each one provides four layers of up to 200 impacts,
with a field of view of 100 degres.

Fig. 5. The experimental vehicle is a Lexus LS600h, equipped with a TYZX
stereo camera, and two IBEO Lux laser scanners.

B. Results

U-disparity grids: Figure 6 compares our approach with a
non-probabilistic approach on a simple example. The method
depicted on figure 6-c) detects the maximum disparity of each
column, as in [16]. Then, it provides a ternary grid, similar to
the grids build from a 2D laser scanner (here, the occupancy
value is PFN for higher disparity values, and 0.5 behind the
detected object). Our approach is displayed on figure 6-d).

The main interest of the visibility approach is seen on the
pedestrian: it can be detected even with the box partially
occluding its body. This can be convenient for fusion with
a single layer laser scanner or for detecting objects faster.

Another difference is that our approach provides a proba-
bilistic grid, with a more realistic variation in the occupancy
probability values. A major interest of this aspect is that it is
less sensitive to noise in the data (here matching errors). On
the right of the box, such noise appears, causing the ternary
method to fail. The probabilistic nature of our approach also
permits to use it within probabilistic frameworks, like the BOF
in our case.

Finally, it is also noticeable that our method uses additional
information from the detection of the road surface, building a
more precise description of the environment.

a)

b)

c)

d)

Fig. 6. Comparison of our approach for computing the occupancy grid, with
an approach which computes a ternary grid. a) left image from the stereo pair,
b) corresponding obstacle disparity image, c) detection of the highest disparity
value of each column, d) computation with the visibility approach.

Figure 7 shows example results on more realistic driving
scenes. For each case: the upper image is the left image from
the stereo camera. For convenience in reading the results, and
as an illustration of the potential behavior of our approach
for detection, the regions of the image with an occupancy
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Fig. 7. Example results obtained for a sequence of stereo data. For each case: (up) the left image of the stereo pair, with a representation of the free space,
obtained by thresholding the u-disparity grid, (center) the u-disparity grid, (bottom) the Cartesian grid, after filtering with the BOF.

value greater than 0.75 are represented in red (with an arbitrary
height of 1.8m). The regions of the image with an occupancy
value lower than 0.4 are represented in blue, projected on the
detection plane. The central image is the corresponding u-
disparity grid. The lower image is the associated Cartesian
grid, after filtering with the BOF.

It appears that our approach provides, in most cases,
a correct estimation of the free space. In the image, the

decomposition can be very precise, even in complicated
scenes containing pedestrians, cars, poles, walls, bicycles, etc.

You can note that the regions of the road surface, where
some strong texture information is present (e.g. markings or
crosswalk), improve the estimation of the grid by lowering
the occupancy probability. Partially occluded objects are
visible in the grid, for example the motorcycle behind the
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a)

b)

c)

d)

Fig. 8. Influence of the PFP and PFN parameters: a) left image from the
stereo pair, b) standard parameters: PFP = PFN = 0.02, c) a higher value
of PFP (0.25) reduces the confidence in occupied (dark) areas, d) a higher
value of PFN (0.25) reduces the confidence in empty (light) areas.

pole (Fig. 7-b).
The thresholding used for the color visualization gives a
good first approximation of the scene decomposition, but it
is sensitive to the threshold value (blank space appears in
the middle of objects). In order to retrieve an accurate object
level representation, which can be useful for risk estimation,
a more advanced grid clustering algorithm would be necessary.

Figure 8 shows that the value of the parameters PFP and
PFN is not critical for the algorithm. Changing these values
allows to adjust the confidence in occupied/free areas, but
will not change the nature of the results. For these reason,
we could safely make the assumption that these parameters
are constant, and empirically set a value. On another hand,
we could refine the approach by considering relationships
between system parameters (e.g. the probability of a false
negative PFN , is related to the density of the disparity image).

Cartesian grids: Figure 7 also shows the remapped
Cartesian occupancy grids, filtered with the Bayesian
Occupancy Filter. The resulting description of the environment
is good for short distances, but the precision becomes poor
beyond 15m. This is not due to the method itself, but rather
to the parameters of our sensor, which are adapted for
applications at low speed, in urban environments. Cameras
with longer focal length or a finer resolution would be
necessary for high speed applications. For this experimental
platform, fusion with longer-range lidar is done for longer-
range accuracy [24].

In order to validate the results with a known reference, we
computed occupancy grids with two four-layers laser scanner
to compare them with the Cartesian grids obtained using
stereo-vision. Figure 9 illustrates this on two typical urban
cases. The wider field of view of the grids obtained using

laser scanners (c,f) is explained by the combination of two
lidar, whose scanning areas are only partially overlapping.
On the first example (a), one can see that the free space of the
street is correctly mapped using the stereo approach (b). It is
worth noticing that the classical L-shape of the white van in the
lidar scan (c) is also visible in the stereo grid (b). The second
example (d) illustrates that the perception of near objects is
very similar with both approaches. Thus, both the pedestrians
and the scooter are clearly and precisely visible in both grids
(e,f), at the same position. The limitation of the resolution of
our sensor is clearly visible on this case: the building in the
background is mapped to large areas (e.g. upper left part of
the stereo grid) (e).

C. Implementation on GPU
In order to be reactive enough for this application, all

the tasks have to be done at video frame-rate (i.e. less than
30ms). Our approach has been designed to be highly parallel,
so that using a GPU with many execution cores is very
appropriate. The NVIDIA CUDA API offers a convenient
way to use such a system. Here are some implementation
choices that we made to gain computational efficiency.
For the matching stage, disparity values are processed
sequentially, by shifting the right image of the stereo pair.
For each disparity value, the aggregation of the cost, using
a correlation window, is done individually and in parallel
for each pixel. The images are loaded in texture memory, to
benefit from the prefetch capability of GPUs.
The u-disparity occupancy grid is computed by processing all
the columns in parallel, since all the columns are independent.
Then, the local maximum is computed for each group of
pixels which correspond to a cell of the Cartesian grid. Thus,
the subsequent remapping can be done by processing all the
cells of the Cartesian grid in parallel. Finally, note that all
the processing chain is done on GPU, so that no exchanges
with the central memory of the computer are necessary.
The approach relies at different levels on the computation
of histograms (u-disparity image, histograms of
visible/ possible/ observed pixels). Therefore, atomic
operations are used to speed-up the computation.

Computation time: The mean computation time for each
stage of the algorithm is:

• stereo matching: 6ms
• u-disparity grid: 0.1ms
• inverse mapping: 0.1ms

Thanks to the GPU implementation, our approach can run in
real time, including the stereo matching. By comparison, the
same processing chain requires about 150ms on CPU, with
optimizations. The orders-of-magnitude improvement on the
GPU is due to the fact that our approach allows highly parallel
computation. Moreover, the complexity is not related to the
content of the scene, so the computation time remains constant
over time.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a novel stereo-vision algorithm
to create an occupancy grid, which provides four advantages.
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a) b) c)

d) e) f)

Fig. 9. Comparison with grids obtained using two four-layers laser scanners. a& d) left image of the stereo pair, with laser impacts projected on it. Red
and Green impacts correspond respectively to the left and right laser scanner. b& e) Cartesian occupancy grids computed using stereo-vision, as described
in the paper. c& f) Occupancy grids computed using the laser scanners.

First, it provides a realistic probabilistic representation of the
environment, which can deal with partially occluded areas
of the scene. Second, real-time operation is possible because
using the disparity space allows computationally efficient and
parallel calculations. Third, since visibility calculations are
simpler in the u-disparity space, we presented a formal means
of calculating the occupancy as a function of 3 variables:

• the probability that an obstacle is visible;
• the confidence in the observation of the obstacle;
• the confidence that the roadway was observed.

Finally, knowledge about the uncertainty of stereoscopic
sensors is used to create a smooth, filtered, Cartesian
occupancy grid. In summary, the main contribution of this
paper is to calculate occupancy grids from stereo images
in a computationally efficient way, which formally accounts
for the probabilistic nature of the sensor. This approach has
been tested in real road conditions, with promising results.
Particularly, combined with the Bayesian Occupancy Filter, it
can be used for obstacle detection, by means of clustering in
the occupancy and velocity grids.

There is work planned to improve this technique. First, we
plan to test this algorithm extensively, in conjunction with
laser scanners for Bayesian sensor fusion, and early results
are already presented in [24]. Then, adding sub-pixel estima-
tion of the disparity values will provide improved accuracy,
without modifying the method itself. The problem is to use an
approach which provides actual separation between the road
surface and the vertical objects.
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