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Abstract: Fixed-point conversion requires fast analytical methods to evaluate the accuracy
degradation due to quantization noises. Usually, analytical methods do not consider the correla-
tion between quantization noises. Correlation between quantization noises occurs when a data is
quantized several times. This report explained, through an example, the methodology used in the
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Évaluation de la précision numérique pour calcul polynomial

Résumé : La conversion en virgule fixe nécessite des méthodes analytiques rapides pour évaluer
la dégradation de la précision liée aux bruits de quantification. Actuellement, les méthodes
analytiques ne considèrent pas la corrélation entre les bruits de quantification. Cette corrélation
est due à la quantification d’une même donnée plusieurs fois. Ce rapport explique, au travers
d’un exemple, la méthodologie utilisée dans l’outils ID.Fix pour prendre en compte la corrélation.
Pour diminuer la complexité, une méthode de regroupement des bruits de quantification dans
une source de bruit est décrite. La valeur maximale de l’erreur d’estimation relative obtenue
avec l’approche proposée est inférieuree à 2%.

Mots-clés : virgule fixe, quantification, approche analytique, correlation
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4 Jean-Charles Naud & Daniel Ménard

1 Introduction

Fixed-point arithmetic is widely used in embedded systems to reduce implementation costs like
execution time, area and power consumption. Fixed-point conversion is composed of two main
steps corresponding to dynamic range evaluation and word-length (WL) optimization. The aim
of WL optimization is to minimize the implementation cost as long as the effects of finite precision
are acceptable. This optimization process is based on an iterative procedure where the numerical
accuracy is evaluated a great number of times. Thus, efficient methods are required to evaluate
this numerical accuracy to limit the optimization time.

To evaluate numerical accuracy, approaches based on fixed-point simulations are generic, but
they also lead to long execution times. Thus, the search space is drastically limited and sub-
optimal solutions are obtained. Analytic methods reduce significantly the evaluation time by
providing the mathematical expression of a metric equivalent to the numerical accuracy. The
output quantization noise power is widely used as a relevant metric for evaluating the numerical
accuracy.

Usually, analytical methods do not consider the correlation between quantization noises.
Correlation between quantization noises occurs when a data is quantized several times. In this
report, the expressions of the correlation and the covariance, considering the number of eliminated
bits, are presented for truncation and rounding. Then, this report explained, through an example,
the methodology used in the ID.Fix tool to support correlation.

2 Methodology description

Problem description

Correlation between QNSs occurs when a data x0 is quantized several times. Figure 1 shows such
an example where xi is the data after each quantization Qi with i equal to 1 or 2. Qi leads to an
unavoidable quantization error ei between the values of the data xi and x0. ei can be assimilated
to a noise source and we denote Ei as the random variable corresponding to this error. Let wi

denote the fractional part word-length of the data xi and qi the quantization step associated to
xi. qi = 2−wi with wi the weight of the least significant bit. The number of bits eliminated
during the quantization process Qi is defined as ki. The relation between the quantization step
qi and q0 is qi = 2kiq0, with i equal to 1 or 2. If x0 is in infinite precision q0 is equal to zero and
k1 and k2 tend to infinity. Let Xi denote the set containing all the values that can be represented
in the fixed-point format after the quantization Qi.

Given that k2 bits are common between the QNSs e1 and e2, these QNSs are correlated. Let
y denote the output of the global targeted system. Let Hi denote the system having ei as input
and y as output. As the QNS ei propagates through the system Hi, correlation between different
QNSs ei obviously influences the output noise power and has therefore to be considered for a
precise numerical accuracy evaluation.

Figure 1: Quantized data representation

Inria



Numerical Accuracy Evaluation for Polynomial Computation 5

2.1 Quantization Mode Description

In this section, the probability density function and the statistical moments of the QNSs gener-
ated during a quantization process are presented for the truncation and rounding quantization
modes in the case of two’s complement coding. The quantization process Q1 presented in Fig-
ure 1 is under consideration. The quantization error e1 resulting from the quantization process
Q1 is defined as

e1 = x0 − x1. (1)

By using Widrow’s model [1, 2], e1 can be assimilated to an additive white noise, uniformly
distributed, which is uncorrelated to the signal.

2.1.1 Truncation

In the case of truncation, the data x0 is always rounded towards the lower value available in the
set X1 and becomes

x1 = ⌊x0 · q
−1
1 ⌋ · q1 = t · q1 ∀x0 ∈ [t · q1, (t+ 1) · q1[ (2)

with ⌊·⌋ the floor function defined as ⌊x0⌋ = max (n ∈ Z|n ≤ x0) and with q1 the quantization
step. The probability density function (PDF) of the QNS pE1

(e1) is given by (3) with δ the
Kronecker delta.

pE1
(e1) =

1

2k1

2k1−1
∑

j=0

δ(e1 − j · q0) (3)

2.1.2 Rounding

Rounding quantization mode rounds the value x0 to the nearest value available in the set X1 as

x1 =

⌊(

x0 +
1

2
q1

)

· q−1
1

⌋

· q1. (4)

The midpoint qm = (t + 1
2 ) · q1 between t · q1 and (t + 1) · q1 is always rounded up to the

higher value (t+ 1) · q1. For this quantization mode, the PDF pE1
(e1) is given by

pE1
(e1) =

1

2k1

2k1−1−1
∑

j=−2k1−1

δ(e1 − j · q0.). (5)

From [3] and [4], mean and variance expressions are given in Table 1 for each quantization
mode Q1. If x0 has a continuous amplitude, as in analog-to-digital conversion, k1 is considered
as +∞.

2.2 Correlation and covariance expressions

In this section, the expressions of the correlation and the covariance between two QNSs e1
and e2, resulting from the quantization of one unique data x0 as presented in Figure 1, are
determined. The covariance is used in the expression of the global output quantization noise
power to improve the quality of the noise power estimation. The reasoning to determine the
correlation and covariance expressions is detailed in the following with k1 ≥ k2 and for the case

RR n° 7878



6 Jean-Charles Naud & Daniel Ménard

Table 1: Mean and variance for the two quantization modes

Quantization mode Q1 Mean Variance

Truncation q1
2 · (1− 2−k1)

q2
1

12 · (1− 2−2k1)

Rounding − q1
2 · (2−k1)

q2
1

12 · (1− 2−2k1)

Figure 2: PDF of the QNSs e1 and e2 for Q1 = T , Q2 = R, k1 = 3 and k2 = 2. q0 is the
quantization step.

where Q1 is a truncation (T) and Q2 a rounding (R). The two discrete PDFs pE1
and pE2

of
respectively the QNSs e1 and e2 are presented in Figure 2 for the case of k1 = 3 and k2 = 2.

Let E1 and E2 denote the discrete random variables corresponding to the QNSs. The cor-
relation E [E1 · E2] is determined from pE1,E2

the joint probability density function between E1

and E2 as

E [E1 · E2] =
∑

i

∑

j

i.q0.j.q0.pE1,E2
(e1 = i.q0, e2 = j.q0) (6)

where i and j enumerate the possible events of e1 and e2.
The joint probability density function pE1,E2

is obtained from pE1|E2
the conditional proba-

bility of E1 given E2 as

pE1,E2
(e1, e2) = pE1|E2

(e1|e2) · pE2
(e2), (7)

For each value of e2, 2
k1−k2 values are obtained for e1, thus

pE1|E2
=

1

2k1−k2

.




2k2−1−1
∑

j=0

δ(e2 − jq0)

2k1−k2−1
∑

t=0

δ (e1 − e2 − t · q2)) (8)

+

−1
∑

j=−2k2−1

δ(e2 − jq0)

2k1−k2−1
∑

t=0

δ (e1 − e2 − (t+ 1) · q2)





To illustrate equation 8, the example with k1 = 3 and k2 = 2 is considered. Thus, the
different cases for the quantization error e1 and e2 are provided in Table 2.

The columns bit 2, bit 1 and bit 0 specify the three LSB of the quantized data (x0). The
weight of the bit 0 is q0. In our case, e2 is due to the elimination of 2 bits with rounding
quantization mode. The figure 3 presents the different values of the error e2.

Inria



Numerical Accuracy Evaluation for Polynomial Computation 7

bit 2 bit 1 bit 0 e1 e2
0 0 0 0 0
0 0 1 q0 q0
0 1 0 2q0 −2q0
0 1 1 3q0 −q0
1 0 0 4q0 0
1 0 1 5q0 q0
1 1 0 6q0 −2q0
1 1 1 7q0 −q0

Table 2: Values of the eliminated bits during the quantization and associated error e1 and e2.

00 01 10 11

Figure 3: Different values of the error e2 for the rounding quantization with k2 = 2

The result is shown in Figure 4. Red Dirac and green Dirac correspond respectively to the
first part (two first summations) and the second part (two last summations) of the previous
expression. The amplitude of the different Dirac are the same and equal to 1

2k1−k2
.

Figure 4: Joint probability pE1|E2(e1,e2)

From eq. 7 and 6, the correlation between E1 and E2 becomes

E [E1.E2] =
q20
2k1

2k1−k2−1
∑

t=0

2k2−1−1
∑

j=0

j(j + t.2k2)

+ (j − 2k2−1)(j + 2k2−1 + t.2k2)

= −
q22
24

+
q20
6

−
q0.q1

4
. (9)

The covariance cov(E1, E2) is determined from the correlation term E [E1.E2] as

cov(E1, E2) = E [E1 · E2]− E [E1] · E [E2] . (10)

RR n° 7878



8 Jean-Charles Naud & Daniel Ménard

Table 3: Correlation and covariance expressions for the different quantization modes of truncation
(T) or rounding (R), and for different conditions on k1 and k2

Q1 Q2 Condition E[E1.E2] cov(E1, E2)

T T k1 ≥ k2
q2
2

12 +
q2
0

6 − q0.q2
4 − q0.q1

4 + q1.q2
4

q2
2

12 −
q2
0

12

T R k1 ≥ k2 −
q2
2

24 +
q2
0

6 − q0.q1
4 −

q2
2

24 −
q2
0

12

R T k1 > k2
q2
2

12 +
q2
0

6 − q0.q2
4

q2
2

12 −
q2
0

12

R R k1 = k2
q2
2

12 +
q2
0

6
q2
2

12 −
q2
0

12

R R k1 > k2 −
q2
2

24 +
q2
0

6 −
q2
2

24 −
q2
0

12

The term E [E1] .E [E2] can be computed from the equations given in Table 1 and is equal to

E [E1] .E [E2] =
q1

2

(

1− 2−k1

) q2

2
(−2−k2)

=
q20 − q0.q1

4
(11)

Thus, from eq. 9 and 11, the expression of the covariance becomes

cov(E1, E2) = −
q22
24

−
q20
12

(12)

Given that k1 ≥ k2, the term q1 is eliminated because just the k2 least significant bits are
common between e1 and e2. The correlation and covariance expressions are given in Table 4 for
the different quantization modes Qi corresponding to truncation (T) or rounding (R) and for
different conditions on k1 and k2. If x0 is in infinite precision, q0 is equal to 0.

2.3 Output Quantization Noise Power

Different models have been proposed to estimate the power of the quantization noise at the output
of a system [5, 6, 7, 8]. These approaches do not consider the correlation between quantization
noises, but they can be easily extended to integrate this correlation to improve the estimation
quality.

From [6], the output quantization noise ey is the sum of the contributions of the N QNSs ei

ey(n) =

N
∑

i=1

∞
∑

t=0

hi(t, n) · ei(n− t) (13)

where hi corresponds to the time-varying impulse response of the system Hi between ei and the
output y. The term t represents the delay and n the time.

The power Pey of the output quantization noise is obtained by determining the second order
moment of ey with a similar derivation as in [6]. From (14), the expression of Pey is

Pey = E
[

E2
y

]

= E





(

N
∑

i=1

∞
∑

t=0

hi(t, n) · ei(n− t)

)2




Inria
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E
[

E2
y

]

= E





N
∑

i=1

N
∑

j=1

∞
∑

t=0

∞
∑

v=0

hi(t, n) · hj(v, n) · ei(n− t) · ej(n− v)





= E

[

N
∑

i=1

∞
∑

t=0

h2
i (t, n) · e

2
i (n− t)

+
N
∑

i=1

∞
∑

t=0

∞
∑

v=0
v 6=t

hi(t, n) · hi(v, n) · ei(n− t) · ei(n− v)

+
N
∑

i=1

N
∑

j=1
j 6=i

∞
∑

t=0

hi(t, n) · hj(t, n) · ei(n− t) · ej(n− t)

+

N
∑

i=1

N
∑

j=1
j 6=i

∞
∑

t=0

∞
∑

v=0
v 6=t

hi(t, n) · hj(v, n) · ei(n− t) · ej(n− v)









(14)

The different quantization noises ei are assumed to be white so the autocorrelation is equal
to

E[ei(n− t)ei(n− v)] = σ2
i δ(t− v) + µ2

i (15)

and the intercorrelation

E[ei(n− t)ej(n− v)] = cov(Ei, Ej)δ(t− v) + µiµj (16)

E
[

E2
y

]

=

N
∑

i=1

∞
∑

t=0

E
[

h2
i (t, n)

]

· (σ2
i + µ2

i )

+
N
∑

i=1

∞
∑

t=0

∞
∑

v=0
v 6=t

E [hi(t, n) · hi(v, n)] · µ
2
i

+

N
∑

i=1

N
∑

j=1
j 6=i

∞
∑

t=0

E [hi(t, n) · hj(t, n)] · (µi · µj + cov(Ei, Ej))

+

N
∑

i=1

N
∑

j=1
j 6=i

∞
∑

t=0

∞
∑

v=0
v 6=t

E [hi(t, n) · hj(v, n)] · µi · µj (17)

Pey = E
[

E2
y

]

=

N
∑

i=1

Ki · σ
2
i +

N
∑

i=1

N
∑

j=1

Lij · µi · µj

+

N
∑

i=1

N
∑

j=1
j 6=i

Mij · cov(Ei, Ej)

RR n° 7878



10 Jean-Charles Naud & Daniel Ménard

with

Ki =

∞
∑

t=0

E
[

h2
i (t, n)

]

,

Lij =
∞
∑

t=0

∞
∑

v=0

E [hi(t, n)hj(v, n)] ,

Mij =

∞
∑

t=0

E [hi(t, n)hj(t, n)] , (18)

and where Ki, Lij and Mij are constant terms depending only of the system in infinite precision,
which can thus be determined only once. The variance σ2

i , the mean µi and the covariance
cov(Ei, Ej) between QNSs depend on the quantization modes, the number of bit wi for the
fractional part and the number of bits eliminated ki for each data xi.

3 Application description

To illustrate the proposed approach, the computation of a 3rd order polynomial using the Horner
scheme is presented. The Signal Flow Graph is presented in figure 5. The expression of the output
y is

1 2 3 4 5 6

1

Figure 5: 3rd order polynomial using the Horner scheme

y(n) = a0 + x(n).(a1 + x(n).(a2 + x(n).(a3 + x(n)))) (19)

3.1 Quantizations noise modelling

A quantization noise is generated when the fractional word length (wFP ) of a data is reduced.
Each quantization error is modelled as a noise with the mean µ and the variance σ. A quantization
noise can be modelled with the quantization step q, the quantization mode (tQ) (truncation (T)
or rounding (R)) and the number of eliminated bits k between the old and the new format.

3.2 Noise source

The noise sources b allow grouping together different quantization noises e in the signal flow
graph. Given that the complexity of the method depends on the number of quantization noise,
the quantization noises are grouped together as much as possible to decrease the number of noise
sources proceeded by the method.

The figure 6 shows, in the general case, the potential quantization noises (I, II, III, IV)
associated with the noise source b. The wFP of inputs and output of operation P1 are specified
with wFPP1,0

, wFPP1,1
and wFPP1,2

.

Inria
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I

II

III
IV

Figure 6: Quantization noise in an noise source

Pi and Di represent respectively the number associated to the operations and the data. Two
cases are identified. In the first case, there is a word-length constraint wFPD1

applied on data
D1. The quantization noises are I,II and III. In the second case, there is no restriction on wFPD1

.
In this case, only quantization noise I and IV are considered.

For the example of polynomial computation, the noise sources are inserted as show in figure
7.

1 2 3 4 5 6

11

Figure 7: Noise sources insertion

3.3 Noise model propagation

The noise model propagation of each operator is inserted. An operation with two inputs x and
y and the output z is considered. Let ex, ey and ez denotes the quantization noises associated
with the input and the output. For the addition/subtraction, the output noise expression is :

ez = ex ± ey

For the multiplication, the output noise expression is :

ez = exy ± eyx

Constant value are not considered to generate a quantization noise. By using previous ex-
pression, the noise data flow graph is generated as show in figure 8.

3.4 Determination of the impulse response of the system

Let Hi denote the system having the noise source bi as input and y as output. Let hi(t, n) denote
the impulse response of Hi. The term t represents the delay and n the time. In our case, there
is no delay, so hi = 0, ∀t 6= 0.

RR n° 7878



12 Jean-Charles Naud & Daniel Ménard

1 2 3 4 5 6

1

1 2 3 4 5 6

1

Figure 8: Noise models insertion

The expressions of the different impulse response hi are :

h1(0, n) = a3 ∗ x
2(n)

h2(0, n) = (a3 ∗ x(n) + a2) · x(n)

h3(0, n) = (a3 ∗ x(n) + a2) · x(n) + a1

h4(0, n) = x2(n)

h5(0, n) = x2(n)

h6(0, n) = x(n)

h7(0, n) = x(n)

h8(0, n) = 1

h9(0, n) = 1 (20)

The matrices K, L et M are computed only one time with the followers equations.

Ki =
∞
∑

t=0

E
[

h2
i (t, n)

]

(21)

Lij =

∞
∑

t=0

∞
∑

v=0

E [hi(t, n)hj(v, n)] (22)

Mij =

∞
∑

t=0

E [hi(t, n)hj(t, n)] (23)

The N -length vector K is equal to

Inria
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



























E
[

(a3 ∗ x
2(n))2

]

E
[

((a3 ∗ x(n) + a2) · x(n))
2
]

E
[

((a3 ∗ x(n) + a2) · x(n) + a1)
2
]

E
[

x4(n)
]

E
[

x4(n)
]

E
[

x2(n)
]

E
[

x2(n)
]

1
1





























The different element of the N ×N matrix L are

RR n° 7878



14 Jean-Charles Naud & Daniel Ménard

L11 = E
[

(a3 ∗ x
2(n))2

]

L12 = L21 = E
[

(a3 ∗ x
2(n)) · ((a3 ∗ x(n) + a2) · x(n))

]

L13 = L31 = E
[

(a3 ∗ x
2(n)) · ((a3 ∗ x(n) + a2) · x(n) + a1)

]

L14 = L41 = E
[

(a3 ∗ x
2(n)) · x2(n))

]

L15 = L51 = E
[

(a3 ∗ x
2(n)) · x2(n))

]

L16 = L61 = E
[

(a3 ∗ x
2(n)) · x(n))

]

L17 = L71 = E
[

(a3 ∗ x
2(n)) · x(n))

]

L18 = L81 = E
[

a3 ∗ x
2(n)

]

L19 = L91 = E
[

a3 ∗ x
2(n)

]

L22 = E
[

((a3 ∗ x(n) + a2) · x(n))
2
]

L23 = L32 = E [((a3 ∗ x(n) + a2) · x(n)) · ((a3 ∗ x+ a2) · x(n) + a1)]]

L24 = L42 = E
[

((a3 ∗ x(n) + a2) · x(n)) · x
2(n)

]

L25 = L52 = E
[

((a3 ∗ x(n) + a2) · x(n)) · x
2(n)

]

L26 = L62 = E [((a3 ∗ x(n) + a2) · x(n)) · x(n)]

L27 = L72 = E [((a3 ∗ x(n) + a2) · x(n)) · x(n)]

L28 = L82 = E [(a3 ∗ x(n) + a2) · x(n)]

L29 = L92 = E [(a3 ∗ x(n) + a2) · x(n)]

L33 = E
[

((a3 ∗ x(n) + a2) · x(n) + a1)
2
]

L34 = L43 = E
[

((a3 ∗ x(n) + a2) · x(n) + a1) · x
2(n)

]

L35 = L53 = E
[

((a3 ∗ x(n) + a2) · x(n) + a1) · x
2(n)

]

L36 = L63 = E [((a3 ∗ x(n) + a2) · x(n) + a1) · x(n)]

L37 = L73 = E [((a3 ∗ x(n) + a2) · x(n) + a1) · x(n)]

L38 = L83 = E [(a3 ∗ x(n) + a2) · x(n) + a1]

L39 = L93 = E [(a3 ∗ x(n) + a2) · x(n) + a1]

L44 = E
[

(x2(n))2
]

L45 = L54 = E
[

(x2(n))2
]

L46 = L64 = E
[

(x2(n)) · x(n)
]

L47 = L74 = E
[

(x2(n)) · x(n)
]

L48 = L84 = E
[

x2(n)
]

L49 = L94 = E
[

x2(n)
]

L55 = E
[

(x2(n))2
]

L56 = L54 = E
[

(x2(n)) · x(n)
]

L57 = L75 = E
[

(x2(n)) · x(n)
]

L58 = L85 = E
[

x2(n)
]

L59 = L95 = E
[

x2(n)
]
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L66 = E
[

x2(n)
]

L67 = L76 = E
[

x2(n)
]

L68 = L86 = E [x(n)]

L69 = L96 = E [x(n)]

L77 = E
[

x2(n)
]

L78 = L87 = E [x(n)]

L79 = L97 = E [x(n)]

L88 = 1

L89 = L98 = 1

L99 = 1

The different element of the N ×N matrix M are

M12 = M21 = E
[

(a3 ∗ x
2(n)) · ((a3 ∗ x(n) + a2) · x(n))

]

M13 = M31 = E
[

(a3 ∗ x
2(n)) · ((a3 ∗ x(n) + a2) · x(n) + a1)

]

M23 = M32 = E [((a3 ∗ x(n) + a2) · x(n)) · ((a3 ∗ x+ a2) · x(n) + a1)]

others = 0

(24)

To decrease the computation time, the symmetry of L and M is used. Moreover, the Mij

terms are not computed if there is no correlation between bi and bj . When there is a correlation
between bi and bj , each noise source bi or bj is a single quantization noise. In our case, for the
matrix M , only the terms M12 , M13 and M23 have to be computed (M21 , M31 and M32 are
deduced by symmetry).

4 Noise power expression

The global noise power expression is

Pby =

N
∑

i=1

Ki.σ
2
i +

N
∑

i=1

N
∑

j=1

Lij · µi.µj+

N
∑

i=1

N
∑

j=1,j 6=i

Mij · cov(Bi, Bj) (25)

The variable of this expression are σ2
i , µi and cov(Bi, Bj) which depends on the data word-

length and the quantization modes. The cov(Bi, Bj) term are compute with the table 4.
Let q0 is the quantization step of the initial data (x in this example). Let q1 and q2 are the

quantization step of data quantized and k1 and k2 the number of eliminated bits. If the initial
data x is in infinite precision q0 is equal to zero and k1 and k2 tend to infinity.

RR n° 7878
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Q1 Q2 Condition cov(B1, B2)

T T k1 ≥ k2
q2
2

12 −
q2
0

12

T R k1 ≥ k2 −
q2
2

24 −
q2
0

12

R T k1 > k2
q2
2

12 −
q2
0

12

R R k1 = k2
q2
2

12 −
q2
0

12

R R k1 > k2 −
q2
2

24 −
q2
0

12

Table 4: Covariance expressions for the different quantization modes of truncation (T) or round-
ing (R), and for different conditions on k1 and k2

5 Conclusion

In the context of numerical accuracy evaluation of fixed-point systems, the expressions of the
correlation and the covariance between QNSs resulting from the quantization of one unique
data has been proposed in this report. The expression of the global output quantization noise
integrates correlation between QNSs, which improves the quality of the estimation of the output
quantization noise compared to existing approaches. The noise power in the case of a third-order
polynomial computation has been described in this report.
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