Distributed Monitoring with Collaborative Prediction

Dawei Feng 1 Cecile Germain-Renaud 2, 1 Tristan Glatard 3
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
3 Images et Modèles
CREATIS - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé
Abstract : Isolating users from the inevitable faults in large distributed systems is critical to Quality of Experience. We formulate the problem of probe selection for fault prediction based on end-to-end probing as a Collaborative Prediction (CP) problem. On an extensive experimental dataset from the EGI grid, the combination of the Maximum Margin Matrix Factor- ization approach to CP and Active Learning shows excellent performance, reducing the number of probes typically by 80% to 90%.
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://hal.inria.fr/hal-00673148
Contributor : Cecile Germain <>
Submitted on : Wednesday, February 22, 2012 - 6:18:29 PM
Last modification on : Friday, October 26, 2018 - 10:40:31 AM
Long-term archiving on : Wednesday, December 14, 2016 - 8:03:36 AM

File

DMCP2012-02_22.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00673148, version 1

Citation

Dawei Feng, Cecile Germain-Renaud, Tristan Glatard. Distributed Monitoring with Collaborative Prediction. 12th IEEE International Symposium on Cluster, Cloud and Grid Computing (CCGrid'12), May 2012, Ottawa, Canada. epub ahead of print. ⟨hal-00673148⟩

Share

Metrics

Record views

901

Files downloads

356