Data Visualization Via Collaborative Filtering

Anne-Marie Kermarrec 1 Afshin Moin 1
1 ASAP - As Scalable As Possible: foundations of large scale dynamic distributed systems
Inria Rennes – Bretagne Atlantique , IRISA-D1 - SYSTÈMES LARGE ÉCHELLE
Abstract : Collaborative Filtering (CF) is the most successful approach to Recommender Systems (RS). In this paper, we suggest methods for global and personalized visualization of CF data. Users and items are first embedded into a high-dimensional latent feature space according to a predictor function particularly designated to conform with visualization requirements. The data is then projected into 2-dimensional space by Principal Component Analysis (PCA) and Curvilinear Component Analysis (CCA). Each projection technique targets a di fferent application, and has its own advantages. PCA places all items on a Global Item Map (GIM) such that the correlation between their latent features is revealed optimally. CCA draws personalized Item Maps (PIMs) representing a small subset of items to a specifi c user. Unlike in GIM, a user is present in PIM and items are placed closer or further to her based on their predicted ratings. The intra-item semantic correlations are inherited from the high-dimensional space as much as possible. The algorithms are tested on three versions of the MovieLens dataset and the Netflix dataset to show they combine good accuracy with satisfactory visual properties. We rely on a few examples to argue our methods can reveal links which are hard to be extracted, even if explicit item features are available.
Type de document :
[Research Report] 2012, pp.23
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger
Contributeur : Afshin Moin <>
Soumis le : jeudi 23 février 2012 - 12:31:15
Dernière modification le : vendredi 16 novembre 2018 - 01:39:27
Document(s) archivé(s) le : jeudi 24 mai 2012 - 02:52:59


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00673330, version 1


Anne-Marie Kermarrec, Afshin Moin. Data Visualization Via Collaborative Filtering. [Research Report] 2012, pp.23. 〈hal-00673330〉



Consultations de la notice


Téléchargements de fichiers