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ABSTRACT
The global stabilization of the classical ball & beam has

been approached in the literature through saturated control
which imposes restrictions on the reactivity of the closed loop.
In this work a modified design for the classical ball & beam sys-
tem is presented. The beam is driven by two actuators (see figure
1). In comparison to the classical system, this design offers an
additional degree of freedom which is the vertical motion of the
beam. We show that the new design offers the possibility to get
rid of the closed loop low reactivity restriction. We propose two
nonlinear controllers to steer the trajectories of the system to-
wards a final desired position. The first controller adapts, to the
new design, existing controllers from the literature for the clas-
sical ball & beam. The second controller uses the additional
degree of freedom to provide a faster stabilization.

1 Introduction
Stabilization of underactuated systems, driven by fewer ac-

tuators than degrees of freedom, presents a challenging problem
which has attracted a considerable attention in the nonlinear con-
trol community (see, for example, [1] [2] [3] [4] and the refer-
ences therein). The ball & beam system is one of the simplest
underactuated systems.

The classical system consists of a beam free to rotate around
a fixed axis. The ball is free to translate along the beam. It is un-

∗Address all correspondence to this author.

deractuated since the position of both the ball and beam should
be controlled through the torque acting on the beam. An obsta-
cle to the stabilization of the system came from the destabilizing
centrifugal force (for more details see [5] [6] [7] [8]). In fact,
from the dynamical equations

ÿ = yθ̇
2−gsin(θ)

θ̈ = τ2,

one may naturally consider the gravitational term −gsin(θ) as a
virtual control input for the y dynamics. τ2 is then designed to
accomplish the desired virtual input θ which stabilize y. This ap-
proach works locally since if y is large or θ̇ is high, the system is
destabilized by yθ̇ 2. The problem arise thus from the centrifugal
force yθ̇ 2, when both fast stabilization and large domain of at-
traction are desired. The global stabilization has been addressed
through low gain control designs in [5] [6] [7] [8]. The idea is
to drive the beam slowly such that θ̇ become very small. A ma-
jor drawback of low gain design is the slow time response of the
closed loop system which induces large transients when the sys-
tem starts far away from the origin. The present work consider a
novel design of the ball & beam system which permits to over-
come both mentioned problems. It is described in the following
lines.

The beam consist in a double axis system whose inclination
is driven through two actuators of different technology, pneu-
matic and electrical. The upper axis is held up from one side
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by a Prismatic-Revolute (PR) piston rod and by a Revolute (R)
piston rod on the other side. The “ball” (actually it is a trans-
lating mass) hang on lower axis and can slide along this one. A
diagram of the platform is depicted in figure 2. It is worth men-
tioning that the new design is also an underactuated system since
it has 3 outputs and 2 control inputs. Challenges arising from
tight cooperation between both actuators will be addressed and
faced using nonlinear control techniques, afterwards validated by
means of this prototype in one of ongoing works.

This communication proceeds as follows. Section 2 intro-
duces the dynamical model of the system. In section 3 and 4
two nonlinear controllers are developed. The first adapts existing
results from literature to the new design. While the second con-
troller take profit of the additional degree of freedom to provide
faster time responses in closed loop. Simulation results are pre-
sented in section 5 with the aim of comparing the responses of
both controllers. Finally, in section 6, conclusions are drawn.

FIGURE 1. Benchmark picture

2 DYNAMICAL MODEL
Actuators dynamics is not our concern in this work, we as-

sume that a feedback is already designed such that the forces
acting on the beam can be considered as control inputs. Nonethe-
less, actuators dynamics will be one of our main concern in a fu-
ture work in order to compare both technologies pneumatic and
electrical. After writing the total energy of the system and apply-
ing the equations of Euler-Lagrange we have:

Γ(q)q̈+C(q, q̇)q̇+G(q) = τ, (1)

where q = [x , θ , y]T is the vector of generalized coordinates.
Γ(q) = [γ1(q) , γ2(q) , γ3(q)]

T , C(q, q̇), G(q) represent the in-

ertia matrix, the matrices of Coriolis and gravitational forces re-
spectively. Due to lack of space we denote sinθ by sθ , tanθ by
tθ and cosθ by cθ . This notation applies only to the elements of
equation (1) which are listed below:

γ1(q) =

 M+m
(Ml +my)cθ

msθ

 , γ3(q) =

 msθ

−myφ

m(s2
θ
+ c2

θ+α1
)

 ,

γ2(q) =

 (Ml +my)cθ

J0 +(Ml2 +my2)(c2
θ
+ s2

θ+α1
)

−myφ

 ,

G(q) =

−(Mg+mg)cα1
−(Ml−my)gcθ

mgsθ

 , τ =

 F1 +F2c2α1
F2sθ+β2

(d−2d1(t))cβ1
cθ+sθ tα2

0

 ,

C(q, q̇) =

0 −(Ml +my)sθ θ̇ +2mẏcθ 0
0 φ(Ml2 +my2)θ̇ +2myẏ(c2

θ
+ s2

θ+α1
) 0

0 −2mẏφ −my(c2
θ+α1

+ s2
θ
)θ̇ 0

 ,
with φ = (sθ+α1cθ+α1− cθ sθ ). M and m represent the masses of
the beam and the “ball” respectively, J the inertia of the beam.
The systems variables are represented on the figure 2.

For the sake of simplicity, in this preliminary study we
assume that both actuators are mounted in a vertical position
(α1 = α2 = 0) reducing the dynamical model to (see fig. 3):

(M+m)ẍ + (Ml +my)cosθθ̈ +msinθ ÿ− (Ml +my)sinθθ̇
2

+ 2mẏcosθθ̇ − (M+m)g = F1 +F2

(J0 +Ml2 + my2)θ̈ +(Ml +my)cosθ ẍ+2myẏθ̇ (2)
− (Ml +my)gcosθ = F2d

ÿ + sinθ ẍ− yθ̇
2 +gsinθ = 0.

where F1 and F2 represent actuators forces acting, respectively,
on points R and PR of Figure 2 and l the distance between point
R and the center of gravity of the rod.

We apply first a classical partial feedback linearization while
taking into account that (M + m(cosθ)2)(J0 + Ml2 + my2)−
(Ml +my)2 is strictly positive. This condition can be satisfied
by a proper choice of the physical parameters transforming (2)
into
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FIGURE 2. System diagram

FIGURE 3. System diagram for α1 = α2 = 0. τ1 is a vertical force.
τ2 is the torque acting on the beam.

ÿ = yθ̇
2− (g+ τ1)sinθ

ẍ = τ1 (3)
θ̈ = τ2.

3 First nonlinear controller
The domain of interest is constituted by D = R×R×R×

R×]− π

2 ,
π

2 [×R. We focus here on developing a first nonlinear
controller which adapts [5] [6] [7] [8] to the new design in order
to globally asymptotically stabilize the system (3).

The controller proceeds in steps. First a homogeneous state
feedback from [11] is designed for torque τ1. It drives the x dy-
namics to zero in finite time. Then, a saturated control design [9]
drives the y,θ subsystem to the origin asymptotically.

Consider a double integrator

ẍ = τ1. (4)

According to [11], two positive constants K1 and K2 exist such
that the control:

τ1 =−K1sign(x)|x|n1 −K2sign(ẋ)|ẋ|n2 , (5)

where n2 ∈ [1− ε,1], stabilizes (4) in finite time. ε is a small
positive constant and n1 =

n2
2−n2

. Thus after a finite time denoted
T0, we have x = ẋ = 0.

Consider the change of variables z1 = y
g , z2 = ẏ

g , z3 = θ ,
z4 = θ̇ , z5 = x and z6 = ẋ we have

ż1 = z2

ż2 = −g+ τ1

g
sin(z3)+ z1z2

4

ż3 = z4

ż4 = τ2

ż5 = z6

ż6 = τ1. (6)

Using the control (5) and taking τ2 =−z3− z4 +u, we have after
the finite time T0:

ż1 = z2

ż2 = −sin(z3)+ z1z2
4

ż3 = z4

ż4 = −z3− z4 +u. (7)

Consider now the change of variables (where the physical ho-
mogeneity is ensured by appropriate choice of the coefficients in
(8)):

y1 = −z1−2z2 +2z3 + z4

y2 = −z2 + z3 + z4

y3 = z3

y4 = z4. (8)

It transforms (7) to

ẏ1 = y2−2P+u

ẏ2 = −P+u

ẏ3 = y4

ẏ4 = −y3− y4 +u, (9)
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with P = y3− sin(y3)+ z1y2
4. Take the control

u =−σ2(y2 +σ1(y1)), (10)

where σ1 and σ2 are two state dependent saturation functions
defined as follows:

σi(si) = si when |si|< εi,
σi(si) = εi when si ≥ εi,
σi(si) =−εi when si ≤−εi, i = 1,2.

Take ε2 = min(ε̄2,
1√

1+Cz2
1
) where C > 1 and ε̄2 is chosen suffi-

ciently small such that |sin(ε2)−ε2|< ε2
2 , ε1 <

ε2
2 and ε2

2 < ε1
2G2

.
G2 is a positive constant. By the monotonicity of the sine
function and its derivative on the interval [0, π

2 ], it is clear that

|siny3− y3| <
y2

3
G1
∀ |y3| < ε2, G1 > 1 is a properly chosen con-

stant. By taking a quadratic Lyapunov function in both y3 and y4,
it is straightforward to show that in a finite amount of time, say
T1, we have |y3| ≤ |u|ρ

, |y4| ≤ |u|ρ ′ where both ρ and ρ ′ belong to
[1−δ ,1[ and δ is a small positive constant. Consider now the y2
dynamics, the time derivative of the Lyapunov function V2 =

1
2 y2

2
is bounded by

V̇2 = y2(P+u)≤ y2(
|u|2

G1
+ z1ε2|u|−u)

≤ y2(
|u|
G1

+ |z1|ε2−1)σ2(y2 +σ1(y1)), (11)

where G1 and ε2 are chosen such that |u|G1
+ |z1|ε2− 1 < 0 as a

consequence, there exist a finite time, denoted by T2, such that
y2 ≤ ε2

2 . Consider now the Lyapunov function V1 =
1
2 y2

1 associ-
ated to the y1 dynamics which is given by:

ẏ1 = y2 +2(y3− siny3)+2z1y2
4 +u, (12)

notice that u = −y2−σ1(y1) from now on. The time derivative
of V1 writes:

V̇1 ≤ y1(2
|u|2

G1
+2z1|u|2−σ1(y1)), (13)

which ensures by a proper choice of the saturation functions as
well as the constants C and G2 that after a finite amount of time
the input u is no more saturated u = −y2− y1. The closed loop
system is reduced to:

ẏ1 = −y1 +2P

ẏ2 = −y1− y2 +P

ẏ3 = y4

ẏ4 = −y3− y4− y2− y1 (14)

which is locally asymptotically stable.

4 Second nonlinear controller
Suppose that there exist a feedback control which drives the

system so that the instantaneous axis of rotation of the beam be
the position where the “ball” is located. This consideration, if
realized, permits to completely supress the (destabilizing) influ-
ence of the centrifugal force. Motivated by this observation, let
us consider the following change of variables which is valid on
D : [

xm
ym

]
=

[
1 sinθ

0 cosθ

][
x
y

]
. (15)

It is invertible with y = ym
cosθ

and x = xm−ym tanθ . With the new
variables the system writes:

ẍm = −g(sinθ)2 +2(ẏm + ym tanθθ̇)θ̇ +(cosθ)2
τ1 + ymτ2

ÿm = −gsinθ cosθ −2(ẏm + ym tanθθ̇) tanθθ̇ − sinθ cosθτ1

− ym tanθτ2

θ̈ = τ2. (16)

Consider the regular change of control variables applicable for
θ ∈]− π

2 ,
π

2 [: [
u
v

]
=

[
(cosθ)2 ym

0 1

][
τ1
τ2

]
,

with u given by

u = g(sinθ)2−2(ẏm + ym tanθθ̇)θ̇ −ψ(xm, ẋm) (17)

and ψ(xm, ẋm) is a stabilizing controller for the xm dynamics.
Equation (17) transforms (16) to

ẍm = −ψ(xm, ẋm)

ÿm = − tanθ(g+ ẍm)

θ̈ = v.

We use a saturated control for ψ(xm, ẋm) in order to ensure that
g−|ẍm|> 0. Take z= tanθ and v= 1

(1+z2)2 (w−2zż2), the system
writes:

ẍm = −ψ(xm, ẋm)

ÿm = −(g+ ẍm)z

z̈ = w.
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where w is a new control input.
Consider the new variable: ξ = z−αym−β ẏm. Its second

order derivative is given by:

ξ̈ = w+(g+ ẍm)(αz+β ż)+βx(3)m z.

The dynamics (ξ , ξ̇ ) can be stabilized by

w =−(g+ ẍm)(αz+β ż)−βx(3)m z−Φ(ξ , ξ̇ )

where Φ can be taken as in (5) with the purpose of ensuring a
finite time stabilization. After a finite time denoted by T4, we
have ξ = ξ̇ = 0 and subsystem ym reduced to

ÿm =−(g+ ẍm)(αym +β ẏm)

which is asymptotically stable due to the choice of ψ which en-
sure that g−|ẍm|> 0.

5 Simulation
The performance of both controllers is compared through

numerical simulations depicted in figures 4-9. Two tests were
performed.

1. For the first one, the system starts at the initial conditions
y = 1, θ = 0.35rd ≈ 20◦ and x = ẋ = ẏ = θ̇ = 0. Simulations
results are shown on figure 4 for the first controller, while on
figures 6 and 7 for the second one.

2. For the second test, the system starts at the initial conditions
y = 1, θ = 1.4rd ≈ 80◦ and x = ẋ = ẏ = θ̇ = 0. Simula-
tions corresponding to the first controller are reported on the
figure 5. On the other hand, simulations for the second con-
troller are shown on figures 8 and 9.

By examining the simulations, it can be noticed that the sec-
ond controller avoids the large transients induced by the saturated
control of the first one. Thus, the effectiveness of the new design
is confirmed. On the other hand, it is worth mentioning that the
first controller provide a saturated input which can be beneficial
in some situation. Pay attention that the time axis in Figures 4
and 5 are larger than the time axis of Figures 6-9.

6 Conclusion
This communication presented a new design for the ball and

beam system. The idea behind this novel design is to get rid
of the centrifugal force which constitute an obstacle for fast and
global stabilization of the classical ball & beam system. Two
nonlinear controllers have been developed. The first one adapts
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FIGURE 4. First controller, test 1.
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FIGURE 5. First controller, test 2.

existing controllers from the literature to the new system. The
drawback of this controller is slow reactivity of the closed loop.
The second controller takes profit of the additional degree of
freedom of the system to provide fast global stabilization. The
efficiency of the algorithm was attested by several numerical sim-
ulations. Experimental results are one of our ongoing works.
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