Bayesian Pursuit Algorithms

Abstract : This paper addresses the sparse representation (SR) problem within a general Bayesian framework. We show that the Lagrangian formulation of the standard SR problem, i.e. $\x^\star=\argmin_\x \lbrace \| \y-\D\x\|_2^2+\lambda\| \x\|_0 \rbrace$, can be regarded as a limit case of a general maximum a posteriori (MAP) problem involving Bernoulli-Gaussian variables. We then propose different tractable implementations of this MAP problem that we refer to as ''Bayesian pursuit algorithms". The Bayesian algorithms are shown to have strong connections with several well-known pursuit algorithms of the literature (e.g., MP, OMP, StOMP, CoSaMP, SP) and generalize them in several respects. In particular, i) they naturally allow for atom deselection; ii) they can include any prior information about the probability of occurrence of each atom within the selection process; iii) they can encompass the estimation of unkown model parameters into their recursions.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00673801
Contributeur : Cedric Herzet <>
Soumis le : lundi 6 août 2012 - 11:10:22
Dernière modification le : vendredi 16 novembre 2018 - 02:13:11
Document(s) archivé(s) le : vendredi 31 mars 2017 - 11:43:49

Fichier

technical_report.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00673801, version 3

Citation

Cedric Herzet, Angélique Drémeau. Bayesian Pursuit Algorithms. 2012. 〈hal-00673801v3〉

Partager

Métriques

Consultations de la notice

687

Téléchargements de fichiers

485