Reducing statistical time-series problems to binary classification

Daniil Ryabko 1 Jérémie Mary 1, 2
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : We show how binary classification methods developed to work on i.i.d.\ data can be used for solving statistical problems that are seemingly unrelated to classification and concern highly-dependent time series. Specifically, the problems of time-series clustering, homogeneity testing and the three-sample problem are addressed. The algorithms that we construct for solving these problems are based on a new metric between time-series distributions, which can be evaluated using binary classification methods. Universal consistency of the proposed algorithms is proven under most general assumptions. The theoretical results are illustrated with experiments on synthetic and real-world data.
Type de document :
Communication dans un congrès
NIPS, Dec 2012, Lake Tahoe, United States. pp.2069--2077, 2012
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00675637
Contributeur : Daniil Ryabko <>
Soumis le : vendredi 7 juin 2013 - 11:43:06
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : dimanche 8 septembre 2013 - 04:18:23

Fichier

red_hal2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00675637, version 5

Collections

Citation

Daniil Ryabko, Jérémie Mary. Reducing statistical time-series problems to binary classification. NIPS, Dec 2012, Lake Tahoe, United States. pp.2069--2077, 2012. 〈hal-00675637v5〉

Partager

Métriques

Consultations de la notice

343

Téléchargements de fichiers

171