J. Aflalo, A. Ben-tal, C. Bhattacharyya, J. S. Nath, and S. Raman, Variable sparsity kernel learning, JMLR, vol.12, pp.565-592, 2011.

A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine Learning, pp.243-272, 2008.

F. Bach, Consistency of the group Lasso and multiple kernel learning, JMLR, vol.9, pp.1179-1225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00164735

C. Brouard, F. Buc, and M. Szafranski, Semi-supervised penalized output kernel regression for link prediction, Proc. ICML, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654123

C. Carmeli, E. D. Vito, and A. Toigo, VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES OF INTEGRABLE FUNCTIONS AND MERCER THEOREM, Analysis and Applications, vol.04, issue.04, pp.377-408, 2006.
DOI : 10.1142/S0219530506000838

C. Carmeli, E. D. Vito, and A. Toigo, VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY, Analysis and Applications, vol.08, issue.01, pp.19-61, 2010.
DOI : 10.1142/S0219530510001503

C. Cortes, M. Mohri, and A. Rostamizadeh, L 2 regularization for learning kernels, Proc. UAI, 2009.

C. Cortes, M. Mohri, and A. Rostamizadeh, Generalization bounds for learning kernels, Proc. ICML, 2010.

F. Dinuzzo, C. S. Ong, P. Gehler, and G. Pillonetto, Learning output kernels with block coordinate descent, Proc. ICML, 2011.

T. Evgeniou, C. A. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods, JMLR, vol.6, pp.615-637, 2005.

H. Kadri, E. Duflos, P. Preux, S. Canu, and M. Davy, Nonlinear functional regression: a functional RKHS approach, Proc. AISTATS, pp.111-125, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00510411

H. Kadri, A. Rabaoui, P. Preux, E. Duflos, and A. Rakotomamonjy, Functional regularized least squares classification with operator-valued kernels, Proc. ICML, 2011.

S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces, Journal of Optimization Theory and Applications, vol.17, issue.1, pp.81-110, 1976.
DOI : 10.1007/BF00933349

A. Kurdila and M. Zabarankin, Convex Functional Analysis, 2005.

G. Lanckriet, N. Cristianini, L. Ghaoui, P. Bartlett, and M. Jordan, Learning the kernel matrix with semi-definite programming, JMLR, vol.5, pp.27-72, 2004.

H. Lian, Nonlinear functional models for functional responses in reproducing kernel hilbert spaces, Canadian Journal of Statistics, vol.137, issue.4, pp.597-606, 2007.
DOI : 10.1002/cjs.5550350410

C. Micchelli and M. Pontil, Learning the kernel function via regularization, JMLR, vol.6, pp.1099-1125, 2005.

C. A. Micchelli and M. Pontil, On Learning Vector-Valued Functions, Neural Computation, vol.1, issue.1, pp.177-204, 2005.
DOI : 10.1109/34.735807

K. J. Miller and G. Schalk, Prediction of finger flexion: 4th brain-computer interface data competition, BCI Competition IV, 2008.

T. Pistohl, T. Ball, A. Schulze-bonhage, A. Aertsen, and C. Mehring, Prediction of arm movement trajectories from ECoG-recordings in humans, Journal of Neuroscience Methods, vol.167, issue.1, pp.105-114, 2008.
DOI : 10.1016/j.jneumeth.2007.10.001

A. Rakotomamonjy, R. Flamary, G. Gasso, and S. Canu, <formula formulatype="inline"><tex Notation="TeX">$\ell_{p}-\ell_{q}$</tex></formula> Penalty for Sparse Linear and Sparse Multiple Kernel Multitask Learning, IEEE Transactions on Neural Networks, vol.22, issue.8, pp.1307-1327, 2011.
DOI : 10.1109/TNN.2011.2157521

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2005.

A. John, B. W. Rice, and . Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves, Journal of the Royal Statistical Society. Series B, vol.53, issue.1, pp.233-243, 1991.

G. Schalk, J. Kubanek, K. J. Miller, N. R. Anderson, E. C. Leuthardt et al., Decoding two-dimensional movement trajectories using electrocorticographic signals in humans, Journal of Neural Engineering, vol.4, issue.3, pp.264-275, 2007.
DOI : 10.1088/1741-2560/4/3/012

G. Schalk, D. J. Mcfarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, BCI2000: A General-Purpose Brain-Computer Interface (BCI) System, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1034-1043, 2004.
DOI : 10.1109/TBME.2004.827072

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines , Regularization, Optimization, and Beyond, 2002.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, Large scale multiple kernel learning, JMLR, vol.7, pp.1531-1565, 2006.

P. Tseng, Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, Journal of Optimization Theory and Applications, vol.109, issue.3, pp.475-494, 2001.
DOI : 10.1023/A:1017501703105