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Underwater acoustic imaging (UWA)



Underwater acoustic imaging: direct problem
I Successive emission sequences, or pings,

indexed by p.
I ep,i : emission at emitter i , ping p.
I mp,j : measurement at receiver j , ping p.
I bk : backscattering coefficient at position k.
I τik + τkj : propagation delay.

Direct problem:

∀p, j , t, mp,j (t) =
∑
k

bk
∑

i

ep,i
(
t − τik − τkj

)
In a matrix form,

m = Φb



Underwater acoustic imaging (inverse) problem

m = Φb

Goal: estimate vector b from measurement vector m and known
matrix Φ (made with delayed versions of the emitted signals).



Classical approach to sonar: beamforming (BF)

Beam at emission (E(θ)) Beam at reception (R(φ))

In a nutshell:

I A beam = focus on a quasi-planar region (θ or φ).

I Forming E or R beams = apply gains/delays to transducers.

I E(θ) beam ∩ R(φ) beam = image point in direction (θ, φ).

I Successive pings = successive beams with varying angles.

I BF imaging = linear estimator b̂BF , Wm for some W.

Limit.: resolution (primary lobe), artifacts (sidelobes), not 3D imaging.



Sparse approaches to sonar: state of the art

Physically-motivated sparsity: most of the points in the 3D space
are not scatterers (air, water).

{
m = Φb
b sparse

⇒ b̂CS = argmin
b
‖b‖1 + µ ‖m− Φb‖22

From:
P. Boufounos, Compressed sensing for over-the-air ultrasound, ICASSP
2011.

But: tests are on simple synthetic data.



Our focus

I Challenges when moving from synthetic to real data.
I New sparse model, validity of the sparse models on real data.



Outline

Problem statement

From synthetic to real data imaging

New sparse models and model validation

Conclusion



From tic to real data: challenges

Processing real data implies:

I Handling a 3D grid with a higher number of points;
I Detecting targets that are not located on the grid points;
I Detecting complex-shape objects rather than a simple pattern

like a square;
I Using non-ideal transducers with directivity patterns and

calibration issues;
I Handling phase issues: propagation, modulation by a carrier

frequency;
I Processing noisy measurements.





Experimental features

General settings

I 64 emission channels
I 64 reception channels
I 128 transducers (E or R

each) along 2 26cm line
arrays

I Carrier frequency: 480 kHz
I Bandwidth: 160 kHz
I Sampling @ 2 MHz

Current choices
I One 64-E line array
I One 64-R line array
I ei ,p , δi ,pe
I e: pure sine+truncated

Gauss envelope (10 periods)
I Target: �52cm wheel,

plywood+sand, 1m away.



Discretization & dimensionality issues
Full tank discretized with step λ: K = 48.106 voxels in the grid.
Measurement length: 13.106 samples.

Problem size

m

 =

 Φ




b


∈ C13.106 ∈ C13.106×48.106 ∈ C48.106

Size reduction: Φ ∈ C13.106×48.106 → Φ ∈ C1,327,104×70,272



OMP: naive → efficient implementation

OMP implementation
Residue initialization: r← m;
Sparse support initialization: Ω← ∅;
for K = 1 to Kmax do

Atom selection: k̂ ← argmaxk |〈ak , r〉|
O (NTNRNP × K )→ O (NT logNe + NRNPK )

Sparse support update: Ω← Ω ∪
{

k̂
}

Sparse representation update: b̂Ω ← Φ+
Ωm (adaptive update)

Residue update: r← m− ΦΩb̂Ω

end for
Output: b̂OMP ← b̂Ω.



Results

BF OMP

Stefanakis et al.,
Sparse Underwater
Acoustic Imaging:
A Case Study,
ICASSP 2012.
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Directional scattering model: principle

In the standard (omnidirectional) scattering model, bk depends on
position k only:

mp,j (t) =
∑
k

bk
∑

i

ep,i
(
t − τik − τkj

)

New directional scattering model: bikj depends on the incoming
direction from emitter i and outgoing direction to receiver j ,

mp,j (t) =
∑
k

∑
i

bikjep,i
(
t − τik − τkj

)



Directional scattering model: physically-motivated

mp,j (t) =
∑
k

∑
i

bikjep,i
(
t − τik − τkj

)

Motivations:
I scatterers are not omnidirectional
I transducers may not be calibrated: bikj = γibkγj



Directional scattering model: validation



Directional scattering model as a sparse model

mp,j (t) =
∑
k

∑
i

bikjep,i
(
t − τik − τkj

)
Sparsity in the omnidirectional scattering model: ∀k ∈ Ωc , bk = 0
Sparsity in the directional scattering model: ∀k ∈ Ωc ,∀i , j , bikj = 0

The resulting model is a mixture of:
I a joint sparse model (Duarte et al., 2005)

due to the dependance on receiver j
I a kind of harmonic sparse model (Gribonval and Bacry, 2003)

due to the dependance on emitter i



Fresh results...

Calibrated beamforming

Calibrated omnidirectional
sparse model

Variant of the directional
sparse models
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Conclusion

I Proposed physically-motivated
sparse models

I Designed tractable algorithms

I Designed a new device
I Got new measurements
I Obtained promising results

Many perspectives

I New models: attenuation/propagation, transducer calibration,
directivity

I New settings: antenna random geometry, random sequences
I Fast algorithms
I Performance assessment

Thanks!

N. Stefanakis, J. Marchal, V. Emiya, N. Bertin, R. Gribonval, P. Cervenka, Sparse Underwater
Acoustic Imaging: A Case Study, submitted to ICASSP 2012.

New papers in preparation
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