
SPIRA: A Network-Friendly Topology Discovery
Protocol

Mohamed Karim Sbaı̈ Mohamad Jaber Chadi Barakat

Telecom Bretagne INRIA - France INRIA - France
mohamed.sbai@telecom-bretagne.eu mohamad.jaber@inria.fr chadi.barakat@inria.fr

Abstract—The Internet being very large and rapidly evolving,
it is always difficult to maintain a real-time view of its topology
without continuously flooding it with a large number of concur-
rent probe packets. Although there have been considerable re-
search efforts to reduce the number of these probes (e.g. reducing
redundancies), the congestion and network overhead they cause
have often been overlooked. In this paper, we propose SPIRA,
a network-friendly protocol to discover the Internet topology.
Our protocol regulates the throughput of probes as a function
of the observed delay and loss measurements. Starting from a
monitoring computer and a set of destinations, a cartography
of intermediate routers (IP addresses and coordinates) and links
between them (interfaces and delays) is deduced in a short time
and with a minimal overhead. We evaluate the performance of
our protocol using real experiments on the PlanetLab testbed.

I. INTRODUCTION

The Internet is a very large network composed of thou-
sands of routers and domains, and millions of end-user com-
puters. Routers in the Internet are connected together with
communication links that have different characteristics and
use a variety of technologies. As the number of routers is
growing exponentially and the characteristics of links (delay,
bandwidth) are continuously changing, the topology of the
Internet is becoming complex, dynamic and quickly growing.
The cartography of this topology is an essential network
monitoring and management data. The cartography of routers
and links helps for instance in understanding the evolution of
the Internet and in elaborating extensive statistics, which are
used in taking management decisions, developing simulation
models, and detecting anomalies. Two main approaches have
been proposed in the literature for Internet topology discovery.
The first one is based on passive measurements by observing
the traffic circulating between nodes or looking into routing
tables (e.g. BGP routing tables [2]). This approach requires
access rights to these measurements and a long time to collect
the required information and process it. It also requires having
many monitoring points distributed across the Internet. Unlike
the first approach that does not inject any extra-packet in the
network, the second one is based on active measurements; it
consists in sending probes from few monitoring nodes, called
vantage points, to a large set of destinations and then in col-
lecting answers and aggregating them. This second approach
is largely used because it does not require access rights to the
core of the Internet. Yet, the complexity of the Internet makes
it very difficult to maintain an up-to-date view of its topology

without continuously flooding its routers and links with a
large number of probe packets. Thus, active measurements
can be aggressive and can steal non negligible bandwidth from
concurrent application traffic. They can even be a source of
congestion on some bottleneck links. Still, active measure-
ments for topology discovery are a promising approach for
its ease of deployment. Classical topology discovery methods
are generally based on the traceroute tool (RFC 1393). A
traceroute run is composed of a sequence of packets that are
sent from a monitor, or vantage point, to an IP destination in
order to discover the IP addresses of the intermediate routers
on the path to this destination and the delay of links between
them. By sending many traceroutes from one monitor to a
large number of destinations, one can obtain the shortest path
tree, composed of routers and links, whose root is the vantage
point and whose leafs are the destinations. After merging
the trees obtained by several vantage points, one can get
a sample of the Internet topology. It is known that during
the active measurement of the topology by a vantage point,
each router of the shortest path tree is discovered as many
times as the number of destinations it connects to. Several
methods have been proposed in the literature to eliminate
this redundancy. For example, the authors in [13] propose
TraceTree an egocentric measurement tool that sends less
packets than Traceroute to discover a tree topology from
one monitor to a set of destinations. Although these methods
reduce the redundancies, they neglect the impact of sending
simultaneously many probe packets on the network congestion
level. In fact, on one hand, if one increases the probing rate to
save topology discovery time, he will increase the load on the
network and may cause congestion on some of its bottleneck
links. The probing traffic can even become aggressive towards
the concurrent data traffic, which may distort the measurement
results themselves (e.g. link delay measurements). On the other
hand, if the probing rate is very low, it will take the user a
long time to discover the topology of the Internet, with the
risk of having the characteristics of this topology changing in
the meantime. Finding the right rate at which to send probe
packets has been largely disregarded by the measurement
community, and is the main objective of our work.

Existing tools [4], [12] mostly propose to fix the rate
of traceroutes to some value judged not aggressive for the
network, and hence sacrifice probing time to avoid congestion.
This rate is not adapted as a function of network conditions.
Other works, e.g. [10], propose to balance the load of probes



between destinations in order not to focus on the same network
area at the same time. This technique is efficient in reducing
the aggressiveness of the measurement traffic close to the
destinations, however, when the bottleneck is close to the
vantage point, which is most probably the case, the aggregate
probe traffic still needs to be controlled as a function of
network conditions to avoid congestion and to fully utilize
the available resources. In this paper, we propose SPIRA, a
network-friendly topology discovery protocol. Unlike existing
methods, our protocol adapts the rate of traceroute probes to
the observed packet loss rate and measured packet delay. The
objective is to avoid network congestion and to fully utilize
the available resources, while being friendly with competing
traffic. In its current version, SPIRA aims at discovering all
routers and links along the shortest path tree from a single
vantage point to a preconfigured set of destinations. Its exten-
sion to the case of many vantage points will be the subject of a
future research. SPIRA runs at the vantage point and requires
no collaboration from the destinations, apart from replying to
probe packets. It maintains a set of nodes to probe. This set
starts initially with the destinations then gets enlarged as long
as new routers are known to exist. Once a node is probed and
discovered, it is removed from the list. Note that a router can
be easily probed even if we do not know its IP address, it
is enough to know one of the destinations downstream it and
the number of hops separating the vantage point from this
router. The aim of the probing of this router becomes then
the discovery of its IP address and the measurement of the
delay between it and the vantage point. SPIRA discovers the
presence of routers by sending ICMP echo request packets [8]
to destinations and measuring the number of hops. When the
number of hops separating the vantage point from a destination
is obtained, a number of routers equal to this number of
hops is added to the list of nodes to probe. The addresses of
routers are first unknown but as said before, they can still be
recognized by the IP address of the downstream destination
and the number of hops. Later, when a probe is sent to a
router, its IP address is discovered together with the delay
separating it from the vantage point. This allows to infer the
delay between this discovered router and the next hop router
towards the destination. If the IP address of a discovered
router has been already seen and attributed to another node
of the topology, the two nodes are merged together in the
measured topology. All routers, discovered and undiscovered,
connecting the vantage point to these two merged routers
are considered as being the same. In this way, we ensure
that redundancies are reduced to the minimum. Note that
since the traceroutes are sent from the same vantage point,
routers will respond with the same IP address. In case they
reply with different IP addresses, alias resolution techniques
as the ones proposed in [10], [11] have to be used. The
main contribution of SPIRA is the implementation of a rate
control algorithm for probing the list of nodes-to-probe. This
algorithm is based on a sliding window that increases and
shrinks as a function of network conditions, and that decides
on the number of nodes the vantage point can probe at any time
before getting any reply. Once a reply is received, the window
slides and a new echo request packet is sent. We implement

our algorithm in a way inspired from TCP algorithms [1]
for two main reasons. First, TCP algorithms have proven
their efficiency in controlling the congestion in the Internet.
Second, we want SPIRA to be friendly with concurrent traffic
while efficiently using the available bandwidth in network
bottleneck links. This way, one can use SPIRA to discover
the topology of the Internet seen by a vantage point in a
short time while yielding a minimum overhead on the network
and being friendly with other users’ application traffic. Our
experience with SPIRA [9] tells us that it can perform a better
congestion control if nodes to probe (destinations and routers)
are ranked in a way that respects the Internet topology. A
good ranking is the one that clusters together nodes located
behind the same bottleneck link. Such clustering smooths
the variations of SPIRA congestion window and provides a
better rate adaptation. Different information can be used to
cluster nodes together as the BGP information, the domain
names, the geographical positions, etc. We propose in this
work the use of Internet coordinate systems. Vivaldi [5] a
distributed coordinates system is used for the calculation of
these coordinates. Note that SPIRA can work without this
clustering, and hence without coordinates. The only drawback
is that its performance gets reduced. When the coordinates
of destinations are available, we propose a complementary
module that computes, for free, the coordinates of the routers
in the topology as well. In fact, we compute the coordinates
of routers by incrementally minimizing the error between
measured inter-router delays and delays computed with the
virtual coordinates. We implemented SPIRA using C++ under
Linux and we ran extensive experiments on the PlanetLab
platform [7] to evaluate the performance of the solution.
The results confirm that our protocol can considerably reduce
the number of sent packets compared to simple methods.
Furthermore, the results illustrate the benefits of using SPIRA
congestion control in reducing the discovery time and in
minimizing the overhead on the network. In the next section,
we describe the probing mechanism of our solution. The
congestion control part of SPIRA is described in Section III. In
Section IV, we explain how we use coordinates of destinations
to enhance the congestion control in SPIRA and to derive the
coordinates of routers. Section V summarizes our experimental
set-up and obtained results. Section VI concludes the paper
and gives some future research directions.

II. SPIRA PROBING MODULE

The probing module is the most important module in SPIRA
and is installed in the vantage point. It is a sort of collector that
probes the nodes of the topology and analyses their answers.
SPIRA maintains a list of nodes to probe that keeps evolving
during the session. We call it the probing list in the sequel.
Nodes in this list, which are either routers or IP destination
hosts, are always ranked according to the clustering algorithm
to be presented in Section IV. Initially, SPIRA is provided
with the IP addresses of a set of destinations. During the
topology discovery session, it discovers the presence of routers
and adds them to the probing list. To probe a node and
discover its delay, number of hops and IP address, the monitor



(or vantage point) sends an ICMP echo request packet [8]
including in its payload the time by which the packet has been
sent. We call this field of the probe payload the TimeStamp.
When receiving such a packet, the probed node responds
by an ICMP echo reply packet including in its payload the
header of the probe packet. This report from the probed node
allows the vantage point (i) to discover the IP address of
the probed node, (ii) to know the TTL of the ICMP echo
request packet when it arrived to its destination, which allows
to calculate the hop count, and (iii) to extract the TimeStamp of
the corresponding probe packet, which allows to identify the
probe packet and to measure the round-trip time. Probed nodes
can be destinations or unknown intermediate routers. When
receiving an answer from a destination, the monitor discovers
the number of intermediate routers existing on the path to
this destination. Since the monitor does not yet know the IP
addresses of these routers, it recognizes each router by the
couple (destination IP, hop count). These routers are added to
the probing list and ranked according to the clustering module
described next. When the turn of these routers comes, they are
probed and their identity discovered. To probe an intermediate
router in the absence of its IP address, the monitor cannot use
an ICMP echo request packet destined directly to this router.
Instead, for an intermediate router located at h hops from the
vantage point and on the path to some known IP destination,
the monitor sends an ordinary IP packet with a TTL equal to h
to this destination, where the first bytes of the payload contains
the TimeStamp. When the packet reaches the target router,
its TTL becomes equal to zero. Here, the router sends an
ICMP Time Exceeded message to the monitor. This allows the
monitor to discover the IP address of the router and to compute
the delay to it. By deduction from previous measurements, it
can also compute the delay between it and the downstream
router towards the destination. If the newly discovered router
has already been visited by the probing module (IP address
already seen), the monitor eliminates future redundancies by
merging the remaining routers that exist on the path between
the vantage point and this router with those of the already
visited router. This shortens considerably the probing list and
minimizes the number of sent packets.

III. PROBING RATE CONTROL AND CONGESTION
AVOIDANCE

SPIRA probing rate control is designed with the main
purpose of being network friendly. The rate at which probes
are sent is adapted to the observed packet loss rate and delay.
Inspired from our previous work on information collection [9],
we implement a probe-clocked window-based congestion con-
trol similar to the one of TCP [1]. The monitor (or vantage
point) maintains one variable cwnd indicating the congestion
window size in number of probes. cwnd models the maximum
number of probes the monitor can inject into the network
without receiving any answer. SPIRA adapts cwnd to the
observed delay and loss rate of probes and proposes two
algorithms for that:

• Slow Start: The monitor begins the session by setting cwnd
to an initial integer value RS. It thus sends RS probes to

RS different IP destinations. After some time, ICMP answers
start to arrive, some of them arrives on time and others are
delayed or lost. A timely answer indicates that the network is
not congested and that the monitor can further increase cwnd.
In Slow Start, the congestion window is increased as follows
upon the reception of an ICMP reply: cwnd = cwnd+1. This
yields a doubling of the probing rate for every cwnd probes or
every Round-Trip Time (RTT). The window continues growing
until network congestion is detected. Here, cwnd is divided by
2 and the monitor enters a Congestion Avoidance phase.

• Congestion Avoidance: It represents the steady state of our
protocol. During it, the monitor increases slowly cwnd to probe
the network for more capacity. As a linear increase of cwnd is
aimed, upon each timely answer, cwnd is increased as follows:
cwnd = cwnd+ RS

cwnd . When congestion is detected, cwnd is
divided by 2 and a new Congestion Avoidance phase is started.
Up to now, we have not explained how the monitor detects
network congestion. To obtain this information, SPIRA main-
tains a timer that is set to an estimation of the RTT. This timer
is scheduled at the beginning of the session and rescheduled
every time it expires. Its value is updated as a weighted-
moving average of the measured RTT between the vantage
point and the probed nodes, augmented by four times the mean
deviation of the RTT as in TCP. An answer is considered
as being lost if it does not arrive before the expiration of
the timer that follows the transmission of the probe. SPIRA
calculates then the loss rate of probes over time windows equal
to the timer value. If the loss rate becomes greater than some
preconfigured threshold CT, the network is supposed to be
congested and the window reduction procedure is invoked.
When the loss rate of probes reaches a high value close to
one SCT, the network is supposed to be severely congested,
the window is closed to RS probes and slow start is invoked as
in TCP. Using this mechanism, the rate of probes is adapted
to network congestion and the probing traffic is friendly with
other concurrent Internet traffic. We are aware that losing
probes can mean that there router has disabled ICMP packets.
That is why, we select CT and SCT slightly higher to ones we
selected for data collection in our protocol TICP [9].

IV. NODE CLUSTERING AND COORDINATE CALCULATION

A better congestion control can be obtained if nodes to
probe are ranked in a way to respect the network topology. To
reach this finality, we propose a complementary module that
supposes that the monitor is provided with the coordinates
of destinations. The coordinates of routers are not needed,
they are calculated on the fly and provided for free by our
protocol. The coordinates of destinations can be obtained
thanks to an Internet coordinate system like Vivaldi [5]. This
is a decentralized, low overhead, adaptive synthetic coordinate
system, that computes coordinates able to predict network
latencies with low error. We choose Vivaldi as it minimizes the
number of measurements needed to compute coordinates and
it is a distributed and incremental approach that converges in
a reasonable time. One can still use other information to rank
nodes to probe (e.g. domain names, AS number, geographical
location), or not use any topology-aware ranking. The cost to



Fig. 1: Node clustering and probing order

pay is a less efficient congestion control. Following the dis-
tributed version of Vivaldi, each node maintains an estimation
of its own coordinates and is connected to a set of other nodes.
Periodically, it picks up a random node among its neighbors
and asks it for its coordinate estimation. Then, it computes
the Euclidean distance between itself and this selected node
and compares it to the measured network delay. Based on this
comparison, the node can decide on the shift to perform in
its coordinates to reduce the estimation error. All nodes keep
applying this algorithm in a decentralized manner until the
whole system stabilizes. SPIRA simply uses the coordinates of
destinations calculated by Vivaldi and is not intended to update
them. However, given these coordinates, SPIRA calculates the
coordinates of intermediate routers by simulating the Vivaldi
algorithm for each router. Vivaldi simulation for routers is
performed at the vantage point. The Vivaldi simulator runs
(fast) in parallel and in loop over the delay matrix of routers
to compute their coordinates and keep them updated. The
latter matrix includes all known and estimated delays among
routers, and is updated every time a new measurement is done.
The initial coordinates of routers are taken as if they are
equidistant on the path from the monitor to the downstream
destination based on the measured number of hops. In case
of node merging (because they are concluded to model the
same router), we take the average of coordinates of the merged
nodes. This way we guarantee that coordinates of routers
are altogether updated upon each new information and this
is for the best estimation of their coordinates. The main
advantage of using coordinates for destinations and routers
is that our probing module can order them in a way to
respect the network topology and can hence probe them in
this order. For an efficient ranking, we cluster the nodes in the
probing list in a geometric grid. A cluster is a square-zone in
the Vivaldi geometric space. The central square contains the
vantage point. The coordinates of nodes decide on the cluster
to which they belong. The monitor crosses then the nodes in
a spiral way from the farthest to the nearest. Once a spiral
ends, another spiral starts until all the shortest path tree is
discovered. Figure 1 shows an example of a clustered space.
As illustrated in [9], this clustering ameliorates the estimation
of RTT used for scheduling the timer of the congestion control
mechanism. It helps SPIRA to experience a smooth variation
of network conditions resulting in a better congestion control.
Furthermore, and as a result of using the coordinates of
destinations, we get for free the coordinates of routers which
are very useful to draw the Internet topology on a 2D plane

and to identify the location of routers on it.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of SPIRA by
running real experiments on the PlanetLab testbed [7]. We
mainly show the gain in terms of probing delay and number
of probes.

A. Experimental set-up

We implement SPIRA using the C++ programming lan-
guage. For now we target vantage points that use the
Unix/Linux operating system. Our package is composed of
two main modules running simultaneously and communicating
together: the probing module and the Vivaldi simulator module.
A computer located in our laboratory at INRIA is used as
vantage point or monitor, and 500 hosts of the PlanetLab
platform [7] are used as destinations. For scenarios where
coordinates of hosts are needed, we run the classical Vivaldi
[5] algorithm between the PlanetLab nodes. When the stable
regime of Vivaldi is reached, the resulting coordinates are
provided in an XML file to the monitor before the beginning of
the probing session. For the clustering algorithm, the side of a
cluster square is taken equal to 100ms, which was proven in [9]
to be the most efficient value for PlanetLab. In the following
paragraphs and if not explicitly mentioned, coordinates are
supposed to be used for the congestion control. It is only
in paragraph V-D that we conduct some experiments not
using the coordinates mainly for comparison purposes. Results
presented in this paper are averages on several runs conducted
at different periods of the day and different days from 2007
to 2010.

B. First results

We run a first set of experiments to study the resulting topol-
ogy between our machine at INRIA and the other PlanetLab
nodes. Figure 2 shows the number of discovered routers as a
function of the number of destinations. Clearly, the number
of routers increases when the number of destinations grows.
After some number of destinations, the increase in the number
of routers slows down. Indeed, the paths to these additional
destinations mostly share the same routers with the already
probed paths. To discover the full topological tree from a
monitor, one does not need to probe an infinity of destinations
but only needs to probe a sufficient number of them that is
enough to sample intermediate routers. The following step is
to verify whether we eliminate intra-monitor redundancies (i.e.
routers that are probes several times by the same monitor).
We draw in Figure 3 a comparison of the number of probe
packets between a topology discovery mechanism using simple
traceroutes and our probing solution. One can easily notice
that the number of packets sent increases exponentially with
the number of destinations for the basic traceroute method.
However, when our protocol is used, the number of sent
packets is always close to the number of routers. Hence, we
conclude that SPIRA presents a good solution for the intra-
monitor redundancy problem. In the following paragraphs,



Fig. 2: Routers Vs. Destinations

we go one step further in evaluating the performance of
our congestion control mechanism and in studying the gain
brought by coordinates.

C. Evaluation of SPIRA congestion control

To evaluate the performance of our congestion control
mechanism, we compare it to a set of experiments running a
simple version of SPIRA that implements a fixed size conges-
tion window. At the opposite of SPIRA, these experiments are
supposed to run a fixed probing rate independent of network
conditions (probe loss rate and delay). We study for different
sizes of the window both the overhead and the probing speed,
and we compare it to our adaptive method. In Figure 4 , we
show the number of probes sent as a function of the number of
destinations for three values of cwnd compared to our adaptive
protocol. Fixing the congestion window can be seen as a mimic
of a behavior equivalent to standard rate-limiting as done, for
instance, by author in [12]. We consider a small, a medium
and a large congestion window. This corresponds respectively
to cwnd equal to 2, 10 and 20 probes. Having a small window
means that the probing rate is very low. In this case, the
network congestion is negligible and probes are rarely lost
leading to the smallest number of sent packets. However, for
a medium and large fixed window, the monitor is continuously
probing nodes with a high rate. In this case, the congestion
and the overhead are so important that the monitor retransmit
many packets to probe nodes whose initial packets were lost.
SPIRA, having an adaptive congestion window, can slow down
or increase the probing rate to fully utilize the available
bandwidth without overloading the network. In this way, we
can reduce considerably the number of retransmissions. Note
how the number of probe packets sent by SPIRA follows the
number of discovered routers (Figure 2) and is very close to
that of a small size window. Figure 5 illustrates the above
observations by plotting the number of probes as a function of
cwnd for 200 PlanetLab destinations. The change in the slope
at a congestion window equal to 10 for the fixed window case
comes from the fact that probed destinations in each window
becomes more and more spread leading to more available
bandwidth. As we will see later, this will be equally reflected
by the probing time. Although a small congestion window
yields the minimum overhead, one can expect that it has
the longest probing session duration. Using a large window
shortens this duration, but this is far from the optimal because
of the number of lost probes.

Fig. 3: Probes Vs. Destinations

Fig. 4: Probes Vs. Destinations

We study in Figure 6 the probing session duration for the
same values of cwnd as before and we compare the results to
our adaptive method. One can observe that the session duration
for a small window is indeed the longest. However, for large
and medium windows, the session durations are shorter as the
probing rates are higher. Nevertheless, our probing method
has the shortest probing time because it is able to find the
optimal speed of sending probes without loosing many of
them. Figure 7 proves this observation by plotting the probing
session duration as a function of the congestion window cwnd.
From the above results, we can conclude that our protocol
SPIRA is a network-friendly and efficient solution for topology
mapping at the router level. It engenders a negligible overhead
on the network while having the shortest probing session.

D. Benefits of using coordinates

In this paragraph, we study whether knowing the coor-
dinates of destinations and computing those of intermediate
routers enhances the performance of the congestion control
mechanism of SPIRA. In case these coordinates are used,
the destinations in the probing list are ordered and clustered
following their coordinates. In Figure 8, we plot the number
of probes as a function of the number of destinations for our
protocol with and without the clustering of nodes. The figure
clearly shows that the overhead is lower for the version using
coordinates since it yields less congestion and consequently
less probe packets. The usage of Vivaldi does not increase
the number of probes sent in the network since the topology
discovery measurements are used by the Vivaldi simulator
module to compute router coordinates.The coordinates of
destinations are supposed to be stable and constant during a
probing session.



Fig. 5: Probes Vs. Congestion window

Fig. 6: Probing time Vs. Destinations

Considering the probing time, Figure 9 shows that using
coordinates yields the shortest session. This can be explained
by the fact that the probing rate is adapted in an efficient way
to the available bandwidth without causing a lot of delayed or
lost packets.

VI. CONCLUSIONS AND PERSPECTIVES

To infer the Internet topology, one may need to send a large
amount of probes and hence cause an important overhead on
the network. In this paper, we propose SPIRA, a network-
friendly topology discovery protocol that adapts the probing
rate to the observed probe losses and delays. When our
protocol is provided with coordinates of a set of hosts, it
can also compute the coordinates of the routers in the same
geometric space. Our future work will focus on eliminating
the inter-monitor redundancies by supposing some cooperation
between monitors. The extension of SPIRA to topologies at
the Autonomous System level is also an interesting research
direction.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC
2581 (Proposed Standard), Apr. 1999. Obsoleted by RFC 5681, updated
by RFC 3390.

[2] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan. Topology
inference from BGP routing dynamics. In Proceedings of the ACM
SIGCOMM Internet Measurement Workshop, Marseille, France, Nov.
2002.

[3] P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal
utility of network topology measurements. In Proceedings of the ACM
SIGCOMM Internet Measurement Workshop, pages 5–17, Nov. 2001.

[4] Cooperative Association for Internet Data Analysis (CAIDA). The Skitter
project. http://www.caida.org/tools/measurement/skitter/.

[5] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris. Vivaldi: a decentralized
network coordinate system. In Proceedings of ACM SIGCOMM, pages
15–26, 2004.

Fig. 7: Probing time Vs. Congestion window

Fig. 8: Impact of clustering on number of probes

Fig. 9: Impact of clustering on probing time

[6] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Deployment of an
algorithm for large-scale topology discovery. In IEEE Journal on Selected
Areas in Communications, 24(12):2210–2220, 2006.

[7] L. Peterson, S. Muir, T. Roscoe, and A. Klingaman. PlanetLab Ar-
chitecture: An Overview. Technical Report PDN–06–031, PlanetLab
Consortium, May 2006.

[8] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), Sept.
1981. Updated by RFCs 950, 4884.

[9] M. K. Sbai and C. Barakat. Experiences on enhancing data collection in
large networks. In Computer Networks, 53(7):1073–1086, May 2009.

[10] B. Augustin, X. Cuvellier, B. Orgogozo and F. Viger Avoiding
traceroute anonmalies with Paris traceroute. In IMC, October 2006

[11] A. Bender, R. Sherwood and N. Spring Fixing Allys growing pains
with velocity modelling In IMC, 2008

[12] M. Luckie Scamper: a Scalable and Extensible Packet Prober for Active
Measurement of the Internet In Internet Measurement Conference, 2010

[13] M. Latapy , C. Magnien and F. Oudraogo A Rader for the Internet In
International Workshop on Analysis of Dynamic Networks, 2008

[14] C. Launois , S. Uhlig and O. Bonaventure Scalable Route Selection
for IPv6 Multihomed Sites In Networking, 2005


