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Set-Membership Estimation Improvement
Applying HOSM Differentiators

Denis Efimov, Leonid Fridman, Tarek Raïssi, Ali Zolghadri

Abstract—This work is devoted to design of interval observers
for a class of Linear-Parameter-Varying (LPV) systems. Apply-
ing High Order Sliding Mode (HOSM) techniques it is possible
to decrease the initial level of uncertainty in the system, which
leads to improvement of set-membership estimates generated
by an interval observer. In addition, it is shown that HOSM
techniques may relax the applicability conditions of the inter-
val observer design methods. The efficiency of the proposed
approach is demonstrated through computer simulations.

I. INTRODUCTION

The problem of state estimation for nonlinear systems is
very challenging and application important [4], [10], [18]. A
complete palette of solutions exists for linear systems. In the
nonlinear case, the most solutions are based on representation
of the estimated system in a canonical form (frequently,
partially linear), then particular approaches are available. In
general case the LPV equivalent representation of nonlinear
systems was found useful [15], [22], [25]. The basic idea is
to replace the nonlinear complexity of the original system by
an enlarged parametric variation in the LPV representation,
which may simplify the observer design. There are several
approaches to design observers for LPV systems [3], [11],
[12], [17]. The present paper belongs to the framework
of interval observers [3], [17]. That approach has been
recently extended in [21] to nonlinear systems using LPV
representations with known minorant and majorant matrices,
and in [20] for observable nonlinear systems relaxing require-
ment on cooperativity (monotonicity) of the original system
dynamics. The interval observers propagate the parameter
uncertainty in the length of interval of the state estimation.
The length of interval determines the estimation accuracy of
the approach. This is why the uncertainty decreasing is very
important for improvement of the interval (set-membership)
estimation performance, which is the goal of the present
work.

The HOSM techniques are very popular for design of
observers for linear and nonlinear systems [1], [2], [5], [7],
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[23]. The sliding modes ensure a finite time of estimation
error convergence to zero and complete insensitivity to a
matched uncertainty [6], [16], [19]. Mainly these advances
can be achieved under assumption that the systems is strongly
observable or strongly detectable [2].

The objective of this work is to combine both approaches
(the interval observers and the HOSM techniques) in order
to improve accuracy of estimation achieved by the inter-
val observers. Under a transformation of coordinates, an
LPV system has a strongly observable subsystem. Applying
HOSM differentiation approach it is possible to estimate the
state and the state derivative for this subsystem, which can
be further used for improved evaluation of the input and the
parameter uncertainty in the rest part of the system. This
combination improves the accuracy of the interval estimation.
Additionally a relaxation of some applicability constraints
usual for interval estimation can be obtained.

The paper is organized as follows. The system of interest,
the basic facts from the theories of LPV systems, interval
estimation and HOSM techniques are given in Section 2.
The main result is described in Section 3. An example of
computer simulation is presented in Section 4.

II. PRELIMINARIES

Euclidean norm for a vector x ∈ Rn will be denoted as |x|,
and for a measurable and locally essentially bounded input
u : R+ → R (R+ = {τ ∈ R : τ ≥ 0}) the symbol ||u||[t0,t1]
denotes its L∞ norm:

||u||[t0,t1] = ess sup{|u(t)|, t ∈ [t0, t1]},

if t1 = +∞ then we will simply write ||u||. Denote by L∞
the set of all inputs u satisfying ||u|| <∞, and the sequence
of integers 1, ..., k by 1, k.

In this work we consider the following LPV representation
of a nonlinear system:

ẋ = A(θ(t))x+B(θ(t))u(t), (1)
y = Cx, ψ(t) = y + v(t),

where x ∈ Rn, u ∈ Rm, y ∈ Rp, v ∈ Rp are the state, the
input, the output and the measurement noise of the system
(1), ψ(t) is the signal available for on-line measurements;
θ ∈ Θ ⊂ Rq is the scheduling parameter vector, the set
Θ is known; the matrix functions A : Θ → Rn×n and
B : Θ→ Rn×m are given. The instant values of u(t) ∈ L∞,
v(t) ∈ L∞ and θ(t) ∈ L∞ are not known. Almost all



existent approaches assume that the vector θ is accessible for
measurements, in the following this assumption is relaxed,
and only the domain Θ is given.

Assumption 1. ||x|| ≤ X , ||u|| ≤ U and ||v|| ≤ V , the
bounds X > 0, U > 0 and V > 0 are given.

Boundedness of the state x and the inputs u, v is a standard
assumption in the estimation theory. Under Assumption 1 the
signal ψ(t) is also bounded.

A. HOSM differentiation

Taking the s-th time differentiable output y(t) of the
system (1), its derivatives can be estimated by the HOSM
differentiator [13], [14] based on the noisy measurements
ψ(t):

q̇0 = ν0, ν0 = −λ0|q0 − ψ(t)|s/s+1sign[q0 − ψ(t)] + q1;

q̇i = νi, i = 1, s− 1, (2)

νi = −λi|qi − νi−1|
s−i/s−i+1sign[qi − νi−1] + qi+1;

q̇s = −λssign[qs − νs−1],

where λk, k = 0, s are positive parameters to be tuned.

Theorem 1. [14] Let y : R+ → R be s-th times continuously
differentiable and v(t) ∈ L∞ in (1), then there exist 0 ≤ T <
+∞ and some constants µk > 0, k = 0, s (dependent on λk,
k = 0, s only) such that in (2) for all t ≥ T :

|qk(t)− y(k)(t)| ≤ µk||v||
s−k+1
s+1 , k = 0, s.

In particular, this result means that if v(t) ≡ 0 for all
t ≥ 0, then the differentiator (2) ensures the exact estimation
of derivatives in a finite time. Application of HOSM dif-
ferentiators for unknown input estimation and compensation
in linear systems has been studied in [2], an extension to
nonlinear systems is presented in [9].

B. Interval estimation

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n,
the relations x1 ≤ x2 and A1 ≤ A2 are understood
elementwise. Given a matrix A ∈ Rm×n or a vector x ∈ Rn,
define A+ = max{0, A}, A− = A+−A or x+ = max{0, x},
x− = x+ − x respectively.

Lemma 1. Let x ∈ Rn be a vector variable, x ≤ x ≤ x for
some x, x ∈ Rn.

1) If A ∈ Rm×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (3)

2) If A ∈ Rm×n is a matrix variable,A ≤ A ≤ A for
some A, A ∈ Rm×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax ≤ (4)

A
+
x+ −A+x− −A−x+ +A−x−.

A matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues
have negative real parts, it is called Metzler if all its elements

outside the main diagonal are not negative. Any solution of
the linear system

ẋ = Ax+ ω(t), ω : R+ → Rn
+,

with x ∈ Rn and a Metzler matrix A, is elementwise
nonnegative for all t ≥ 0 provided that x(0) ≥ 0 [24]. Such
dynamical systems are called cooperative (monotone) [24].

III. MAIN RESULT

For brevity of presentation the case p = 1 is considered
only (the case of vector measurements can be treated simi-
larly). We will need the following assumptions.

Assumption 2. For all θ ∈ Θ, there is an invertible matrix
S(θ) ∈ Rn×n such that the system (1) can be represented as
follows:

x = S(θ)

[
z1
z2

]
, y = cTz1,

dim{z1} = n1, dim{z2} = n2, n1 + n2 = n,

ż1 = A0z1 + b0[a11(θ)Tz1 + a12(θ)Tz2 + b1(θ)Tu], (5)
ż2 = A21(θ)z1 +A22(θ)z2 +B2(θ)u, (6)

where

c = [1 0...0]T, b0 = [0...0 1]T,

A0 =


0 1...0 0
...

. . .
...

0 0...0 1
0 0...0 0


is a canonical representation, the vector functions a11(θ),
a12(θ), b1(θ) and the matrix functions A21(θ), A22(θ), B2(θ)
have corresponding dimensions.

It is worth to stress that for n1 = 1 this assumption is
always true (at least the output coordinate can be chosen in
the vector z1).

Assumption 3. Let there exist a vector function f(θ) ∈ Rn2

such that

[A22(θ)z2 +B2(θ)u]− f(θ)[a12(θ)Tz2

+b1(θ)Tu] = ∆1z2 + ∆2(θ)u

for some Hurwitz matrix ∆1 ∈ Rn2×n2 and ∆2 : Θ →
Rn2×m.

Assumption 4. There exists a matrix P ∈ Rn2×n2 such that
the matrix D = P−1∆1P is Hurwitz and Metzler (H&M).

Assumption 2 states that there exists a transformation
coordinates, which represents the system (1) as a pair of
interconnected subsystems (5) and (6). The subsystem (5) is
strongly observable since it has the canonical representation
c, A0, b0 (the conditions of existence of such a transformation
for linear time-invariant systems are analyzed in [2]). How-
ever, the system is not necessarily detectable (the dynamics



of (1) could be non-minimum phase as in [23]) since there
is no requirement on stability of the matrix function A22(θ).
This relaxation may be important for application of interval
observer design method for estimation in uncertain non-
minimum phase systems. Instead, Assumption 3 states that
the matrix ∆1 = A22(θ)−f(θ)a12(θ)T is Hurwitz (the matrix
A22(θ) can be stabilized by an output feedback, or the pair of
matrices (A22(θ), a12(θ)T) is observable for all θ ∈ Θ) and
independent in θ. Under mild conditions of the main result
in [20], in this case there is a matrix P ∈ Rn2×n2 such that
D is H&M, as it is stated in Assumption 4.

Under these assumptions it is proposed to use the differ-
entiator (2) to estimate the state z1 and its derivative ż1,
then from (5) we get an improved estimate on the signal
a12(θ)Tz2 + b1(θ)Tu, which can be applied for design of an
interval observer for the system (6) in the new coordinates
r = P−1z2. Let us consider these steps consequently.

Under Assumption 2 the output y of the system (5)
has n1 derivatives. Therefore according to Theorem 1 and
Assumption 1, there exist parameters λk, k = 0, n1 in (2)
with s = n1 and T > 0 such that for all t ≥ T :

|qk(t)− y(k)(t)| ≤ µkV
n1−k+1
n1+1 , k = 0, n1

for some constant µk, k = 0, n1. Thus z1(t) = ẑ1(t) +
e1(t) and ż1,n1(t) = qn1(t) + e2(t) for all t ≥ T , where
ẑ1,i(t) = qi−1(t) and |e1,i(t)| ≤ µi−1V

n1−i+2
n1+1 for i = 1, n1,

|e2(t)| ≤ µn1
V

1
n1+1 . The variables ẑ1 and qn1

are available
for a designer, the errors e1 and e2 are upper bounded by
some functions of V . Substitution of these variables into the
last equation of (5) gives:

qn1
+ e2 = a11(θ)T[ẑ1 + e1] + a12(θ)Tz2 + b1(θ)Tu,

or equivalently

a12(θ)Tz2 + b1(θ)Tu = qn1 + e2 − a11(θ)T[ẑ1 + e1].

Substituting this equality in the differential equation (6) we
obtain

ż2 = ∆1z2 + [A21(θ)− f(θ)a11(θ)T](ẑ1 + e1) + (7)
f(θ)(qn1

+ e2) + ∆2(θ)u,

which is a stable system according to Assumption 3.
Applying the transformation of coordinates r = P−1z2,

the system (7) can be rewritten as follows

ṙ = Dr +G1(θ)(ẑ1 + e1) + (8)
G2(θ)(qn1 + e2) +G3(θ)u,

where G1(θ) = P−1[A21(θ) − f(θ)a11(θ)T], G2(θ) =
P−1f(θ) and G3(θ) = P−1∆2(θ). The dynamics of (8)
is cooperative and stable, and all uncertain functions or
variables in the right hand side of (8) belong to an interval

for θ ∈ Θ:

Gj ≤ Gj(θ) ≤ Gj , j = 1, 3; |u(t)| ≤ U ;

|e1,i(t)| ≤ e1,i = µi−1V
n1−i+2
n1+1 , i = 1, n1;

|e2(t)| ≤ e2 = µn1
V

1
n1+1

for all t ≥ T , where the matrices Gj , Gj , j = 1, 3 are known.
Therefore the following interval observer can be synthesized
for (8):

ṙ = Dr + (G1
+ −G1

−
)ẑ+1 + (G1

− −G1
+)ẑ−1 + (9)

(G1
+

+G1
−)e1 + (G2

+ −G2
−

)q+n1
+

(G2
− −G2

+)q−n1
+ (G2

+
+G2

−)e2 +

(G3
+

+G3
−)U,

ṙ = Dr + (G1
+ −G1

−)ẑ+1 + (G1
− −G1

+
)ẑ−1 −(10)

(G1
+

+G1
−)e1 + (G2

+ −G2
−)q+n1

+

(G2
− −G2

+
)q−n1
− (G2

+
+G2

−)e2 −

(G3
+

+G3
−)U,

the properties (3), (4) have been used to calculate (9), (10).
Introducing the interval estimation errors ε = r−r, ε = r−r,
we obtain

ε̇ = Dε+ ε, ε̇ = Dε+ ε,

where ε = (G1
+ − G1

−
)ẑ+1 + (G1

− − G1
+)ẑ−1 + (G1

+
+

G1
−)e1 + (G2

+ −G2
−

)q+n1
+ (G2

− −G2
+)q−n1

+ (G2
+

+

G2
−)e2+(G3

+
+G3

−)U−G1(θ)(ẑ1+e1)−G2(qn1
+e2)−

G3(θ)u, ε = G1(θ)(ẑ1 + e1) + G2(qn1
+ e2) + G3(θ)u −

(G1
+ − G1

−)ẑ+1 − (G1
− − G1

+
)ẑ−1 + (G1

+
+ G1

−)e1 +

(G2
+ −G2

−)q+n1
+ (G2

− −G2
+

)q−n1
− (G2

+
+G2

−)e2 +

(G3
+

+ G3
−)U . It is an arithmetic exercise to verify that

under assumptions 1 and 2 (and the result of Theorem 1) the
residual terms ε and ε are elementwise positive and bounded.
Then using the results of monotone system theory [24] we
prove that for all t ≥ T

r(t) ≤ r(t) ≤ r(t)
and the estimates r(t), r(t) are bounded, provided that

r(T ) ≤ r(T ) ≤ r(T ). (11)

The former relation for the initial conditions can be easily
satisfied since ||x|| ≤ X under Assumption 1. Using the
property (3) we get for all t ≥ T :

z2(t) ≤ z2(t) = Pr(t) ≤ z2(t),

z2(t) = P+r(t)− P−r(t), z2(t) = P+r(t)− P−r(t);
z1(t) ≤ z1(t) ≤ z1(t),

z1(t) = ẑ1(t)− e1, z1(t) = ẑ1(t) + e1.

Defining z = [zT
1 z

T
2]T, z = [zT

1 z
T
2]Tand using (4) we finally

formulate the interval estimates for the state x:

S+z+ − S+
z− − S−z+ + S

−
z− ≤ x = S(θ)z ≤ (12)

S
+
z+ − S+z− − S−z+ + S−z−,



which is satisfied for all t ≥ T . Thus we have the following
result.

Theorem 2. Let assumptions 1, 2, 3, 4 hold for the system
(1). Then there exist the set of parameters λk, k = 0, n1
in (2) and a constant T > 0 such that for all t ≥ T the
interval estimate (12) is true, provided that the condition
(11) is satisfied for (9), (10).

Remark 1. The assumptions 3 and 4 can be replaced with
the following one: there exists a vector function f(θ) ∈ Rn2

such that

[A22(θ)z2 +B2(θ)u]− f(θ)[a12(θ)Tz2

+b1(θ)Tu] = ∆1(θ)z2 + ∆2(θ)u

for some Hurwitz and Metzler matrix function ∆1 : Θ →
Rn2×n2 and some ∆2 : Θ → Rn2×m. Next, the result of
Theorem 2 can be obtained using the same technique and an
interval observer from the paper [21].

IV. EXAMPLE

To illustrate improvement of accuracy achieved in interval
estimation by application of HOSM techniques consider a
non-minimum phase system (the conventional techniques for
the interval observer design [3], [17], [20] can not be applied
in this case):

ẋ1 = −a11(θ)x1 + a12(θ)x2 + b1(θ)u;

ẋ2 = a21(θ)x1 + a22(θ)x2 + b2(θ)u; (13)
y = x1,

where x1 ∈ R, x2 ∈ R are the state variables, for all θ ∈ Θ

0.5 ≤ a11(θ) ≤ 1, −3 ≤ a12(θ) ≤ −1,

−0.5 ≤ a21(θ) ≤ 0.5, −0.5 ≤ a22(θ) = 0.5a12(θ) + 1 ≤ 0.5,

0.5 ≤ b1(θ) ≤ 1, 0.5 ≤ b2(θ) ≤ 1, U = 1, V = 0.1.

As we can see, the system (13) is already in the form (5),
(6) with x1 = z1 and x2 = z2 (the matrix S(θ) equals to the
identity, and Assumption 2 is satisfied). For simulation we
use

a11(θ) = 0.75 + 0.25 sin(x2t), a12(θ) = −2 + sin(x1t),

a21(θ) = 0.5 sin(t), b1(θ) = 0.5, b2(θ) = 0.75 + 0.25 cos(0.5t),

u(t) = U sin(2t), v(t) = V sin(10t),

θ = [x1 x2 t]
T.

For the system (13) with the chosen parameters and the
given input u the state is bounded as follows −3 ≤ x2 ≤ 1
(Assumption 1 holds). It is easy to verify that for f = 0.5
we have

[a22(θ)z2+b2(θ)u]−f [a12(θ)z2+b1(θ)u] = ∆1z2+∆2(θ)u

for ∆1 = −1 and 0 ≤ ∆2(θ) ≤ 1.5 (Assumption 3 is
satisfied). Since ∆1 < 0 Assumption 4 is true with the matrix
P equals the identity.
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Figure 1. The results of simulation for non-minimum phase example

Therefore, according to Theorem 2 we may use the dif-
ferentiator (2) to estimate x1 and ẋ1, that for s = 2 can
be reduced to the conventional super-twisting differentiator
[13]:

q̇0 = −λ0
√
|q0 − ψ(t)|sign[q0 − ψ(t)] + q1; (14)

q̇1 = −λ1sign[q0 − ψ(t)],

where in our example λ0 = 20, λ1 = 50, ẑ1 = q0 and
e1 = |V |, e2 = 1.1

√
|V |. In this case the finite time T = 0.1.

Next, the interval observer (9), (10) generates the required
set-membership estimates for the variable x2 = r (−1 ≤
G1(θ) = P−1[a21(θ)−fa11(θ)] ≤ 1, G2 = 0.5 and G3(θ) =
∆2(θ)):

ṙ = −r + ẑ1 + 2e1 + 0.5q1 + 0.5e2 + 1.5U,

ṙ = −r − ẑ1 − 2e1 + 0.5q1 − 0.5e2 − 1.5U.

The results of this interval estimation are shown in Fig 1. It is
worth to note that for the best knowledge of the authors, other
existent approaches can not solve the problem of interval es-
timation for (13). In particular, application of a conventional
interval observer design method [17], [21] is blocked by the
non-minimum phase condition (−0.5 ≤ a22(θ) ≤ 0.5). A
further application of the sliding-mode estimation approaches
[6], [16], [19] is blocked by the uncertainty presented in θ.

V. CONCLUSION

The paper is devoted to application of the interval ob-
servers and the HOSM differentiation to LPV system es-
timation. The HOSM techniques allow us to improve the
estimation accuracy of an interval observer designed for LPV
systems, or enlarge the class of LPV systems having an
interval observer. The efficiency is shown on a uncertain and
non-minimum phase example by computer simulations.
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