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We propose FlexGD, a force-directed algorithm for straightline
undirected graph drawing. The algorithm strives to draw graph
layouts encompassing from uniform vertex distribution to extreme
structure abstraction. It is �exible for it is parameterized so that
the emphasis can be put on either of the two drawing criteria. The
parameter determines how much the edges are shorter than the av-
erage distance between vertices. Extending the clustering property
of the LinLog model, FlexGD is ef�cient for cluster visualization
in an adjustable level. The energy function of FlexGD is mini-
mized through a multilevel approach, particularly designed to work
in contexts where edge length distribution is not uniform. Applying
FlexGD on several real datasets, we illustrate both the good quality
of the layout on various topologies, and the ability of the algorithm
to meet the addressed drawing criteria.

1 INTRODUCTION

Force-directed algorithms [5, 2, 13, 19, 4, 16] are one popular ap-
proach to graph drawing. They model vertices as a collection of par-
ticles and assign them attractive and repulsive forces according to
force shapes improvised from physical metaphors like springs and
electrical charges. The algorithm lays out the graph from an initial
random con�guration computing the net force on each vertex and
moving the vertices iteratively until an equilibrium state is achieved
between all forces. Force-directed algorithms are composed of two
components: the energy function and the minimization algorithm.
The energy function assigns a scalar energy value to the layout. At-
tractive and repulsive forces are linked to the energy function as
force is the minus gradient of energy. The role of the minimization
algorithm is to compute a force equilibrium in the system, being
equivalent to a local minimum of the energy function.

Attractive and repulsive forces (or equivalently the energy func-
tion) are de�ned in the goal of meeting some aesthetic criteria of
drawing like uniform edge length and minimum edge crossing. For
example, the Spring-Electrical model [5] enforces uniform edge
length while the Stress model [13] estimates the Euclidean distance
between vertices on the layout with their graph-theoretic distance.
Recently, Noack [19] has investigated the in�uence of the shape of
attraction and repulsion energies1 on the clustering properties of a
model. The author shows that Linear attraction and Logarithmic re-
pulsion energies are better for cluster visualization than previously
considered energy functions. The LinLog model is consequently
proposed, and some of its properties are derived.
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1Energy is a state representable by a scalar. The terms repulsion and at-
traction can only be used for forces which are vectorial quantities. However,
with a slight abuse of notation we use them for the corresponding terms in
the energy function too.

In this paper, we suggest FlexGD, a Flexible force-directed al-
gorithm for Graph Drawing. FlexGD draws graphs according to
the two criteria of uniform vertex distribution and structure abstrac-
tion. The model is �exible, in that it is parameterized to be bi-
asable towards any of the two drawing criteria, according to user
preferences. The core idea is to use both attractive and repulsive
forces to distribute the vertices over the drawing area. More specif-
ically, we replace the pairwise logarithmic repulsion energy of the
LinLog model with linear-logarithmic energy, while preserving the
linear attraction of edges intact. This modi�cation has multiple ad-
vantages. First, the drawing area is �lled optimally and the layout
looks pleasing in the frontiers. Second, it upgrades the cluster visu-
alization property of LinLog to abstractable cluster visualization,
i.e. the user can decide upon the density of the clusters and to what
extent they are set apart. FlexGD is also capable of drawing discon-
nected graphs while most of the previous models have dif�culties
with their handling.

Existing minimization algorithms are in general designed for en-
ergy functions creating a rather uniform edge length distribution.
FlexGD (like LinLog) may give rise to layouts with very uneven
edge lengths. To overcome this challenge we suggest a sophisti-
cated multilevel algorithm with exact parameterization methods to
minimize the FlexGD energy function. A slightly modi�ed ver-
sion of this algorithm can be used to �nd LinLog minimum energy
layouts. This is particularly important as no algorithm is proposed
in [19] for �nding the LinLog layouts of large graphs. We present
FlexGD layouts of some large real datasets to illustrate that the al-
gorithm can generate quality layouts in a wide range of abstraction,
satisfying different user preferences. At the end, some properties of
FlexGD minimum energy layouts are analytically derived.

2 RELATED WORK

Force-directed algorithms [5, 2, 13, 19, 4, 16] have been in use
for years and many derivations of them are applied in industry and
academia. In this section, we mention a number of important works
and approaches to graph drawing, although the literature we discuss
is by no means comprehensive.

The initial versions of force-directed models suffered from high
running time. A survey of these models is available in [23]. The
main source of complexity is the computation of pairwise forces.
The Barnes and Hut algorithm [1] alleviated this problem by esti-
mating the repulsion force of close vertices which are suf�ciently
far from the active vertex as a whole. With the advent of the mul-
tilevel algorithms [25, 8, 10, 15], force-directed algorithms became
rather ef�cient both from the computational and the quality points
of view. Harel and Koren suggest a different approach called High
Dimensional Embedding (HDE) [9] for graph drawing. HDE re-
lates the Euclidean distance between the vertices to their graph-
theoretic distance in a high-dimensional space. It then projects the
vertices back to the 2-dimensional space using Principal Compo-
nent Analysis (PCA). Another line of work which has recently be-
come popular is spectral graph drawing [15, 14, 20]. The idea is
to use the (generalized) eigenvectors of the Laplacian/Adjacency
matrix of the graph as the drawing. Algebraic multi-scale Com-
putation of Eigenvectors (ACE) [15] uses the smallest eigenvectors
of the Laplacian as the drawing. The algorithm is combined with a



(a) a disconnected graph of 1000 ver-
tices.

(b) a line of 2000 vertices. (c) a line of 1000 vertices with 20 cir-
cles of 50 vertices.

Figure 1: Even distribution of the graph over the drawing area.

multilevel coarsening scheme to obtain a sophisticated initialization
of the eigenvectors. Despite very low execution time, the quality of
HDE and spectral layouts is usually lower than the quality of lay-
outs computed by force-directed algorithms [7].

We are motivated to suggest FlexGD as a robust model to graph
drawing because it can generate a spectrum of layouts encompass-
ing from conventional force-directed layouts to clustered layouts of
LinLog. Comparing with each individual model, FlexGD layouts
seem to be nicer and more symmetric. Furthermore, in huge irreg-
ular sparse graphs, FlexGD reveals the community structure better
than other models. This is helpful for visualization of graphs arising
from applications like web connectivity and email networks.

Beside links to LinLog, our model has also similarities with the
Binary Stress Model of Koren and C‚ ivril [16]. The Binary Stress
Model bridges the Stress [13] and the Spring-Electrical [5] models.
It has also the property of abstractability. However, apart from its
major differences from FlexGD both in the energy function and in
the optimization technique, we believe that, as it will be shown in
the paper, linear attraction and linear-logarithmic pairwise energy
functions of FlexGD makes it more ef�cient in uniform vertex dis-
tribution and in cluster visualization. For example, the frontiers of
the Binary Stress layouts are denser than the center. The authors add
a random perturbation improving occasionally this drawback. Such
a problem does not arise with FlexGD, as the linear-logarithmic
shape of the pairwise forces result in perfectly even distribution of
the vertices over the drawing area (see Figure 1).

3 DEFINITIONS AND NOTATIONS

A d-dimensional layout p of a graph G = (V;E) is a mapping
of vertices into the Euclidean space p : V �! Rd, where every
u 2 V is assigned with a coordinate vector pu. The Euclidean
distance between u and v is denoted by kpu � pvk. We will use
some notions from the literature on graph clustering to express
the properties of FlexGD. The cut and the density are two mea-
sures widely used as the coupling between two subgraphs. Min-
imizing the coupling is an established technique in graph cluster-
ing [17, 22]. The cut between two disjoint vertex sets V1 and V2
is de�ned as cut[V1; V2] = jEV1�V2 j, where EV1�V2 represents
the set of edges between V1 and V2. Using the cut as a coupling
measure has the disadvantage of selecting biased clusters, i.e. one
huge cluster against a tiny one. This is undesirable as clusters are
supposed to contain a reasonably large group of vertices. One way
to bypass this problem is to penalize small clusters by dividing the
cut by the size of clusters. This leads to the de�nition of density:
density(V1; V2) = cut[V1;V2]

jV1jjV2j
.

Arithmetic, geometric and harmonic mean are the most popular

de�nitions in the literature to measure the mean distance between a
set of vertices. For layout p and F � V (2), where V (2) represents
the set of vertex pairs, we represent arithmetic, geometric and har-
monic mean of F on p by arith(F; p), geo(F; p) and harm(F; p)
respectively. They are de�ned as:

arith(F; p) =
1
jF j

X

fu;vg2F

kpu � pvk:

geo(F; p) = jF j

s Y

fu;vg2F

kpu � pvk:

harm(F; p) =
jF jP

fu;vg2F
1

kpu�pvk

:

In FlexGD, attractive forces are reinforced by an abstraction con-
stant. Hence, we found it helpful to generalize the de�nition of the
arithmetic mean in order to write the theorems in a more readable
form. The weighted arithmetic mean is de�ned as:

arithk+(F; p) =

P
fu;vg2F �uvkpu � pvk
P
fu;vg2F �uv

;

�uv =

(
k + 1 if fu; vg 2 EF

1 otherwise
;

where Ef is the set of edges over F .

4 FLEXGD ENERGY FUNCTION

For layout p of a graph G = (V;E), many of the known energy
models [19, 5] have the following form:

U(p) =
X

fu;vg2E

f(kpu � pvk) +
X

fu;vg2V (2)

g(kpu � pvk); (1)

where f(kpu� pvk) is associated with the attraction of edges, and
g(kpu � pvk) with the repulsion between all pairs of vertices. The
minus gradient of f and g determines the attractive and repulsive
forces. In the LinLog model, the energy function for layout p is
de�ned as:

ULinLog(p) =
X

fu;vg2E

kpu � pvk �
X

fu;vg2V (2)

ln kpu � pvk:

For layout p and the abstraction constant k, the FlexGD energy
function is de�ned as:

U(p; k) =
X

fu;vg2E

kkpu � pvk

+
X

fu;vg2V (2)

(kpu � pvk � ln kpu � pvk): (2)



The �rst term captures the graph structure by shortening the edges,
while the second term distributes the vertices evenly over the draw-
ing surface. In models like [19, 5], g is monotonically decreas-
ing. As a result, disconnected vertices are likely to repulse each
other towards in�nity. On the contrary, both attractive and repul-
sive components are present in g of FlexGD. Hence, disconnected
vertices rest in a �nite neutral distance from each other, explaining
why FlexGD can draw even totally disconnected graphs. Parameter
k determines how much the edges must be shorter with respect to
the mean neutral distance. Figure 1 shows how a graph is uniformly
packed within a circular drawing area regardless of its connectivity.
The attractive force of the edges and the pairwise force exerted on
a vertex u from another vertex v are:

8fu; vg 2 E; ~fa(u; v) =
k(pv � pu)
kpv � puk

; (3)

8fu; vg 2 V (2); ~fr(u; v) = (1�
1

kpv � puk
) �

(pv � pu)
kpv � puk

: (4)

The overall force exerted on u from v is then ~fa + ~fr .
It is proved that adding multiplicative constants to the attractive

and repulsive terms of previous energy models does not change the
minimum energy layout, but only scales it (see [10] for example).
However, the minimum energy layout of FlexGD changes with k.
This gives FlexGD the �exibility of drawing layouts in different
levels of abstraction. Figure 2 shows the layout of an email net-
work containing 265214 vertices and 420045 edges. Edges are not
represented for more clarity. The abstraction constant is chosen as
k = 4000 in Figure 2a. The clustered nature of this webmail graph
is clear in this �gure. One may choose to abstract the layout more
at the price of viewing less details. The layout of the same graph is
shown in Figure 2b for k = 20000.

Figure 2 also demonstrates two further assets of FlexGD layouts.
First, there is an empty space around clusters. It is very helpful in
distinguishing the frontier between them. These clusters are par-
ticularly meaningful in social networks or web graphs, where they
represent friendship groups or societies. This effect is due to the
intra-distance between the vertices of a cluster being small with
respect to their average distance from the rest of the graph. Con-
sequently, they act as supernodes with high mass, exerting strong
repulsion to the outside vertices pushing them further from the com-
munity. This effect increases with k, as the clusters get denser for
higher k. Second, disconnected vertices are put towards the fron-
tiers. This prevents them from adding visual noise to the connected
components of the graph.

5 MINIMIZATION OF FLEXGD ENERGY FUNCTION

The minimum of the FlexGD energy function can be found using an
iterative algorithm. In each iteration, the net force exerted on each
vertex is computed. The vertices are then moved in the direction of
this force by some step length until the layout change is less than
some tolerance. Previous works [25, 10, 5] apply a force-directed
algorithm with an adaptive step length. The algorithm starts with
an initial global step length and decreases it per cycle. This scheme
works well, if the edge length distribution is not very uneven. In
FlexGD this assumption is violated, speci�cally if a large level of
abstraction is applied, i.e. k is set to a large value. This issue can be
treated by applying a vertex speci�c adaptive step length. In each
iteration, the current direction of the net force exerted on a vertex
is compared with its previous direction. The step length is then
increased or decreased proportional to the change of direction. Our
force algorithm is given in Algorithm 1.

Since the force algorithm works on top of a multilevel coarsening
scheme (see below), it is important that the initial step length is
small enough, otherwise the usefulness of the layout resulting from
the previous coarsening level is destroyed. We compute a graph-
speci�c initial step length with an empirical equation derived from
the following theorem:

Algorithm 1 ForceAlgo(Y,G,k,�)
1: X Y . Y is the initial guess from the previous round of

the multilevel algorithm.
2: ratio 2:0 . (> 1 + �)
3:   0:5
4: d0  0:00000001 . small �oat.
5: s0  jV j2

k(kjEj+jV j2) . graph-dependent initial step length.
6: 8i 2 V : si  s0
7: ~fu  random
8: while (ratio > 1 + �) do
9: BH(X) . computing the Barnes and Hut tree on the

current layout.
10: d 0:0
11: for i 2 V do
12: x0

i  xi, ~f0
i  ~fi

13: 8j 2 V; j $ i : ~fi = ~fi + ~fa(i; j) . compute
attractive forces of edges.

14: 8j 2 V; j 6= i; ~fi = ~fi + ~fr(i; j) . compute pairwise
forces. This computation is accelerated using the Barnes and
Hut scheme.

15: si = si + si � ( ~fi
k~fik
�

~f0
i

k~f0
i k

) �  . modify the step
length proportional to the change of direction of the net force.

16: xi = xi + si � ( ~fi
k~fik

) . move the active vertex.
17: d = d+

xi � x0
i


18: end for
19: ratio max ( d

d0
; d0

d ) . halt when the change of layout
is negligible.

20: d0  d
21: end while

Theorem 5.1 If p0 is a drawing of a graph G = (V;E)
with minimum FlexGD energy then: k

P
fu;vg2E kpu � pvk +

P
fu;vg2V (2) kpu � pvk =

���V (2)
��� :

Proof Suppose p0 is a drawing with minimum FlexGD energy. If
we multiply all coordinates in p0 by d 2 R, the energy of the sys-
tem is:

U(d; p0) =
X

fu;vg2E

dkpu � pvk

+
X

fu;vg2V (2)

dkpu � pvk � ln dkpu � pvk:

Since p0 is a drawing with minimum energy, this equation has a
minimum at d = 1, that is:

U 0(d; p0) =
X

fu;vg2E

kpu � pvk+

X

fu;vg2V (2)

kpu � pvk �

���V (2)
���

d
;

U 0(d = 1; p0) =
X

fu;vg2E

kpu � pvk+

X

fu;vg2V (2)

kpu � pvk �
���V (2)

��� = 0:

We can rewrite the left side of this theorem in the form of k jEj �e+
jV j2 �d = (k jEj+jV j2)l, where �e is the mean edge length and �d the
mean distance between every two vertices. Hence, l = jV j2

(kjEj+jV j2)



(a) email graph (email-EuAll), k = 4000. (b) email graph (email-EuAll), k = 20000.

Figure 2: Email network from a large European research institution.

Figure 3: Formation of the quadTree in the Barnes and Hut algorithm.

is a value between �e and �d. Dividing further by k gives a value of
the order of the mean edge length. Setting the initial step length
to l=k always led to satisfactory results for the graphs we tried.
Further modi�cation of the step length is done on a per vertex basis
through the adaptive step length scheme.

5.1 The Barnes and Hut Algorithm
A direct application of Algorithm 1 is not effective for large graphs,
because its complexity is O(jEj + jV j2). A common practice in
graph drawing (like [21, 16, 24]) is to decrease the complexity to
O(jEj + jV j log jV j) using the Barnes and Hut scheme [1]. The
idea is to speed up the calculation of pairwise forces by regrouping
the nearby vertices and computing their force as a whole, provided
their center of mass is far enough from the active vertex. This is
done through recursively assigning the vertices to the nodes of a
quadTree, where each node has at most four children. There is
some mass, a center and a square area associated with each node.
Vertices are inserted one by one into the tree, starting from the root
node. If the current node already contains a vertex, the correspond-
ing area is divided into four squares known as quads. The new
vertex is consequently inserted into the right quad, and the mass
and the center of the parent node are updated as follows:

~x = (m � ~x+mi � ~xi)=(m+mi);
m = m+mi;

where m and ~x are the mass and the center of the node, and mi
and ~xi the mass and coordinates of the inserted vertex, respectively.

This procedure is iterated until all vertices are inserted, and there is
only zero or one vertex in each external node. Figure 3 illustrates
the formation of a quadTree. We form the quadTree once in the
beginning of each execution cycle. When computing the pairwise
forces, all the vertices of a node are approximated as a single vertex
if s=d < �, where s is the width of the area represented by the quad
of the corresponding node, and d the distance of the active vertex
from the quad center. In our setting we set � = 0:5.

5.2 A Multilevel Algorithm

The force algorithm (Algorithm 1) �nds a local minimum of the
energy function. Consequently, it is not very probable that it results
in satisfactory drawings of large graphs as their energy functions
have many local minima. In addition, too many cycles are needed
to create a stable drawing out of the initial con�guration. Multilevel
algorithms can greatly alleviate these problems by consecutively
coarsening a graph G0 into coarser graphs G1; :::; Gn. The layout
of the coarsest graph is computed cheaply as it is very small. The
computed coordinates are then promulgated to the �ner graph. The
�ner graph usually needs less modi�cations as it is already in a
rather good shape.

Edge Collapsing (EC) [6, 26, 10] is one widely-used coarsening
strategy in graph drawing. This method works based on a Multiple
Independent Edge Set (MIES). An independent edge set is a set of
edges no two of which are adjacent to the same vertex. It is maxi-
mal, if adding any new edge to the set destroys the independence.
MIES can be computed through a greedy algorithm. Namely, all
vertices are unmatched in the beginning. An unmatched vertex
is picked up at random, and is merged with one of its unmatched
neighbors. As a result of this merging, the edge between them is
collapsed. Both merged vertices are then marked as matched. If
the vertex has no neighbors (i.e. it is disconnected from the rest
of the graph), it is marked as matched without being merged. The
algorithm iterates until no vertex remains unmatched.

The success of a coarsening scheme depends on the graph topol-
ogy. For example, we observed that for graphs with hollow topol-
ogy, EC has dif�culties escaping the local minima. In addition, for
some graphs the coarsening is very slow, i.e. the number of ver-
tices in the coarser graph is close to the number of vertices in the
�ner graph. Consequently, we followed [10] by adapting an alterna-
tive coarsening strategy based on Multiple Independent Vertex Set



(a) MIVS coarsening (b) grid 30� 30 (c) EC coarsening

Figure 4: A 30 by 30 grid coarsened by different strategies.

(MIVS). A multiple independent vertex set is a set of vertices no
two of which are directly connected by an edge. It is maximal, if
adding any new vertex to the set leads to violation of the indepen-
dence condition. When coarsening with MIVS, an edge is added
between two vertices of the coarser graph, if the distance apart be-
tween the corresponding vertices of the �ner graph is no more than
three. MIVS coarsens more aggressively than EC, that is, the num-
ber of vertices in the coarser graph is much smaller (usually less
than 50%) than the number of vertices in the �ner graph. The draw-
back of MIVS is that the number of edges in the coarser graph is
sometimes very high. This issue increases the memory and time
complexity of the algorithm. Figure 4 shows the result of coarsen-
ing a 30 by 30 grid through MIVS and EC coarsening strategies.

In [10], edges are computed using the Galrekin product of the
prolongation matrix P and the adjacency matrix of the �ner graph
Af (see [11] for more details). The Galerkin product is de�ned
as PTAfP . We found that computing this product is expensive for
large graphs. In our implementation, we �rst connect all the vertices
in the MIVS, if their graph theoretical distance is 2. For distances
equal to 3, we iterate on the edges, and for those whose neither of
their end points is in the MIVS, check the neighbors of their end
points. An edge is added between the two MIVS neighbors of the
end points, if there is already no edge between them. This strategy
works faster than computing the Galerkin product.

The prolongation of coordinates from the coarser graph to the
�ner graph is done as follows. If the coarser graph is issue of EC,
each vertex of the �ner graph corresponds to exactly one vertex
of the coarser graph. In this case, the coordinates of the coarser
graph are attributed directly to the corresponding vertices of the
�ner graph. If the coarser graph rises from MIVS, each vertex of
the �ner graph is either in the multiple independent vertex set or
has at least one neighbor in that. In the former case, the coordi-
nates are taken directly from the corresponding vertex of the coarser
graph. In the latter, the coordinates are computed as the mean of
the coordinates of the neighbors in the multiple independent vertex
set. Since some vertices may have the same coordinates in the �ne
graph, we add some small random displacement to set them apart.

We implemented a hybrid coarsening algorithm. Our default
strategy is Heavy Edge Collapsing (HEC) [26, 10]. Namely, each
active vertex is merged with an unmatched neighbor corresponding
to the heaviest incident edge, and the edge between them is col-
lapsed. In few cases where the result of HEC was not good enough,
we used an alternative coarsening strategy based on a Multiple In-
dependent Vertex Set (MIVS) [10]. In this strategy, the coarser
graph is built by choosing an MIVS from among the vertices of
the �ner graph. Then, an edge is added between each two ver-
tices if their graph-theoretic distance apart is no more than 3. For
implementation details about the coarsening and the prolongation

phases of HEC and MIVS refer to the technical report provided in
[anonymized]. We stop coarsening if one of the following happens.
First, the level of coarsening is more than a prede�ned threshold.
In our setting we do not coarse more than 12 levels. Second, the
coarsening ratio is too high. This ratio is de�ned as the number of
connected vertices in the coarser graph by the number of connected
vertices in the �ner graph. We set this threshold to 0:9. Finally, the
number of the remaining connected vertices is less than a minimum.
We set this to 10.

6 PROPERTIES OF FLEXGD MINIMUM ENERGY LAYOUTS

In this section, we derive some properties of FlexGD minimum
energy layouts. The goal is to understand quantitatively how the
model makes a tradeoff between the two drawing criteria, and how
it separates the clusters by tweaking k.

Theorem 6.1 states that FlexGD �nds the best compromise
between maximizing the geometric mean and minimizing the
weighted arithmetic mean distance between all vertices. This prop-
erty is responsible for shortening the edges and lengthening the
non-edges. If the graph contains no edges, the weighted arithmetic
mean is equal to the usual arithmetic mean. The maximum of the
ratio is then one, as it is a well-known fact from AM-GM inequal-
ity that the geometric mean is always greater than or equal to the
arithmetic mean. The maximum is achieved when all distances are
equal. Though in the 2-dimensional space equality is impossible
for more than 3 vertices because of geometric constraints. Con-
sequently, the model distributes the vertices uniformly in order to
maximize the ratio by closing the two means as much as possible.
This property explains why the vertices have a perfectly even dis-
tribution over the drawing area in Figure 1a. When edges reside
in the graph, connected vertices are put closer to each other. The
reason is they are weighted more in the weighted arithmetic mean.
Therefore, their further shortening, up to some extent controlled by
k, decreases the weighted arithmetic mean more than it increases
the geometric mean.

Theorem 6.1 The minimization of the FlexGD energy function is
equivalent to the minimization of arithk+(V (2);p)

geo(V (2);p)
.

Proof Let p0 be a layout with minimum FlexGD energy.
If
P
fu;vg2E kp

0
u� p0

vk+
P
fu;vg2V (2) kp0

u� p0
vk = c, then p0 is

a solution to:

minimize(�
X

fu;vg2V (2)

ln kpu � pvk)

subject to
X

fu;vg2E

kpu � pvk+
X

fu;vg2V (2)

kpu � pvk = c:



Model Minimization equivalence One-dimensional bipartition abstractable
LinLog [19] minimize arith(E;p)

geo(V (2);p)
harm(V1 � V2; p0) = 1

density(V1;V2) NO

FlexGD minimize arithk+(V (2);p)
geo(V (2);p)

harm(V1 � V2; p0) = 1
1+k�density(V1;V2) YES

Table 1: Summary of some properties of FlexGD and LinLog.

The above expression may be reformulated in the form of
minimize� ln(geojV

(2)j(V (2); p)).
Since jV (2)jpexp(x) is an increasing function of x,
the minimization of this expression is equivalent to
minimize exp(ln 1

geo(V (2);p)
). Multiplying the numerator by

the constant arithk+(V (2); p), and rewriting the restriction, we
obtain:

minimize
arithk+(V (2); p)
geo(V (2); p)

subject to

arithk+(V (2); p) =
c

jEj+ jV (2)j
:

Suppose there exists a layout q0 of G with minimum FlexGD
energy for which
arithk+(V (2);q0)

geo(V (2);q0)
< arithk+(V (2);p0)

geo(V (2);p0)
. We can always de�ne a

scaling
q1 = c

(jEj+jV (2)j)arithk+(V (2);q0)
q0 for which

arithk+(V (2); q1) = c
jEj+jV (2)j , but

arithk+(V (2);q1)
geo(V (2);q1)

= arithk+(V (2);q0)
geo(V (2);q0)

< arithk+(V (2);p0)
geo(V (2);p0)

. This is
a contradiction. Hence q0 does not exist and the restriction may
always be removed.

Theorem 6.2 posits that in 1-dimensional FlexGD layouts of bi-
partitions, the distance between the two partitions of a graph de-
creases with k times their density. This theorem does not gener-
alize to more than one dimension, but remains approximately true
for 1+ dimensional layouts of clusterizable bipartitions. Refer to
Appendix A for more details of the approximation. For graphs
containing a higher number of clusters, there is in general no 2D
or 3D drawing where distance between every two clusters obeys
the same equation, without violating the triangle inequality w.r.t. a
third cluster. Despite this, Theorem 6.2 illustrates the logic behind
the separation of clusters in FlexGD layouts.

Theorem 6.2 Let p0 be a one-dimensional drawing of the graph
G = (V;E) with minimum FlexGD energy. Let (V1; V2) be a bi-
partition of V such that the vertices in V1 have smaller positions
than the vertices in V2 (i.e. 8v1 2 V1; 8v2 2 V2 : pv1 < pv2 ).
Then, harm(V1 � V2; p0) = 1

1+k�density(V1;V2) .

Proof Let p0 be a layout with minimum FlexGD energy. If we add
d 2 R to the coordinates of the vertices of V1 in a way that the
largest coordinate of the vertices in V1 remains less than the small-
est coordinate of the vertices in V2, the FlexGD energy becomes:

U(d; p0) =
X

fu;vg2E
V (2)

1
[E

V (2)
2

k jpu � pvj

+
X

fu;vg2V (2)
1 [V (2)

2

jpu � pvj � ln jpu � pvj

+
X

fu;vg2EV1�V2

k(jpu � pvj+ d)

+
X

fu;vg2V1�V2

jpu � pvj+ d� ln(jpu � pvj+ d):

Since p0 is a layout with minimum energy, the above function has
a minimum at d = 0, i.e. U 0(d = 0; p0) = 0. Then:

k jEV1�V2 j+ jV1 � V2j = +
X

fu;vg2V1�V2

1
jpu � pvj

:

Replacing the right side with jV1jjV2j
harm(V1�V2;p0) and jV1 � V2j with

jV1j jV2j, the result is directly obtained.

While Theorem 6.1 explains how convex subgraphs are clustered
in the FlexGD layouts, Theorem 6.2 is responsible for the separa-
tion of clusters as a function of their coupling. This suggests the
de�nition of clustering, where vertices inside a cluster must be as
similar as possible, while being dissimilar from vertices of the other
clusters. At this point, we would like to add that extra parameters
do not give more features to the model. Theorem 6.3 formalizes
this �nding for a set of abstraction constants fk1; k2; k3g:

Theorem 6.3 The minimum of U =
P
fu;vg2E k1kpu � pvk +P

fu;vg2V (2) k2kpu� pvk�k3 ln kpu� pvk, is equal to the mini-
mum ofU 0 =

P
fu;vg2E

k1
k2
kpu�pvk+

P
fu;vg2V (2) kpu�pvk�

ln kpu � pvk up to scaling by k3
k2

.

Proof If we scale the layout by k3
k2

, the energy of Unew is:

Unew =
X

fu;vg2E

k1k3

k2
kpu � pvk+

X

fu;vg2V (2)

k3k2

k2
kpu � pvk

� k3 ln
k3

k2
kpu � pvk:

This can be rewritten as:

Unew = k3(
k1

k2

X

fu;vg2E

kpu � pvk

+
X

fu;vg2V (2)

kpu � pvk � ln kpu � pvk) +
X

V (2)

k3 ln
k3

k2
:

Since k3 is positive and
P

V (2) k3 ln k3
k2

is a constant, the minimum
of this function is the same as the minimum of k1

k2

P
fu;vg2E kpu�

pvk+
P
fu;vg2V (2) kpu � pvk � ln kpu � pvk.

This theorem states that the effect of k3 is limited to scaling, having
merely a zooming effect. Furthermore, apart from its scaling effect,
k2 only changes the abstraction constant to k1

k2
. Since every positive

real value can be chosen directly as the abstraction constant, adding
k2 has no mathematical advantage. Table 1 compares the two prop-
erties of FlexGD expressed by Theorem 6.2 and Theorem 6.1 with
analogous results about LinLog taken from [19].

7 IMPLEMENTATION AND RESULTS

We have implemented a multi-threaded simulator based on Java,
and used the visualization capabilities of the JUNG library [12].
Most of the graphs in this section are taken from the University of
Florida Sparse Matrix Collection [3]. FlexGD is very sensitive to
the correct calibration of the initial step length according to The-
orem 5.1 and the value of the abstraction constant k. It reveals



FlexGD(1) FlexGD(2) FlexGD(3) LinLog [19] ML-SE ML-DH

(a) jagmesh1, k = 300 (b) jagmesh1, k = 600 (c) jagmesh1, k = 1800 (d) jagmesh1 (e) jagmesh1 (f) jagmesh1

(g) jagmesh8, k = 100 (h) jagmesh8, k = 300 (i) jagmesh8, k = 900 (j) jagmesh8 (k) jagmesh8 (l) jagmesh8

(m) harvard500, k = 5 (n) harvard500, k = 20 (o) harvard500, k = 100 (p) harvard500 (q) harvard500 (r) harvard500

Figure 5: Comparison of FlexGD with force-directed models.

the structure of a graph provided k is large enough. We observed

choosing k as o( j
V 2j
jEj ) is a proper value, depending on the level of

abstraction the user prefers. If the graph is disconnected, the biggest
component may be considered. For very sparse graphs, where ver-
tex degree distribution is very uneven, smaller values of k can also
be used. Such graphs generally result from applications like social
networking or web connectivity networks.

Figure 5 compares the FlexGD layouts of a few graphs with
the layouts of some other force-directed algorithms. Davidson and
Harel [2] suggest an energy function resulting in more uniform ver-
tex distribution. Spring-Electrical [5] is one of the most popular
energy functions enforcing rather uniform edge length. Although
these models are popular, the minimization algorithms suggested
in the original papers are no more applied as more advanced algo-
rithms have been proposed. We applied the multilevel algorithm
suggested by Walshaw [25] to �nd the minimum energy layouts of
these models. Hence, we call them ML-SE and ML-DH standing
for Multilevel Spring-Electrical and Multilevel Davidson and Harel.
LinLog layouts are drawn with a variant of Algorithm [1] where
FlexGD attraction and repulsion forces are replaced with those of
LinLog. Furthermore, an initial step length proper to LinLog is
used. This step length is estimated through the analogue of Theo-
rem 5.1 for LinLog. The symmetries are shown well in the FlexGD
layouts and the frontiers are decent. The distribution of vertices
in FlexGD layouts is more uniform than the LinLog layouts. For
smaller values of k, the FlexGD layouts are more similar to the lay-
outs of the conventional models, while for larger values of k, they
are closer to the LinLog layouts. This property is pretty interest-
ing as one can draw a spectrum of layouts with different properties

without changing the drawing model.
Figure 6 compares some other FlexGD sample layouts with the

layouts of HDE and ACE. The running time of HDE and ACE is
a few seconds. Though, their quality is generally much inferior
to FlexGD layouts. As it is seen in Figures 5 and 6, FlexGD has
a satisfactory performance on regular grid-like graphs. Though its
main usefulness is for the representation of huge sparse graphs with
non-uniform vertex degrees distribution. Many conventional mod-
els have dif�culties with giving useful insight into the community
structure of such graphs, i.e. they usually result a little informa-
tive clutter of interconnected vertices. One example of such graphs
was shown in Figure 2. Other examples are provided in Figure 7.
We believe for such graphs, drawing in the goal of visualizing the
community structure is more indicative than using the conventional
drawing criteria.

It is also worth mentioning the running time of the algorithm
increases with k. The reason is that higher values of k put con-
nected vertices closer to each other. Consequently, the Barnes and
Hut algorithm divides the space into smaller quads, meaning the
quadTree becomes bigger. In addition, the force algorithm needs
more iterations, because the layout must be re�ned in smaller dis-
tances necessitating smaller values of tolerance.

The execution time of the FlexGD algorithm is given in Table 2
for some sample layouts. For graphs in the �rst part of Table 2, k
has been chosen as o( jV j

2

jEj ). The value jV j
2

jEj is suggested by the
algorithm to the users as one proper value for k. Graphs in the
second part of Table 2 are sparse irregular graphs for which k is
set to values smaller than o( jV j

2

jEj ). For graphs containing up to



FlexGD HDE ACE FlexGD HDE ACE

(a) G49, k = 3000 (b) G49 (c) G49 (d) fxm3-6, k = 50 (e) fxm3-6 (f) fxm3-6

(g) cavity01, k = 15 (h) cavity01 (i) cavity01 (j) �nance256, k = 3000 (k) �nance256 (l) �nance256

(m) crack, k = 2000 (n) crack (o) crack (p) Harvard500, k = 20 (q) Harvard500 (r) Harvard500

Figure 6: Comparison of FlexGD with HDE and ACE.

some tens of thousands of vertices, the execution time is a few min-
utes. This is a reasonable time considering the high quality of the
layouts. The Barnes and Hut scheme and the multilevel strategy
improve signi�cantly the quality and the running time of the algo-
rithm. The adaptive step length scheme increases occasionally the
running time as for some topologies like hollow ring-like graphs the
layout converges late. Though, this scheme is essential to capture
the non-uniform distribution of the edge length. An example is the
G49 graph with 3000 vertices for which the running time is almost
the same as that of the 100 by 100 grid which is 3 times larger in
size but has a regular grid structure. In the same way, cegb2919 has
about the same number of vertices as G49 and even contains more
edges, but the algorithm draws it in almost a quarter of the time it
takes to draw G49. In our experiments, our objective was to obtain
the highest layout quality possible. Hence, we set � = 0:5 for the
Barnes and Hut algorithm, and chose small values of tolerance. Of
course, the running time of the algorithm depends on these settings.
One can decrease the running time by choosing larger values of �
and tolerance if little distortion is tolerable in the underlying appli-
cation. A collection of FlexGD layouts is provided in Figure 8. The
properties of the graphs are given in Table 2. Interested readers may
�nd more results and comparisons in Chapter 3 of [18].

8 CONCLUSION

FlexGD allows the user to abstract the graph structure to a desired
level, optimally �lling a circular drawing. Consequently, tweaking
the abstraction constant, a user has more chance to obtain her fa-
vorite drawing. It is suitable for cluster visualization and extends
this property of the LinLog model. FlexGD is indeed an exten-
sion to LinLog which in behavior acts similar to the Binary Stress
model. However, it enjoys the advantages of both models. On the

(a) FlexGD model, k =
200

(b) FlexGD model, k =
1000

Figure 9: gupta1 graph

one hand, it has the abstractability property of the Binary Stress.
On the other hand, it extends the clustering property of LinLog.
Hence, the clusters are separated better, and the behavior of the
model is quantitatively describable. In general, FlexGD layouts are
decent in the frontiers, and the symmetries are shown well. From
an applicative point of view, we examined the model on graphs aris-
ing from a wide variety of real world applications like web graphs,
2D/3D problems, structural problems, electromagnetic problems,
social networks, etc. Although no single model can be claimed to
have better performance on all graphs, as the suitability of a visual-
ization model depends on the graph topology and the visualization
requirements, it seems that for regular grid-like graphs FlexGD lay-
outs are pleasing as much as, sometimes even more than, the layouts
of previous models. FlexGD gives a helpful perspective into the
community (cluster) structure of huge sparse graphs arising from
domains like web applications, being different from the insight pro-



(a) Web connectivity matrix (webbase-1M), jV j =
1000005, jEj = 3105536, k = 10000

(b) Web connectivity matrix (webbase-1M), jV j =
1000005, jEj = 3105536, k = 50000

(c) Web of NotreDame University, jV j = 325729,
jEj = 1497134, k = 1000

(d) Web of NotreDame University, jV j = 325729,
jEj = 1497134, k = 5000

(e) Web of Stanford University, jV j = 281903, jEj =
2312497, k = 1000

(f) Web of Stanford University, jV j = 281903, jEj =
2312497, k = 5000

Figure 7: Sample Layouts of the FlexGD model.



(a) utm1700b, k = 200,
46s

(b) utm3060, k = 300,
87s

(c) cavity24, k = 200,
62s

(d) nasa2146, k = 150,
31s

(e) nasa1824, k = 200,
22s

(f) nasa4704, k = 400,
135s

(g) can61, k = 10, 3s (h) can229, k = 60, 12s (i) can838, k = 150, 9s (j) rdist3a, k = 100, 33s

(k) grid50by50, k = 50,
54s

(l) alemder, k = 1500,
139s

(m) lock1074, k = 50,
25s

(n) G34, k = 1000, 47s (o) 1138bus, k = 500,
60s

(p) �ower, k = 200, 6s (q) mesh2e1, k = 100,
12s

(r) can292, k = 60, 3s (s) bcsstk24, k = 200,
54s

(t) 3D28984Tetrak1500,
k = 1500, 390s

(u) 3elt, k = 1000,
556s

(v) plskz362, k = 100,
3s

(w) nnc666, k = 150,
6s

(x) dwt1005, k = 250,
17s

(y) raefsky5, k = 250,
209s

Figure 8: FlexGD Layouts of sample graphs taken from the University of Florida Sparse Matrix Collection. The abstraction constant and the CPU
time in seconds are given in the caption of each �gure. Zooming on the layouts reveals more details.



Table 2: Execution time of the FlexGD algorithm

Graph jV j jEj k CPU time in seconds

grid30by30 900 1740 30 11a

grid50by50 2500 4900 50 54
grid100by100 10000 19800 100 163
jagmesh1 936 3600 300 8
jagmesh8 1141 4303 300 5
harvard500 500 2636 20 7
1138bus 1138 2596 500 60
cavity01 317 7327 15 5
cavity24 4562 138187 200 62
fxm3-6 5026 49526 50 11
plskz362 362 880 100 3
bcsstm07 420 3836 50 3
bcsstk24 3652 81736 200 54
G12 800 1600 500 23
G49 3000 6000 3000 160
G34 2000 4000 1000 47
utm1700b 1700 21509 200 46
utm3060 3060 42211 300 87
3D28984Tetra 29984 599170 1500 390
mesh2e1 360 1162 100 12
can61 61 309 10 3
can229 229 1003 60 12
can292 292 1416 60 3
can838 838 5424 150 9
cegb2919 2919 162201 50 44
nasa1824 1824 20516 200 22
nasa2146 2146 37198 150 31
nasa4704 4704 54730 400 135
Alemder 6245 24413 1500 139
raefsky5 6316 168658 250 209
nnc666 666 4044 150 6
�ower 300 306 200 6
lock1074 1074 26313 50 25
dwt1005 1005 4813 250 17
rdist3a 2398 61896 100 33

3elt 4720 13722 1000 556b

crack 10240 30380 2000 1449
web-NotreDame 325729 1497134 1000 3142
web-Stanford 281903 2312497 5000 9669
email-EuAll 265214 420045 4000 20455
webbase-1M 1000005 3105536 10000 22352
a Times are measured on a 2.4GHz Core2 Duo with 1G of RAM.
b Times are measured on a 2.5GHz Xeon E5420 with 4G of RAM.

vided by the conventional models.
FlexGD has the tendency to give a circular shape to the layouts.

The circular layout is the natural legacy of using both attractive and
repulsive forces to distribute the vertices over the layout. This de-
sign choice was originally made to give the abstraction capability
to the model. If the width and the length of the graph structure are
proportional, this is not a severe constraint, speci�cally because the
circular shape of the layout decreases with k. Fortunately, the ma-
jority of real-world applications give rise to such graphs. However,
in fewer cases where the length and the width of the graph are very
disproportional (like the line graph in Figure 1b), the circular shape
of the layout may disturb the graph structure by enforcing it to be
packed into a disc. Though, one should note that very long-shaped
structures (like a 20 � 400 grid) are known to be one of the most
challenging types of topology for all models of graph drawing.

Most previous works adopt an empirical approach to validate
their model. A distinguishing point of this work is to adopt a more
formal approach initiated by Noack [19]. Its other asset is the mul-
tilevel algorithm coping with the non-uniform distribution of the

edge length and its model-dependent parameterization. Variant of
this algorithm can be considered as a complement to [19], as to date
we are unaware of works reporting LinLog layouts of large graphs.

We only treated the case of unweighted graphs. Though, the
model can be easily generalized for weighted graphs by integrating
the edge weights into the attraction term of the energy function.
This gives the following equation for FlexGD energy function of
weighted graphs:

U(p; k) =
X

fu;vg2E

k!uvkpu � pvk+

X

fu;vg2V (2)

kpu � pvk � ln kpu � pvk;

where !uv is the edge weight between u and v. All the previous
theorems remain correct, but the edge weights are added to the
terms corresponding to edges. For some topologies, specially those
containing star-shaped components, the beforementioned coarsen-
ing strategies are ineffective as the number of vertices of the coarser
graph remains very close to that of the �ner of graph. Hence, de-
veloping more robust coarsening schemes may be considered as a
direction for future work. This problem is not particular to FlexGD,
and has been reported by previous authors too [10]. Nevertheless,
FlexGD can reveal the structure of some clustered graphs much
better than other models without needing any more advanced mul-
tilevel scheme. An example is the Gupta/gupta1 graph from the
University of Florida Sparse Matrix Collection. The authors were
forced to design a new coarsening scheme in [3] to reveal the three
groups of vertices in the graphs. Interestingly, FlexGD reveals these
clusters easily without any coarsening phase. Figure 9 shows the
FlexGD layout of this graph in two levels of abstraction.
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A DISTANCE INTERPRETABILITY IN 1+ DIMENSIONAL
FLEXGD BIPARTITION LAYOUTS

In this appendix we explain the approximate generalizability of
Theorem 6.2 to 1+ dimensions. The following theorem holds ex-
actly for layouts with any number of dimensions:

Theorem A.1 Let p be a D-dimensional drawing of G = (V;E)
with minimum FlexGD energy. Let (S1; S2) be a bipartition of the
drawing space by any hyperplane H de�ned by

P
i2I aixi = b,

I 2
�f1;��� ;Dg

D�1

�
. If (V1; V2) is a bipartition of vertices in a way that

8u 2 V1 : pu 2 S1, and 8v 2 V2 : pv 2 S2, that is 8u 2 V1 :P
i aixu

i < b and 8v 2 V2 :
P

i aixv
i > b, then:

X

fu;vg2EV1�V2

k
PD

i=1(xu
i � x

v
i )

kpu � pvk
+

X

fu;vg2V1�V2

PD
i=1(xu

i � x
v
i )

kpu � pvk
=

X

fu;vg2V1�V2

PD
i=1(xu

i � x
v
i )

kpu � pvk2
:

Proof If we add some distance vector ~d = (d1; : : : ; dD) to all
vertices in V1 in a way that none of them enter S2, i.e. 8u 2 V1 :P

i ai(xu
i + di) < b, the energy of the new drawing is:

Unew =
X

fu;vg2E
V (2)

1
[E

V (2)
2

kkpu � pvk+

X

fu;vg2V 2
1 [V 2

2

(kpu � pvk � ln kpu � pvk) +

X

fu;vg2EV1�V2

k

vu
u
t

DX

i=1

(xu
i � xv

i + di)2

+
X

fu;vg2V1�V2

(

vu
u
t

DX

i=1

(xu
i � xv

i + di)2

� ln
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u
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DX
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(xu
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i + di)2):

The partial derivative of this function with respect to di is:

@Unew

@di
=

X

fu;vg2EV1�V2

k
xu
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i + diq P D
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+
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�
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):

Since p is a layout with minimum FlexGD energy, the application
of any non zero vector ~d must result in increase of energy. Then,
the gradient vector of Unew must be zero when ~d = 0, that is 8di :
@Unew

@di
= 0. Hence

PD
i=1

@Unew
@di

= 0.

DX

i=1

@Unew

@di
=

X

fu;vg2EV1�V2

k
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i )
qPD

i=1(xu
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i )2

+
X
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i )
qPD
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i � xv

i )2

�
PD

i=1(xu
i � xv

i )
(xu

i � xv
i )2 ) = 0:

For D-dimensional layouts of graphs, clusterizable to some extent,
Theorem A.1 leads to the following useful corollary:

Corollary A.1 Let p be a D-dimensional drawing of G = (V;E)
with minimum FlexGD energy. For any non-scaling linear trans-
formation of the coordinate system2 that partitions the vertices into
(V1; V2) in a way that in the new coordinate system 8u 2 V1; v 2
V2; 1 � i � D : xu

i < xv
i : 3

X

fu;vg2EV1�V2

k
kpu � pvkMan

kpu � pvk
+

X

fu;vg2V1�V2

kpu � pvkMan

kpu � pvk
=

X

fu;vg2V1�V2

kpu � pvkMan

kpu � pvk2 ;

where kpu�pvkMan =
PD

i=1 jx
u
i � xv

i j is the Manhattan distance
between pu and pv .

We know from Theorem 6.1 that abstraction constant may be in-
creased to shorten edges as much as necessary. Hence, provided the
graph is clusterizable into two convex subgraphs, we can increase
k to decrease the diameter of clusters (i.e. the maximum Euclidean
distance between pairs of a cluster) compared to their distance as
much as desired. If the clusters are concentrated and far from each
other, the Euclidean and Manhattan distance become almost equal.
In this case we can state:

Corollary A.2 Let p be a D-dimensional drawing of G = (V;E)
with minimum FlexGD energy. If a bipartition of vertices (V1; V2)
exists in a way that the diameter of V1 and V2 is small compared to
their distance, then:

harm(V1 � V2; p0) �
1

1 + k � density(V1; V2)
:

Proof Putting kpu�pvk � kpu�pvkMan into Corollary A.1, we
obtain:

k jEV1�V2 j+ jV1 � V2j �
X

fu;vg2V1�V2

1
kpu � pvk

:

Replacing the right side by jV1�V2j
harm(V1�V2;p0) , the result is derived.

2This causes no change to the energy of the system.
3Notice such transformation does not exist for the layouts of all graphs.


