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ABSTRACT

The efficient processing of XQuery still poses significant challenges.
A particularly effective technique to improve XQuery processing
performance consists of using materialized views to answer queries.
In this work, we consider the problem of choosing the best views to
materialize within a given space budget in order to improve the per-
formance of a query workload. The paper is the first to address the
view selection problem for queries and views with value joins and
multiple return nodes. The challenges we face stem from the ex-
pressive power and features of both the query and view languages
and from the size of the search space of candidate views to mate-
rialize. While the general problem has prohibitive complexity, we
propose and study a heuristic algorithm and demonstrate its supe-
rior performance compared to the state of the art.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

Keywords

XML, Materialized Views, View Selection

1. INTRODUCTION
The efficient processing of XML queries raises many challenges,

due to the complex and heterogeneous XML structure, and on to
the complexity of the W3C XQuery language. XQuery is Turing-
complete, thus many performance-enhancing works focused on ac-
celerating the processing of a central language subset, typically
consisting of tree patterns. Performance enhancing techniques in-
clude efficient tree pattern evaluation algorithms [1, 2], new phys-
ical operators such as the Holistic twig join [3] and its improved
variants, query simplification and minimization [4], algebraic opti-
mization etc. To speed up XML data access, previous research has
focused on building efficient stores, exploiting XML node identi-
fiers encapsulating useful structural information, as well as build-
ing XML summaries and indices, with DataGuides [5] and D(K)
indices [6] being among the best-known proposals.

Materialized views have improved performance by orders of mag-
nitude in relational databases [7, 8, 9], and they raised interest also
in the context of XML databases [10]. The problem of rewriting
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an XML query using one view has been extensively studied e.g.,
in [11, 12, 13], and using several views, e.g., in [14, 15, 16, 17]. A
dual problem to view-based rewriting is the automated selection of
materialized views to improve the performance of a given XQuery
workload. Well-studied for relational databases [7, 8], it has also
attracted attention for XML queries and views [11, 13, 18, 19].

In this work, we consider the problem of selecting a set of views
to be materialized within a given space budget S, in order to min-
imize the processing costs associated to a given query workload
Q. We consider queries and views expressed in a large subset of
XQuery, consisting of conjunctive tree patterns (using the child and
descendant axis and existential branches) return data from several
nodes, connected with value joins. Following [14, 16, 17, 20, 21],
our views (and queries) are also allowed to store XML node iden-
tifiers, which enable interesting view joins and potentially more
efficient rewritings. We picked this language since it is among the
most expressive for which multiple-views equivalent query rewrit-
ing algorithms are known. Specifically, we rely on the rewriting al-
gorithm of [16] which, given a set of views V = {v1, v2, . . . , vn}
materialized over a database D and a query q, returns the equiv-
alent rewritings of q using the views in V . Each such rewriting is
complete, in the sense that the database is no longer needed in order
to evaluate the queries. A rewriting is expressed in a tuple-based
XML algebra, to be detailed further on.

The space budget may not suffice to store views based on which
all workload queries can be completely rewritten. In this the case,
our focus is to identify a subset of the workload, and recommend
views based on which this query subset can be rewritten, in a way
that minimizes the overall workload cost (knowing that the remain-
ing queries will still have to be evaluated in the database).

Assuming that each query qi ∈ Q is associated a weight wi ≥ 0
(for instance, reflecting the query frequency), the view selection
problem we consider is: find the set of materialized views Vbest

such that (i) the Vbest views, together, fit in the space budget,
and (ii) the weighted sum of the costs for processing all workload
queries, either through rewritings based on Vbest views or directly
from the documents, is the smallest that can be attained by any view
set satisfying (i), that is, fitting in the space budget.

In this work, we make the following contributions:

• We are the first to formalize the problem of materialized view
selection for the expressive tree pattern query with value joins
dialect we consider. We show that the space of potential
candidate views makes complete exploration unfeasible and
present several effective candidate pruning criteria.

• We leverage an existing query rewriting algorithm [16] to
propose two view selection algorithms: a benefit-oriented
greedy algorithm named UDG, reminiscent of previous al-
gorithms [11, 19], and a state search-based algorithm named



1 q := for absV ar (, (absV ar|relV ar))*
(where pred (and pred)*)? return ret

2 absV ar := xi in doc(uri) p
3 relV ar := xi in xj p // xj introduced before xi

4 pred := string(xi) = (string(xj ) | c)
5 ret := 〈l〉 elem* 〈/l〉
6 elem := 〈li〉{ (xk | id(xk) | string(xk)) }〈/li〉

Figure 1: Grammar for views and queries.

ROA, exploring many view set transformations and includ-
ing a randomized component.

• We compare UDG and ROA with their closest competitors
from the literature [11, 19]. Our experiments show that ROA
scales well beyond the algorithms of [19] and our UDG.
While ROA is slower than the algorithm of [11], we show
that it consistently recommends view sets leading to lower
processing costs. This is because ROA considers many-views
rewritings, and exploits the full spectrum of rewriting possi-
bilities our query and view language enable.

The remainder of the paper is organized as follows. Section 2
outlines our views, queries, and rewritings, while Section 3 dis-
cusses candidate view sets. Section 4 presents our view selection
algorithms, while Section 5 details the closest competitors we com-
pare with. Section 6 describes our view selection experiments. We
discuss other related works in Section 7, then we conclude.

2. VIEWS, QUERIES AND REWRITINGS
We characterize the XQuery dialect we consider in Section 2.1.

Section 2.2 presents a joined tree pattern formalism, conveniently
representing queries, while Section 2.3 describes our rewritings
based on views and the database.

2.1 XQuery dialect
Let L be a set of XML node names, and XP be the XPath{/,//,[ ]}

language [22]. We consider views and queries expressed in the
XQuery dialect described in Figure 1. In the for clause, absV ar
corresponds to an absolute variable declaration, which binds a vari-
able named xi to a path expression p ∈ XP to be evaluated start-
ing from the root of some document available at the URI uri. The
non-terminal relV ar allows binding a variable named xi to a path
expression p ∈ XP to be evaluated starting from the bindings of a
previously-introduced variable xj . The optional where clause is a
conjunction over a number of predicates, each of which compares
the string value of a variable xi, either with the string value of an-
other variable xj , or with a constant c.

The return clause builds, for each tuple of bindings of the for
variables, a new element labeled l, having some children labeled li
(l, li ∈ L). Within each such child, we allow one out of three pos-
sible information items related to the current binding of a variable
xk, declared in the for clause: (1) xk denotes the full subtree rooted
at the binding of xk; (2) string(xk) is the string value of the binding;
(3) id(xk) denotes the ID of the node to which xk is bound.

There are important differences between the subtree rooted at an
element (or, equivalently, its content), its string value and its ID.
The content of xi includes all (element, attribute, or text) descen-
dants of xi, whereas the string value is only a concatenation of n’s
text descendants [23]. Therefore, string(xi) is very likely smaller
than xi’s content, but it holds less information. Second, an XML ID
does not encapsulate the content of the corresponding node. How-
ever, XML IDs enable joins which may stitch together tree patterns
into larger ones. We assume structural IDs, i.e., comparing the IDs
id(n1) and id(n2) allows determining if n1 is a parent (or ances-
tor) of n2. Our XQuery dialect distinguishes structural IDs, value

for $p in doc("confs")//confs//SIGMOD/paper, $y1 in $p/year,
$a in $p//author[email], $c1 in $a/affiliation//country,

q $b in doc("books")//book, $y2 in $b/year, $e in $b/editor,
$t in $b//title, $c2 in $b//country

where $e=‘ACM’ and $y1=$y2 and $c1=$c2
return 〈res〉 〈tval〉{string($t)}〈/tval〉 〈/res〉

v1 for $p in doc("confs")//confs//paper, $a in $p/affiliation
return 〈v1〉 〈pid〉{id($p)}〈/pid〉 〈aid〉{id($a)}〈/aid〉

〈acont〉{$a}〈/acont〉 〈/v1〉
for $b in doc("books")//book, $c in $b//country, $e in $b/editor,

$t in $b/title, $y1 in $b/year, $p in doc("confs")//SIGMOD/paper,
v2 $y2 in $p/year, $a in $p//author[email]

where $e=‘ACM’ and $y1=$y2
return 〈v2〉 〈cval〉{string($c)}〈/cval〉 〈tval〉{string($t)}〈/tval〉

〈pid〉{id($p)}〈/pid〉 〈aid〉{id($a)}〈/aid〉 〈/v2〉
for $v1 in doc("v1.xml")//v1, $p1 in $v1/pid, $af1 in $v1/aid,

$c1 in $v1//acont//country, $v2 in doc("v2.xml")//v2,
r $c2 in $v2/cval, $t2 in $v2/tval, $p2 in $v2/pid, $a2 in $v2/aid

where $p1=$p2 and parent($a2,$af1) and $c1=$c2
return 〈res〉 〈tval〉{$v2}〈/tval〉 〈/res〉

Figure 2: XQuery query, views, and rewriting.
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Figure 3: Pattern query and views, and algebraic rewriting.

and contents, and allows any subset of the three to be returned for
any of the variables, resulting in significant flexibility.

Figure 2 shows a query q in our XQuery dialect, as well as two
views v1 and v2. The parent custom function returns true if its
inputs are node IDs, such that the first identifies the parent of the
second. Moreover, as usual in XQuery, the variable bindings that
appear in the where clauses imply the string values of these bind-
ings (e.g. $e=‘ACM’ is implicitly converted to string($e)=‘ACM’).

2.2 Joined tree patterns
We use a dialect of joined tree patterns to represent views and

queries. Formally, a tree pattern is a tree whose nodes carry labels
from L and may be annotated with zero or more among: ID, val
and cont. A pattern node may also be annotated with a value equal-
ity predicate of the form [=c] where c is some constant. The pat-
tern edges are either simple for parent-child or double for ancestor-
descendant relationships. A joined tree pattern is a set of tree pat-
terns, connected through value joins, which are denoted by dashed
edges. For illustration, Figure 3 depicts the (joined) tree pattern
representations of the query and views shown in XQuery syntax
in Figure 2. In short, the semantics of an annotated tree pattern
against a database is a list of tuples storing the ID, val and cont
from the tuples of database nodes in which the tree pattern embeds.
The tuple order follows the order of the embedding target nodes in
the database. The detailed semantics feature some duplicate elim-
ination and projection operators (from the algebra we will detail
next), in order to be as close to the W3C’s XPath 2.0 semantics
as possible. The only remaining difference is that tree patterns re-
turn tuples, whereas standard XPath/XQuery semantics uses node



op navauthorcont,//bkcont
(op)

authorID authorcont

idauthor,1 〈author〉〈bk〉bk1〈/bk〉〈/author〉
idauthor,2 〈author/〉
idauthor,3 〈author〉〈bk〉bk2〈/bk〉〈bk〉bk3〈/bk〉〈/author〉

⇒

authorID authorcont bkcont

idauthor,1 〈author〉〈bk〉bk1〈/bk〉〈/author〉 〈bk〉bk1〈/bk〉
idauthor,3 〈author〉〈bk〉bk2〈/bk〉〈bk〉bk3〈/bk〉〈/author〉 〈bk〉bk2〈/bk〉
idauthor,3 〈author〉〈bk〉bk2〈/bk〉〈bk〉bk3〈/bk〉〈/author〉 〈bk〉bk3〈/bk〉

Figure 4: Sample input and output to a logical nav operator.

lists. Algebraic operators for translating between the two are by
now well understood [24]. The semantics of a joined tree pattern is
the join of the semantics of its component tree patterns.

Translating from our XQuery dialect to the joined tree patterns
is quite straightforward. The only part of the XQuery syntax not

reflected in the joined tree patterns is the names of the elements
created by the return clause. These names are not needed when
rewriting queries based on views. Once a rewriting has been found,
the query execution engine creates new elements out of the returned
tuples of XML elements, values and/or identifiers, using the names
specified by the original query, as explained in [25]; we will not
discuss this further. From now on, for readability, we will only use
the tree pattern query representations of views and queries.

2.3 Rewritings, algebra and costs
A rewriting is an XQuery query expressed in the same dialect

as our views and queries, but formulated against XML documents
corresponding to materialized views. For instance, the rewriting
XQuery expression r in Figure 2 is an equivalent rewriting of the
query q using the views v1 and v2 in the same Figure.

An alternative more convenient way to view rewritings is under
the form of logical algebraic plans. Before presenting plans, we in-
troduce some useful logical operators. We denote by ≺ the parent

comparison operator, which returns true if its left-hand argument
is the ID of the parent of the node whose ID is the right-hand argu-
ment. Similarly, ≺≺ is the ancestor comparison operator. Observe
that ≺ and ≺≺ are only abstract operators here (we do not make any
assumption on how they are evaluated).

We consider an algebra on tuple collections (such as described
in the previous Section) whose main operators are: (1) scan of all
tuples from a view v, denoted scan(v) (or simply v for brevity,
whenever possible), (2) cartesian product, denoted ×; (3) selec-
tion, denoted σpred, where pred is a conjunction of predicates of
the form a⊙ c or a⊙ b, a and b are tuple attributes, c is some con-
stant, and ⊙ is a binary operator among {=,≺,≺≺}; (4) projection,
denoted πcols, where cols is the attributes list that will be projected;
(5) navigation, denoted nava,np. nav is a unary algebraic opera-
tor, parameterized by one of its input columns’ name a, and a tree
pattern np. The name a must correspond to a cont attribute in the
input of nav. Let t be a tuple in the input of nav, and np(t.a) be
the result of evaluating the pattern np on the XML fragment stored
in t.a. Then, nava,np outputs the tuples {t ✶

a
np(t.a)}.

Figure 4 illustrates the functioning of nav on a sample input op-
erator op. The parameters to this nav are authorcont (the name
of the column containing 〈author〉 elements), and the tree pattern
//bkcont. The first tuple output by nav is obtained by augment-
ing the corresponding input tuple with a bkcont attribute containing
the single bk-labeled child of the element found in its authorcont

attribute. The second and third nav output tuples are similarly ob-
tained from the last tuple produced by op. Observe that the second
tuple in op’s output has been eliminated by the nav since it had no
〈bk〉 element in its authorcont attribute.

The algebra also includes the join operator, defined as usual,
sort and duplicate elimination. For illustration, in the bottom of
Figure 3, we depict the algebraic representation of the rewriting r
shown in XQuery syntax at the bottom of Figure 2.

Coupling with a cost-based optimizer As stated in the Introduc-
tion, as part of the input to our problem, we assume available a
function size(v) returning the space occupancy of a view v, and a
function cost(q|V ) returning the cost to evaluate a query q based
on the view set V . The latter is the cost of evaluating q’s rewrit-
ing based on V if such a rewriting exists, otherwise, the cost of
evaluating q directly on the database.

The question arising next is: which rewriting of q using V to
consider in the cost function? Indeed, there may be several. For
example, consider the query q: /a/bval and the views v1: /aid,cont

and v2: //bid,val. Query q can be rewritten by (i) navigating in
acont of v1 to extract bval or; (ii) performing a structural join of
views v1 and v2 on the IDs of a and b and finally projecting bval of
v2. The evaluation costs of these rewritings may be different.

To get a well-defined notion of cost, we assume available an al-

gebraic cost-based optimizer, whose cost function is the same as
the one used by our view selection framework. The optimizer is
pipelined at the output of the query rewriter: for each algebraic
rewriting r of a query q found by the rewriter, the optimizer applies
logical and physical plan transformations, looking for the most effi-
cient way to evaluate r, such that the cost(q|V ) function returns the
minimum physical evaluation cost among all the minimal equiva-
lent rewritings of q using V . The cost is an aggregated measure of
I/O and CPU costs. We term the q having the minimum physical
cost the best rewriting of q using V , and by “rewriting of q using
V ” we will always designate the best rewriting.

Since computing actual view sizes or query processing costs is
too costly, we (and the optimizer) rely as usual on corresponding
estimation functions. Thus, sizeǫ(v,D) estimates the size of view
v on a database D, while costǫ(q|V ) and costǫ(Q|V ) estimate the
costs of processing a query (resp. a workload) assuming a set of
materialized views V . Details on the actual estimation functions
used in our implementation will be given in Section 6.1.

Due to the estimation error of sizeǫ, a recommended view set
whose size was estimated under S may in fact occupy more than
S. To guard against this, one could run the view selection with a
budget of (1 − f) × S, for some small f between 0 and 1. In our
experiments, this problem did not occur, but in some cases it might.

Concerning costǫ, we make a few assumptions that are well-
supported by the existing XML processing literature. First, each
physical operator has a positive cost. Second, the cost of each phys-
ical operator (such as view scan, hash join, holistic twig join etc.)
is monotonous in the size of each of its inputs, that is: if we fix all
but one inputs to the operator and add tuples to the last input, the
cost of evaluating the operator increases. Summing this up over a
fixed physical plan, the more data is added in the views on which
the plan is computed, the higher the physical plan evaluation cost.

For simplicity of notation, we will use cost, size instead of costǫ

and sizeǫ. Our problem statement can thus be formalized as:

Find the view set Vbest such that
∑

v∈Vbest
(size(v)) < S and

∑

q∈Q(cost(q|Vbest
)) ≤

∑

q∈Q(cost(q|V )) for all view sets V
fitting in S.

Minimal rewriting Each equivalent rewriting r of a query q pro-
duced by [16] is minimal, that is: one cannot obtain an equivalent
rewriting of q using only a strict subset of the view occurrences



appearing in r. For instance, the rewriting r in Figure 2, of the
form σ(v1 ⊲⊳paper.ID v2) is minimal. In contrast, a rewriting r′ of
the form π(σ(v1 ⊲⊳paper.ID v1 ⊲⊳paper.ID v2)), using the v1 view
twice, in a self-join on paper.ID, is not minimal. Considering only
minimal rewriting allows keeping view storage space and rewriting
evaluation costs low. Indeed, with our assumptions on costǫ, a non-
minimal rewriting is likely to incur a higher evaluation cost than the
non-minimal one – if only for scanning the extra view occurrences.
Rewriting complexity The rewriting algorithm we build on [16] is
computationally expensive: it extends the simpler XPath 1.0 case
when views and query have a single returning node, for which the
problem is coNP-hard [14]. As we will show, frequent calls to the
rewriting algorithm negatively affect view selection performance.

3. CANDIDATE VIEW SETS
In this Section, we first explain (Section 3.1) which views can be

considered candidates. Section 3.2 presents a set of techniques for
pruning candidate views. Finally, Section 3.3 quantifies the interest
of a materialized view using the notion of benefit.

3.1 Candidate views for a workload

DEFINITION 3.1 (CANDIDATE VIEW). A view v is a candi-

date view for a query q iff there exists an equivalent rewriting of q
using v (and possibly other views).

We denote by CS0(q) the set all candidate views for the query q,
and by CS0(Q) the candidates for all queries in a workload Q. We
start by considering candidates for tree pattern queries:

Candidate views for a tree pattern query It has been shown [16,
17] that a tree pattern view v may participate in an equivalent rewrit-
ing of a tree pattern query q only if there exists a tree embedding
φ : v → q. This embedding must preserve node labels, i.e., for any
n ∈ v, label(n) = label(φ(n)). The embedding must also respect
structural relationships between nodes:

• for any node n ∈ v and m a /-child of n, φ(m) must be a
/-child of φ(n);

• for any node n ∈ v and m a //-child of n, φ(m) must be a
descendant of φ(n).

Finally, φ must not contradict value predicates from the query,
i.e.: for any node n ∈ v, such that m = φ(n) ∈ q, if m is labeled
with a predicate of the form [val = c1] for some constant c1, then
n must not be labeled with a predicate of the form [val = c2] for
some constant c2 6= c1.

We now turn to the task of enumerating CS0 candidates. We de-
note by unlabeled tree patterns those patterns whose nodes carry
an attribute or element name, but no annotation of the form val,
cont, ID, or [val = c]. One can enumerate all candidate views
for a workload Q by (i) enumerating all unlabeled tree patterns
that can be embedded in some query q ∈ Q and (ii) creating from
each unlabeled tree pattern thus obtained, all possible tree patterns
that differ in their ID, val and cont annotations. For example, con-
sider the workload Q1 consisting of the single query q1: /a/b/cval.
Sample unlabeled tree patterns which can be embedded in q1 are:
/a, //a, //b, //c, /a/b, /a//b, . . . , /a/b/c, //a/b/c etc. In turn,
from the unlabeled tree pattern /a, one can derive e.g., the labeled
patterns /aID, /aID,val, /aID,val,cont, /acont etc.

How to estimate the size of CS0(q)? We denote the number of
nodes of q by |q| and start by counting the unlabeled tree patterns
which can be extracted out of q. For a given k < |q|, there are

(

|q|
k

)

subsets of q nodes, and in the worst case, each subset determines
a sub-pattern of q, having k edges (counting also the edge above
the sub-pattern root, e.g., in Figure 3, the // edge above the confs

node). Each such edge could be labeled / or //. Thus, the number
of unlabeled tree patterns of k nodes that can be constructed from
a query q is, in the worst case,

(

|q|
k

)

× 2k.
We now consider building candidate views out of an unlabeled

tree pattern tul. Let n be a node of tul such that there is an embed-
ding from φul : tul → q for some q in the workload. To obtain a
labeled tree pattern t (candidate view) out of tul, we need to decide
on the annotations of each node n′ ∈ t corresponding to n ∈ tul.
We can annotate n′ with any of the four subsets of the attribute set
{ID, cont}, to indicate whether t stores an ID and/or the full se-
rialized XML image of the node. With respect to the val attribute,
two cases occur: (i) if the query node φul(n) is annotated with a
predicate of the form [val = c], one may label n′ with either val,
[val = c] or no val label; (ii) if φ(n) has no such predicate, we can
annotate n′ with val, or omit the val label, but we cannot annotate
with [val = c] for any constant c, since this would prevent the ex-
istence of an embedding φ : t → q and thus prevent t from being
a candidate view for q. Thus, in the worst case, there are 3 val
annotation possibilities for n′, which, multiplied by the 4 possibil-
ities of ID, cont annotation, lead to 12 possible node annotations
for n′. Assuming the size of tul (and t) is k, the node annotation
possibilities alone lead to 12k possible t trees out of a given tul.

Based on this, out of a query q, the number of candidate views
of size k is:

(

|q|
k

)

×2k×12k , where the 2k factor is due to the edge

labeling possibilities and the 12k factor is due to node annotations.
It follows that |CS0(q)| is:

|q|
∑

k=1

(

|q|

k

)

× 2k × 12k =

|q|
∑

k=0

(

|q|

k

)

× 24k − 1 = 25|q| − 1

We end the discussion of candidate views for tree pattern queries
with an interesting remark. Given a workload Q and view set V ,
we say a view v ∈ V is useful if v is used in the best rewriting
of some query q ∈ Q using V . The set of useful candidate views
for a query is guaranteed to be quite small: it turns out that a min-
imal rewriting of a tree pattern query q uses no more than 2 × |q|
views [16]. However, we do not know which are the useful views
before rewriting all the queries; moreover, our aim is to select views
that are globally best for the whole workload. Thus, one cannot use
this known small bound to prune out candidates.

Candidate views for a query with value joins We now turn to
the case of a tree pattern query q with value joins. One can show
that a view v may participate to an equivalent rewriting of q only if
there exists a set of tree embeddings φ1 : tv1 → tq1, φ2 : tv2 → tq2
etc. embedding each view tree pattern to some query tree pattern,
and satisfying the following condition. For each value join in v of
the form nv

i .val = nv
j .val, where nv

i , nv
j are nodes in the view

tree patterns tvi , respectively tvj , the query must feature a value join
edge between the nodes φi(n

v
i ) and φj(n

v
j ).

For example, consider the view v2, with a value join between
the year nodes of its tree patterns, and the query q in Figure 3. Let
φl the embedding from v2’s left subtree into the right subtree of q,
and φr the embedding from v2’s right subtree into the left subtree
of q. Observe that φr and φl map the year nodes of v2 into the two
year nodes of the query, thus the condition for v2 to participate in
some rewriting of q is satisfied. The intuition is that a view with
“more join predicates” than the query cannot be used to rewrite it,
following the similar property of relational containment mappings.

More generally, let q be a query q consisting of k tree patterns
tqi , 1 ≤ i ≤ k, and assume q has m value joins. We enumerate
the candidate views as follows. (i) Build the candidate view sets
CS0(t

q
i ) for 1 ≤ i ≤ k; (ii) For each subset {i1, i2, . . . , in} of

{1, 2, . . . , k}, and each set of candidate tree patterns t1 ∈ CS0(t
q
i1
),



t2 ∈ CS0(t
q
i2
) etc., create the candidate view t1 × t2 × . . . × tn.

Then, let JE be the set of query value join edges, such that em-
beddings from t1, t2, . . . , tn into the query reach both ends of the
value join edge. For each subset of J ⊆ JE, we generate a distinct
candidate view by pushing on top of t1 × t2 × . . . tn the join con-
ditions of J . Overall, the number of candidate views for q is bound
by 2m × |CS0(t

q
1)| × |CS0(t

q
2)| × . . .× |CS0(t

q
k)|.

For example, in Figure 3, to obtain candidate views for q, one
can first chose {i1 = 1} and generate the set CS1

0 of all candi-
date tree patterns for the left subtree of q; then, chose {i1 = 2}
and generate the set CS2

0 of all candidate tree patterns for q’s right
subtree; finally, choosing {i1 = 1, i2 = 2} leads to enumerating
all combinations of the form {t1, t2 | t1 ∈ CS1

0, t2 ∈ CS2
0} and,

for each such t1 and t2: (a) add the view t1 × t2 to the candidate
set of q; (b) if t1 and t2 both have a year node, also add the view
t1 ⊲⊳year.val t2 to the candidate set.

The number of candidate views for all queries in a workload may
be prohibitively high. Of course, the more commonality the queries
exhibit, the more common candidates they may have, but this still
leaves a large number of candidate views.

3.2 Pruning candidate views
We now describe several methods for pruning candidate views.

We start by introducing two important notions. Let Q be a work-
load and V1, V2 be two candidate view sets.

DEFINITION 3.2 (REWRITING POWER PRESERVATION). If,

for every query q ∈ Q and rewriting r of q using views in V1, there

exists a rewriting r′ of q using views from V2, we say that replacing

V1 with V2 preserves rewriting power.

Rewriting power preservation ensures that V2 enables to rewrite
at least the queries V1 did. However, it says nothing about the cost
of the rewritings using V2. The following notion is more restrictive:

DEFINITION 3.3 (REWRITING COST PRESERVATION). If (i)
replacing V1 with V2 preserves rewriting power and (ii) for any

query q ∈ Q and rewriting r of Q using V1, there exists a rewriting

r′ of q using the views V2 such that costǫ(r′) ≤ costǫ(r), we say

that replacing V1 with V2 preserves rewriting costs.

Now several candidate view pruning techniques are described.
Based on a set of candidate views V , our first techniques each focus
on a tree pattern query. Then we discuss pruning methods targeting
queries with value joins.

ALLID For any view v ∈ V , let vID be the views obtained by
copying v and then adding the ID annotation to all nodes (vID may
or may not be identical to v). The transformation ALLID consists
of replacing V with the set V ′ = {vID|v ∈ V }. In other words,
we only keep the views where all nodes are annotated with ID.
For example, consider the query q and the view cv7 of Figure 5.
The transformation ALLID removes the view cv7 from the set of
candidate views and replaces it with cv4 that has the ID annotation
in all of its nodes.

It is easy to see that ALLID preserves rewriting power: stor-
ing more IDs enables more joins among the views (and thus, more
rewritings). However, it may not preserve rewriting costs, since
storing IDs for all nodes may increase the view size. To com-
pensate, our view selection algorithms aggressively prune out IDs
which turn out not to be used by the best rewritings, as we will
explain in Section 4.
TRIMAXIS We have mentioned earlier in this Section that by label-
ing candidate view edges either / or //, one gets 2k possible edge
labelings for a k-node view. Our TRIMAXIS transformation elimi-
nates some of the options brought by the edge labeling possibilities.

For example, consider a workload consisting of the query q of Fig-
ure 5 and a view set including the candidate views cv5 and cv6 in
the same Figure. In this case, TRIMAXIS will remove cv5, since it
has an ancestor-descendant edge // mapped only to a parent-child
query edge, and will preserve cv6, identical to cv5 except for the
label of the edge between the a and c nodes.

Formally, we define this pruning as follows: let v1, v2 be two
views in V , identical except for one edge: e1 in v1 is of the form
n1
1/n

2
1, and e2 in v2 is of the form n1

2//n
2
2, n1

1 and n1
2 have the

same label, while n2
1 and n2

2 have the same label. Assume that
for every q ∈ Q and every embedding φ2 : v2 → q, there is an
embedding φ1 : v1 →q such that φ1(n

1
1) = φ2(n

1
2), φ1(n

1
2) =

φ2(n
2
2) and φ1, φ2 coincide on all the other nodes of v1 and v2.

Then, TRIMAXIS transforms V into the view set V ′ = V \ {v2},
in other words it removes v2.

It can be shown that TRIMAXIS preserves rewriting power, be-
cause for every rewriting r based on v2 one can build a rewriting r′

based on v1 computing the same results.
TRIMAXIS also preserves rewriting costs, since v1 stores at most

as much data as v2.
One may wonder whether TRIMAXIS should not also work the

other way around, that is, prune views with / edges if they only
match // edges in workload queries. However, such views are not
candidates, because they do not embed into the query. For instance,
if the query is //a//bcont, the view //a/bcont cannot be used to
rewrite it, thus it is not a candidate view.
TRIMVAL Let v ∈ V be a view and n be a view node. Assume
that the set of all embeddings of v into workload queries is {φ1 :
v → q1, φ2 : v → q2, . . . , φk : v → qk}. Assume that for any
1 ≤ i ≤ k, the query node φi(n) is neither annotated val nor with
a predicate of the form [val = c] neither takes part in any value-
join. Transformation TRIMVAL replaces v in V with a copy v′, in
which the copy of n is not annotated val.

For instance, in Figure 5, TRIMVAL replaces the view cv3 with
a copy of cv3 whose a node is not annotated with val. The replace-
ment takes place since the a query node q is not labeled val, nor
[val = c], and does not take part in a value join.

TRIMVAL preserves rewriting power, since it removes only val
annotations that are useless in any rewriting. It also preserves rewrit-
ing cost, since eliminating val reduces view space occupancy with-
out breaking any useful rewritings.
TRIMCONT It seems natural to remove unused cont annotations
just like val ones. One must take into account, however, that cont
attributes can be used by rewriting in a way that val does not sup-
port: as explained in Section 2.3, one may navigate by applying an
XPath expression within a cont attribute, to extract a subset of the
data stored in that node (recall the example in Figure 4). Thus, be-
fore removing a cont, one must ensure this does not prevent some
interesting navigation.

Formally, let n ∈ v be a node in a candidate view v and let
{φ1 : v → q1, φ2 : v → q2, . . . , φk : v → qk} be the set of all
embeddings of v into Q queries. If for any 1 ≤ i ≤ k, the query
node φi(n) is (i) not annotated cont and (ii) a leaf in qi, transfor-
mation TRIMCONT replaces v with a copy v′, in which the copy
of n is not annotated cont. For instance, in Figure 5, TRIMCONT

removes cv1 and replaces it with a copy thereof, where the b node
is not annotated cont. It is easy to show that TRIMCONT preserves
rewriting power and cost as it removes only useless annotations.

We now present a candidate view pruning technique specific to
workloads with value joins.
NOCART Eliminating views with cartesian products, i.e., those
having a tree pattern unconnected (by a value join) to any other
tree pattern, can significantly reduce the number of candidates. For
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Figure 5: Sample query and some of its candidate views.

instance, for a query of 2 tree patterns t1, t2 combined by a value
join, avoiding cartesian products leads to an upper bound reduction
from 2× |CS(t1)|× |CS(t2)| to |CS(t1)|+ |CS(t2)|. However, in
the (unlikely) case that the query features a cartesian product, and
that the space budget allows it, it may be a good idea to materialize
it. We define transformation NOCART as pruning away views with
a cartesian product such that in the query, the corresponding tree
patterns are connected by a value join (we omit the formalization
for brevity). In a nutshell, NOCART only allows query-inspired
cartesian products; it preserves rewriting power and cost.

Candidate view set CS1 For a tree pattern query q, we denote by
CS1(q) the set obtained from CS0(q) by applying ALLID, TRI-
MAXIS, TRIMVAL, TRIMCONT and NOCART exhaustively, un-
til none of them applies any more. ALLID is guaranteed to re-
move some views from CS0(q), leading to a bound for |CS1(q)| of
1/2× (25|q| − 1). The impact of TRIMVAL and TRIMCONT on the
number of candidate views depends on the workload. For example,
in Figure 5, we mark the views that are included in CS1(q) with
“X” and the ones pruned out with “×”.

Since the size of CS1(q) may still be quite high for large queries,
we introduce a last pruning:
LIN This technique removes all non-linear views, i.e., having a
node with more than one child. (Only when) applied after ALLID,
which ensures IDs on all nodes, LIN preserves rewriting power,
however, it may not preserve rewriting costs.

Based on LIN, we identify a smaller candidate set:

Candidate view set CS2 We denote by CS2(q) the candidate view
set obtained by applying LIN to CS1(q). For a workload Q, we set
CS2(Q) = ∪q∈Q CS2(q). For instance, in Figure 5, the candidate
view cv2 is part of CS1(q), but not part of CS2(q).

3.3 Benefit of a view set
Let V be candidate view set for the workload Q. To quantify the

positive impact of materializing the views in V , we define:

DEFINITION 3.4 (BENEFIT OF A VIEW SET). The benefit of a

view set V is defined as the savings created by V in the processing

costs of Q:

b(V,Q) =
∑

q∈Q

(wi × (cost(q|∅)− cost(q|V )))

where wi is the weight of query qi in Q.

Notice that adding v1 alone or v2 alone to an existing view set
V may not increase its benefit, if V ∪ {v1} and V ∪ {v2} do not
enable any new interesting rewritings, while adding v1 and v2 si-

multaneously to V would increase it. This is the case when a more
efficient rewriting can be found based on V ∪ {v1, v2}.

4. VIEW SELECTION ALGORITHMS
In this Section we describe algorithms for solving the view selec-

tion problem. Section 4.1 presents a simple exhaustive algorithm.
Section 4.2 presents an algorithm inspired from the classic Knap-
sack problem. In Section 4.3 we present a state and transition-based
algorithms moving from one view set to another, trying to find an
optimum under the space budget constraint.

4.1 Exhaustive search
A simple algorithm for finding the best candidate view set is:

(i) enumerate all candidate views in CS0(Q); (ii) generate the
powerset P(CS0(Q)); (iii) compute the benefit of each set V ∈
P(CS0(Q)); (iv) choose the set Vbest ∈ P(CS0(Q)) having the
maximum benefit among those who fit the space budget S.

Clearly, this algorithm computes the solution to our view search
problem. However, due to the large size of CS0(Q) and even more
of its powerset, it is unfeasible for meaningful workloads Q.

4.2 Knapsack-style view selection
Our view selection problem is closely related to the knapsack

problem. The classic knapsack problem considers a set of k items
having the space occupancy s1, s2, . . ., sk and the benefits b1, b2,
. . ., bk and tries to fill a space budget S with items so as to maxi-
mize the sum of the benefits of the selected items. However, there
is a fundamental difference: in our case, since we support multiple-
view rewritings, the benefit of selecting one view depends on the
presence of other views among those already recommended for ma-
terialization. Considering that at some point during the algorithm
we have selected the view set V , what we need to identify next is
the candidate view (among those not already in V ) that would lead
to the greatest benefit together with the views in V .

We adapt knapsack-style view selection to our setting as follows.

DEFINITION 4.1 (VIEW UTILITY). For a given workload Q
and set of materialized views V , the utility of a view v is the ratio

between the benefit brought by materializing v next to V , and the

space occupancy of v: u(v) = b(V ∪ {v}, Q)/size(v).

Evaluating b(V ∪ {v}, Q) requires rewriting each query q ∈ Q
using V ∪{v}, which for large Q and V sets may be extremely ex-
pensive. One can reduce this effort by rewriting only some queries
q ∈ Q, namely those having a tree pattern tq into which some tree
pattern tv of v embeds. (It is easy to show that the best rewritings
of the other Q queries are not affected by the addition of v).
Utility-driven greedy (UDG) Our first utility-driven view selec-
tion algorithm, based on a given candidate view set Vc, goes as
follows: (i) initialize the recommended view set V to ∅; (ii) com-
pute the utility of each view v ∈ Vc; (iii) sort the candidate views
in descending order of their utility; (iv) add the candidate with the
highest utility to V , if it fits the space budget, and remove it from
Vc; (v) repeat (ii)-(iv) until no view v ∈ Vc has a strictly positive
utility, or the space budget S has been attained.

Observe that at step (ii), the algorithm updates the utilities af-
ter each addition to V . This is because the utility of a view v1
with respect to a view set V can either increase or decrease when
a view v2 is added to V . The utility of v1 may increase, if v1 and
v2 together enable a very efficient rewriting; the utility of v1 may
decrease if v2 is a competitor to v1, i.e., v2 enables a lower-cost
rewriting than one enabled by v1. The repeated recomputation of
utility values brings quite some overhead, especially since it re-
quires calling an expensive query rewriting algorithm, such as [16,
17]. An important remark allows to reduce this overhead: when
considering whether or not to add a view v1 to V , we only need to
find out the new rewritings (if any) that v1 enables. In turn, v1 can
only lead to new rewritings for those queries q ∈ Q such that there
is an embedding φ : v → q (as explained in Section 3.1). This
observation significantly reduces the benefit recomputation costs,
especially for large workloads.

Algorithm UDG may miss the optimal solution. For instance,
assume that query q ∈ Q can be rewritten very efficiently based on
v1 and v2, but neither v1 nor v2 suffice to rewrite q. In this case,
the benefits of v1 alone and v2 alone may be small, leading UDG



to chose neither v1 nor v2 for materialization. This prevents UDG
from realizing how interesting it would have been to add both.
4.3 State search-based view selection

One can model our view selection problem as a state search prob-
lem. Every state consists of a set of materialized views, and a bene-
fit. The initial state corresponds to a seed view set V0, having some
benefit b(V0). By adding, modifying, or removing a view from the
initial state, one can obtain another state, characterized by the view
set V , having the benefit b(V ), which may be higher or lower than
that of V0. Recall that the benefit is based on the cost of the best

rewritings that V supports. Thus, we represent view selection as an
optimal-state search problem in a directed graph, where nodes are
states, and edges are transitions from one state to another.

How should one pick the initial state, i.e., the seed set of views?
We have decided to start with V0 = Q, that is, the workload queries
themselves. If Q needs more space than S, the initial state is not a
solution. To solve this problem, we will introduce space-reducing
transitions, allowing us to reach acceptable states.

In the following, Section 4.3.1 describes a set of view set trans-
formations, while in Section 4.3.2 we present a search algorithm
based on these transformations.

4.3.1 State transformations

The transformations we use determine the space of states that we
can reach, and how fast we find interesting states. Moreover, those
we present below, when applied on subset of CS1, can always yield
another CS1 subset. Thus, there is a close relationship between the
transformations and the pruning criteria presented in Section 3.2,
which will be formalized at the end of this Section.

We start by describing a set of state transformations which can
be shown not to lose rewriting power (recall Definition 3.2). Such
transformations are most interesting for us since our goal is to max-
imize benefit, and thus to rewrite as many queries as possible.
BREAK Splitting a view in several sub-views may enable the iden-
tification of common sub-expressions across views. Transforma-
tion BREAK has three variants:

• Structural break: BREAK picks a view v ∈ V and a v edge
connecting the node n1 to its child node n2. It replaces the
view set V with V \ {v} ∪ {v1, v2}, where: v2 is a copy of
the v subtree rooted at n2, and v1 is copy of v from which
n2’s subtree is removed. BREAK also adds ID annotations
to the copy of n1 in v1 and to the copy of n2 in v2. This en-
sures that any rewriting using v is still possible by replacing
v with: v1 ⊲⊳n1≺n2

v2 if n2 is a /-child of n1, respectively,
v1 ⊲⊳n1≺≺n2

v2 if n2 is a // child of n1.

• Value-join break: BREAK picks a view v ∈ V and a j value-
join edge connecting two nodes n1, n2 ∈ v. BREAK re-
moves the j edge and adds val annotations to the nodes it
used to connect. This may lead either to two distinct views
{v1, v2} (if the removed edge was the only one connecting
them), or to a single view having one less value join.

• Cartesian product break: BREAK picks a view v ∈ V and a
cartesian product of two sub-views of v, {v1, v2}, such that
v ≡ v1 × v2. BREAK replaces v with {v1, v2}.

BREAK preserves rewriting power, since the broken join can al-
ways be reenforced, using either the ID, val attributes it intro-
duced, or a cartesian product.
JOIN Opposite to BREAK, this transformation adds to the view set
V the join of two views v1, v2 ∈ V . This transformation may
reduce costs by pushing a join from the query into some view. For
example, consider the views v1: //aID and v2: //bID,V al and the
query q1 //a//bV al. To evaluate q1, one has to scan both views,

and join them as follows: v1 ⊲⊳aid≺≺bid v2. Transformation JOIN

adds to V the new view v1,2 = //aID//bID,V al, which is exactly
the result of the join. Similarly, JOIN joins two views with a value-
join or a cartesian product. Note that JOIN joins two views only if
the resulting view respects the TRIMAXIS and NOCART pruning
techniques of Section 3.2.
GENERALIZE GENERALIZE tries to identify commonality between
workload queries by generalizing/relaxing a candidate view. Relax-
ing a candidate view may increase its space occupancy but it makes
it more reusable. GENERALIZE has two variants:

• Cont generalization: GENERALIZE picks a view v ∈ V and
a non-leaf node n ∈ v, and replaces v by a view v′ in which
the child subtrees of n have been erased and n has been anno-
tated cont. For instance, if v is //a[//b]//c[//dcont ]/eval,
GENERALIZE may replace it with //a[//b]//ccont if the c
node is chosen, or //acont if the a node is chosen.

• V al generalization: GENERALIZE picks a view v ∈ V and
a node n ∈ v which is annotated with a equality predicate of
the form n[val=c] and replaces v with a view v′ in which:
(i) node n is no longer annotated with an equality predi-
cate and; (ii) node n is annotated val. For instance, if v
is //a//b[val=3], GENERALIZE replaces it with //a//bval.

GENERALIZE applies to a view only if the resulting view re-
spects the TRIMCONT and TRIMVAL pruning techniques. GENER-
ALIZE preserves rewriting power. However, it can either increase
or decrease the storage space, and thus rewriting cost.
ADAPT A candidate view may turn out to be more general than any
of the queries into which the view embeds. In this case, transfor-
mation ADAPT adds a query-adapted view, typically smaller, which
may also reduce query cost by removing the need for processing the
view to adapt it to the query. Two variants of adaptation exist:

• Pick a view v ∈ V , a // edge e of v and an embedding
φ : v → q for some q ∈ Q. Denote by n1 the node above e
and by n2 the node below e. If φ maps e either to (a) a / path
or (b) a path of length greater than one, add to V the view v′

obtained by copying v and in the copy, replacing e with the
path to which e maps. For example, if the view v /a//d
embeds in the query /a/b/c/d, add the view v′: /a/b/c/d.

• Pick a view v ∈ V , a cont-labeled node n ∈ v and an em-
bedding φ : v → q such that φ(n) has some children. Add
to V a view v′ obtained by copying v and adding as chil-
dren to (the copy of) n in v′, all the child subtrees of φ(n) in
q. For example, if the view //acont embeds into the query
//a[//c/d]/bval , add the view //acont[//c/d][b].

Observe that the symmetric situation to our first adaptation case,
i.e., a view //a/bval and a query //a//bval, does not occur, since
such a view is not a candidate for the query (Section 3.1).
PROJECT When a view stores attributes not needed by any of the
rewritings, we can remove these stored attributes to diminish view
space occupancy. Transformation PROJECT picks a view v ∈ V
and replaces it with a view v′ restricted to a subset of the stored
attributes (ID, val, cont or [val = c]) of v.
RANDOM Adding a candidate view to the materialized view set
increases view storage size and may also increase benefit if the new
view enables some rewritings efficient enough to offset the storage
costs. Transformation RANDOM picks a candidate view not already
in V , and adds it to the view set.

Our last transformations may trade rewriting power for space:
REMOVE and REMOVE0 Removing a view decreases view stor-
age size and may reduce the benefit of a state. Transformation
REMOVE picks a view and removes it from the view set, while
REMOVE0 only removes zero-utility views. REMOVE0 preserves



rewriting power and cost, while REMOVE is not guaranteed to do
so. Both allow reducing space occupancy.

Importantly, REMOVE0 can be applied after a transition which
has added a view v1, to identify some view v2 rendered useless by
the addition of v1. In this case, REMOVE0 eliminates v2.

We also define some variations of our transformations. We con-
sider the repeated exhaustive application of a transition τ , and use
the shorthand V1

τ∗
−→ Vk to state that repeated application of τ

led from V1 to V2, from V2 to V3 etc. until Vk. In particular,
REMOVE* repeatedly removes the least benefit view from a state
V until it fits in the space budget S, REMOVE0* removes all un-
used views from a state V , while PROJECT* removes all unused
attributes from all views v ∈ V . It can be shown that the state
attained by REMOVE0*, or by PROJECT*, does not depend on the
order in which the transformations are applied.

Which transition sets suffice to reach all candidate view sets?
Since the answer depends on the candidate views and on the initial
state, we include them in the definition:

DEFINITION 4.2 (TRANSFORMATION SET COMPLETENESS).
Let Q be a workload, CS ⊆ CS0(Q) be a set of candidate views

and V0 an initial state in CS. A set of transformations T = {τ1, τ2,
. . . , τn} is CS and V0-complete iff for any set of views V ⊆ CS,

there exists a sequence of states V0

τi1−−→ V1

τi2−−→ . . .
τik−−→ V ,

where for 1 ≤ j ≤ k, τij ∈ T .

Clearly, the set {RANDOM, REMOVE} is complete for any can-
didate view set CS ⊆ CS0(Q), and initial view set V0 ∈ CS, since
RANDOM allows generating all possible candidate view sets. How-
ever, the transformation path from V0 to V may be arbitrarily long.
Below we present a more practical transformation set.

PROPOSITION 4.1. The transformation set {BREAK, JOIN,

GENERALIZE, PROJECT, REMOVE} is CS1(Q) and V0 complete

for V0 = Q.

The completeness follows from the ability of BREAK to break
the initial view set all the way to one-node ID-annotated views,
JOIN to glue back the pieces to build V , PROJECT out possible
extra annotations, GENERALIZE to annotate view nodes with cont
or val. Extraneous views can be removed with REMOVE.

We end by noting that an exhaustive application of BREAK, JOIN,
PROJECT, GENERALIZE and REMOVE on V0 = Q is still likely to
be very costly, first, because of the large number of states reached,
and second, because the calls to the rewriting algorithm (needed by
every JOIN, PROJECT, or REMOVE0) are very expensive, motivat-
ing further interest in searching for heuristics.

4.3.2 Reduce-optimize algorithm (ROA)

Based on the above transformations, we devised a search al-
gorithm with a randomized component, which we term Reduce-
Optimize Algorithm (or ROA, in short). ROA repeatedly executes
two successive phases: first, the reduce phase which seeks to re-
duce the space occupancy of a state, by applying a chain of trans-
formations on it; then, the optimize phase which attempts to in-
crease the benefit of the target state. Both phases follow a trial-
and-error approach, that is, an attempted transformation may fail
to reduce space during reduce, or fail to increase benefit during
optimize. If this happens, reduce (respectively, optimize) simply
ignores the unsatisfactory target state and continues applying other
transformations starting from the previously attained state.

One phase may also reach the desirable effect of the other, that
is, optimize can reduce the space occupation of a state and reduce

Algorithm 1: Reduce-Optimize Algorithm (ROA)

Input : Query workload Q, candidate view set CV , space budget S
Output: Best view set Vbest

1 Vbest ← ∅; V ← Q // V is the current state
2 V ← rewriteAndTrim(V, Q)
3 S ← ∅ //the set of states on which a reduce-then-optimize sequence

has been applied
4 while !timeout do

5 S ← S ∪ {V }
6 // reduce phase:
7 foreach τ ∈ {BREAK, JOIN,GENERALIZE, ADAPT, REMOVE*}

do

8 V ′ ← τ(V ) //apply τ to V
9 V ′ ← rewriteAndTrim(V ′, Q)

10 if size(V ′) < size(V ) then

11 V ← V ′ //we found a smaller state, reduce will continue
on this one

12 else
13 //ignore V ′, reduce will continue on V

14 if size(V ) ≤ S then

15 break //end of reduce phase

16 //optimize phase:
17 foreach τ ∈ {ADAPT, JOIN} do

18 V ′ ← τ(V ) //apply τ to V

19 V ′ ← rewriteAndTrim(V ′, Q)
20 if b(V ′, Q) > b(V,Q) then

21 V ← V ′

22 //seek a new state on which to apply reduce-then-optimize:
23 while V ∈ S do
24 //at most k attempts of adding a random view
25 foreach i ∈ 1, 2, . . . k do

26 V ← V ∪ {v chosen at random from CV , v 6∈ V }
27 V ← rewriteAndTrim(V )
28 if V 6∈ S then

29 break

30 if V ∈ S then
31 V ← REMOVE(V ); V ←rewriteAndTrim(V )

32 return Vbest //updated by calls to procedure rewriteAndTrim

Algorithm 2: Procedure rewriteAndTrim

Input : View set V , workload Q
Output: Restriction of V to the views and attributes needed by the

best rewritings of Q. Side effect on Vbest

1 E ← {rewrite(q, V )|q ∈ Q}
2 W ← PROJECT*(REMOVE0*(V )) //remove views and IDs not used

in the best minimal rewritings
3 if cost(Q|W ) < cost(Q|Vbest

) and size(W ) ≤ S then

4 Vbest ←W

5 return W

can increase the benefit of a state. However, most often, these ob-
jectives conflict, thus each phase strictly attempts to obtain one of
the two improvements.

As described above, reduce and optimize explore the space in
quite a linear fashion, that is, the fan-out of the search is low: if,
say, the first transition attempted on V0 during reduce does diminish
space occupancy, we move to the resulting state V1 and do not come
back to V0 to apply other transformations to it. A small search fan-
out is desirable since exploring all possibilities would lead to too
many states and unacceptably slow down the search. However, a
disadvantage is that this leads to never visiting large parts of the
search space and potentially missing interesting states. To cope
with this, whenever reduce or optimize find a state on which the
reduce-optimize sequence has already been applied, ROA jumps to
a randomly chosen state, and continues the search from there.

As Algorithm 1 shows, the best state returned by ROA is stored



in its local variable Vbest. To simplify the description, we assume
Vbest is modified by the helper procedure rewriteAndTrim (Al-
gorithm 2). This procedure is the only place where the (costly)
rewrite algorithm of [16] is called. After each call, the incoming
view set V is trimmed down by exhaustively applying PROJECT

and REMOVE0, and the trimmed-down version W is returned.
Algorithm’s ROA exploration history is stored in the set S of all

states on which reduce has been applied followed by optimize. Dur-
ing the reduce phase, it successively tries several transformations.

If a transformation reduces storage space, the next will follow
from the reduced state, otherwise, ROA will apply it again on the
start state V . The reduce phase ends either when 5 successive trans-
formations have been applied, or when the size of the state found
so far has decreased under the space budget S. Similarly, optimize

attempts to apply two transformations to increase the current state
benefit. Finally, after the two phases, we need to find a new state
to work on. If the current state (reached at the end of optimize)
has not yet gone through the two phases, ROA restarts reduce from
there. Otherwise, we successively draw k random candidate views,
and check if they enable new rewritings. Observe that rewrite-

AndTrim may remove these views, or views from V , when they
are rendered useless by a randomly-added view. We have empir-
ically set k to be 40 which gave good results; a large k increases
the chances of finding a good view but lengthens the search. Fi-
nally, if k successive view additions did not lead to a new state,
we REMOVE some views until a non-visited state is reached. ROA
needs to stop on a timeline, since completing its randomized search
would take unacceptably long.
Remarks on the implementation To increase ROA efficiency, we
let it take hints from the query optimizer, in order to restrict the
space of alternatives for its transformations. Specifically, the RE-
MOVE0 and PROJECT transformations are only applied to remove
attributes and views unused by the best rewritings of the workload
queries (instead of “unused by any rewriting”). Similarly, JOIN

only attempts to build view joins that are part of some query’s best

rewriting. This is possible thanks to the fact that rewritings are
passed as algebraic expressions from the rewriter to the optimizer,
and from there to the view selection.

Another concern is to be able to quickly identify (line 23) whether
a state is already in S . To efficiently support this, we index states by
(string) signatures of their views, as follows. Let V = {v1, v2, . . . ,
vn} be a view set and assume first that each vi is a (minimal)
tree pattern [4]. We compute serialized signatures of the V views
{s(v1), s(v2), . . . , s(vn)}, and sort them into a list s(vi1), s(vi2),
. . . , s(vin) where (i1, i2, . . . , in) is some permutation of (1, 2, . . .
, n). Then, S can be organized as a multi-level hash structure
where V is first indexed by s(vi1), then by s(vi2) and so on up
to s(vin). This structure allows determining with certainty by n
look-ups whether a given state V of n tree pattern views has al-
ready been visited. In the general case (tree patterns with value
joins), we encode a view of the form t1 ⊲⊳ t2 ⊲⊳ . . . ⊲⊳ tk as
if it was the set of views {t1, t2, . . . , tk}. This introduces some
imprecision in the state look-up, e.g., when looking up the view
set V1 = {t1 ⊲⊳ t2}, one may (also) find the different view set
V2 = {t1, t2}. In this case, one still needs to check whether the
state found by the multi-level look-up really is the same as the one
we searched for, but overall, the search remains quite efficient.

5. CLOSEST COMPETITOR ALGORITMS
An early materialized view selection work for downward XPath

(including wildcard ∗ nodes) is [11]. To select materialized views,
they use an algorithm inspired from the greedy polynomial approx-
imation of a set-cover problem [26], by defining view utility as the
number of queries that it answers. Their set-cover greedy algorithm

(which we denote SCG from now on) has an upper bound M on
the number of views that can be recommended. In our implemen-
tation of SCG, to make a meaningful comparison, we dynamically
set M to be the number of views selected by SCG that happen to
reach our space bound S .

More recently, [19] studied view selection for the same XPath di-
alect. From an XPath workload, they identify a subset of candidate
views, consisting of the minimal XPath queries based on which
at least one query may be answered. This set can be organized
as a lattice of size 2|Q| which two algorithms rely on in order to
recommend views. First, the dynamic-programming based space-
optimized algorithm (denoted SOA in the sequel) searches for the
smallest view set that can rewrite all the workload. Their second
algorithm which we denote STT seeks to optimize a space/time
trade-off. It assigns to each view a benefit computed by summing
the weights of the queries it can answer (regardless of the costs),
divided by the view size. STT then greedily selects views in the
decreasing order of their utility, until the space budget is filled up
or all workload queries can be rewritten using the views.

Conceptually, the biggest difference between these and our al-
gorithms is that they only apply for XPath queries returning single

nodes. To compensate for this, we plugged in our implementation
of SCG, SOA and STT the query rewriting, embedding etc. mod-
ules relevant for our language (Section 2).

A second important difference is that [11] and [19] assume that
each query can only be re-written based on at most one view, while
we (as well as e.g., in [14, 17, 27]) consider query rewritings based

on multiple views. This significantly complicates our setting, since
for each query q and n candidate views, up to 2n view sets may be
used to rewrite q, instead of just n. Also, as our experiments will
show, the algorithms [11, 19] by design do not capture the oppor-
tunities of multiple view-based rewritings, and in our setting, dif-
ferent algorithms exploiting these opportunities can achieve much
better savings.

6. EXPERIMENTAL EVALUATION
We now describe experiments we have performed with our and

previous view selection algorithms. Section 6.1 outlines our soft-
ware experimental framework, we describe the data and workloads
in Section 6.2 and the algorithms with their settings in Section 6.3.
Section 6.4 study candidate view set sizes, Section 6.5 algorithm
effectiveness, and Section 6.6 their efficiency. We end with a con-
clusion of the experiments.

6.1 Framework
We have implemented our view selection algorithms within a

Java-based XML data management platform that we developed.
The platform supports the materialization of the complex XML
views, featuring tree patterns with multiple returning nodes and
value joins, described in Section 2.1. View tuples are stored into
a native store that we built using the Berkeley DB library v3.3.75.
The platform also provides a view-based rewriter module which,
given a query q and a set of materialized views V , returns the best
rewriting of q using views in V , as discussed in Section 2. Its op-
timizer takes as input the rewritings (logical plans over the views),
pushes selections and projections, re-orders joins, identifies groups
of binary structural joins to be transformed in an n-ary holistic
twig join etc. Logical plans are then translated into physical plans
including operators to: scan materialized views, apply selections,
projections, value-based or structural joins (e.g., holistic joins [3]),
add Sort operators when needed etc. To evaluate tree patterns di-
rectly on the data, as well as nav operators, we implemented an
efficient XML stream-based tree pattern matching algorithm [28].
The physical plan cost estimation function costǫ takes into account
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Figure 6: Workload execution time for the workloads Q1, Q2 and Q3 based on views selected by various algorithms.
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Figure 7: Fraction of queries from the workloads Q1, Q2 and Q3, rewritten using the recommended views.

Workload |CS0|
max |CS0|

max |CS1| |CS2|
Q1 1012 1013 5944 992

Q2 1012 1013 7582 1054

Q3 1012 1013 10014 1454

Q4 1016 1016 8570 1250

Table 1: Size of candidate view sets CS0, CS1 and CS2.

the I/O cost of scanning views, as well as the CPU costs of selec-
tions, projections, joins, navigation, sort etc.

We have implemented our view size estimation function sizeǫ(v)
based on a DataGuide [5] augmented with detailed statistics for
each parent-child path p starting from the root of a document d:
number of nodes on path p, minimum, average and maximum num-
ber of children of a node on path p on each child path, minimum
and maximum string value of the nodes, number of distinct string
values, average size of cont etc.

Our sizeǫ(v) function also makes simple independent-distribution
and uniform-distribution assumptions. More elaborate estimations
such as e.g., TreeSketch [29] could easily plugged instead in our
view selection approach.

6.2 Inputs: data, queries and space budget
We used 10 synthetic XMark benchmark (xml-benchmark.org)

documents of 100 MB each resulting in a total of 1 GB.
Four our tests, we generated four random query workloads based

on the XMark document structure and content. First, we use three
tree pattern query workloads Q1 of 14 queries, Q2 having 50 queries
and Q3 of 100 queries. We picked the size of Q1 as the largest that
all algorithms could handle, and Q2, Q3 to study further scale-up.
Q1, Q2 and Q3 only have tree pattern queries; each query has be-
tween 3 and 8 nodes. We added a fourth workload Q4 of 50 queries,
10 of which have value joins; Q4 queries have between 6 and 15
nodes. All queries have 2 to 4 returning nodes.

Within each workload, we varied query selectivity as follows.
From each document (each 1⁄10 of the data), 30% of the queries
return just 1 result, 30% return a few hundred results, while 30%
return a few thousand results. The remaining 10% of the queries
return hundreds of thousands of results.

Clearly, materializing the workload is the best solution if the
space budget allows it, but the interesting area is when this is not
possible due to space constraints. For that purpose, we have taken
S =

∑

q∈Q size(q), and tested with the space budgets: S/6, S/4,
S/2 and S. The main interest of the S value is to show the mini-
mum possible query processing cost.

6.3 Algorithms and settings
We have implemented our algorithms UDG (Section 4.2) and

ROA (Section 4.3.2), as well as SCG [11], SOA and STT [19]
discussed in Section 5. Our UDG algorithm is quite similar to
STT [19]: beyond their rewriting differences, their benefits are dif-
ferent (our includes processing costs and query weights, theirs only
query weights), but the greedy approach is the same.

The SCG, SOA and STT algorithms start with the workload it-
self. Concerning our own algorithms, we used V0 = ∅ for UDG
since it proceeds by adding views (thus we start it with all the al-
lowed space free), and V0 = Q for ROA which is more powerful
and can change (break, join, adapt etc.) views in many ways. We
experimented with UDG and ROA both on the CS1 and CS2 can-
didate view sets. For the workloads we tested, they lead to similar
results, thus we report on our UDG and ROA experiments using
CS1 as a candidate view set.

We used a desktop having an Intel Xeon CPU 5140 @2.33 Ghz,
4 GB of RAM and a 60 GB SCSI hard disk at 10.000 RPM.

6.4 Candidate view set size
Our first experiment studies the size of the candidate view sets

CS0, CS1 and CS2 (discussed in Section 3.2) for the four work-
loads. Exhaustive enumeration of CS1 views is not possible even
for medium-size queries, e.g., for a tree pattern of 8 nodes, the
|CS0| bound is 258 ≈ 152 billions. Instead, we use a lower bound
CSmin

0 assuming that all workload queries are the same (thus, their
candidate views overlap) and an upper bound CSmax

0 assuming the
queries have nothing in common (thus all candidate views are dif-
ferent). We built and counted the actual sets CS1 and CS2. Table 1
shows the candidate view counts. Candidate views are reduced by
many orders of magnitude using the pruning techniques presented
in Section 3.2. This makes candidate view set search, feasible.

6.5 View selection algorithm effectiveness
We ran the existing algorithms SCG, SOA, STT and our algo-

rithms UDG and ROA on tree pattern queries, which they were all
built for (modulo the many returning nodes, for which we adapted
the competitors as explained in Section 5); we the workloads Q1,
Q2 and Q3. We then materialized their recommended views, eval-
uated the rewritings within our execution framework three times,
measured the average time, and show it in Figure 6 as a percentage
of the time to evaluate the queries directly on the database.

The first observation is that SOA, STT and UDG do not scale be-
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yond Q1. For SOA and STT, this is because they develop a candi-
date view set whose size is exponential in the size of the query, and
this does not fit in the memory for larger workloads (similarly, [19]
tests them on a 16-queries workload). For the 50-queries workload
Q2, our UDG algorithm had not finished running after two hours,
when we stopped it. This is because UDG needs to update the
benefit of every candidate view after each view addition, which in
turn requires rewriting all the workload queries for every candidate
view. Thus, for Q2 and Q3 we only measured SCG and ROA.

We also noticed that for Q1, SOA failed to recommend any view
(thus the evaluation time is plotted as 100% of the time to evaluate
on the database directly) when given a space budget of at most S/2.
This is because SOA only seeks view sets that can rewrite the whole
workload, which for Q1 could not be found at an S/2 space budget.
In contrast, as expected, the greedy STT finds interesting view sets
saving 50% of the execution costs or more.

Overall, for any workload and space budget, the ROA algorithm
achieved the largest query processing cost reductions. This is be-
cause it exploits all rewriting possibilities: it tries to use both nav-
igation (GENERALIZE transformation) and joins of several views
(BREAK and JOIN transformations), aggressively prunes needless
views and attributes (rewriteAndTrim), opportunistically modifies
candidates to suit the queries (ADAPT transformation), and finally
manages to visit sufficient parts of the search space through random
jumps (RANDOM transformation). The greedy SCG does not per-
form as well because it does not consider multiple-view rewritings.
We confirmed this intuition by inspecting the ROA-selected views:
queries were typically rewritten using 2-3 views.

Figure 7 gives a different perspective on the same experiment:
which fraction of the workload queries are rewritten based on the
recommended views. ROA also is best in this respect.

For the workload Q4 with value joins, we only ran ROA since it
is the only one handling them. Figure 8 shows (in %) the workload
evaluation cost reduction wrt evaluation on the database, and the
ratio of queries rewritten by the ROA-selected views. This confirms
the good properties of ROA also for queries with value joins.

6.6 View selection algorithm efficiency
We now study the performance of the view selection algorithms

themselves. Based on the findings of the previous Section, we study
only SCG and ROA, on the 100-query workload Q3. Figure 9 de-
picts the time needed by SCG and ROA to (i) select the views
to materialize (algorithm execution time). We let ROA run for 2
hours, and plot the time it needed to achieve 90% of its maximum
benefit; (ii) materialize the views recommended by SCG and ROA
(iii) evaluate all queries, twice based on the views. As a reference,
we also show the time to evaluate all queries twice directly on the

data. We timed two executions since views are typically material-
ized to support repeated query execution; in this case, two execu-
tions already enable the views to pay off, that is, the time to select,
materialize, and exploit the views to evaluate the queries is smaller
than the time to evaluate the queries directly on the database.

In this experiment, selecting, materializing and exploiting views
paid off even for a single execution (except, of course, when mate-
rializing the workload itself). Moreover, SCG is much faster than
ROA: SCG execution time is invisible in the Figure. This is be-
cause the greedy SCG never comes back on its decisions, whereas
ROA investigates more complex view configuration settings, and
may search for a long time due to its randomized component.

Showing the ROA time only up to attaining 90% of its biggest
benefit may seem to give it an unfair advantage, since in practice
we only stopped it after 2 hours. However: (i) increasing the view-
based evaluation time in Figure 9 by a factor of 100/90 does not
change the overall picture and (ii) the robustness of the relatively
quick cost reductions of ROA is confirmed by our next experiment.

S/6 S/4 S/2
60% 80% 100% 60% 80% 100% 60% 80% 100%

Q1 1 1 5 1 1 15 1 1 1
Q2 1 1 25 1 1 25 1 2 2
Q3 1 2 15 2 2 3 2 2 20
Q4 1 1 13 1 1 1 1 1 1

Table 2: ROA time to attain increasing benefits (minutes).

Table 2 depicts the evolution of benefit through ROA execution.
For each workload and space budget, we show the time (in minutes)
it has taken ROA to attain 60%, 80% and 100% of the biggest
benefit found in two hours. In all cases, 80% of the benefits were
attained in just 2 minutes, while the maximum benefit was always
attained within 25 minutes. While such times are still much longer
than e.g. the greedy SCG, ROA recommends much better views.
Moreover, view selection is typically an off-line process, thus we
view the running times as acceptable.

6.7 Experiment conclusion
Our experiments have shown that the candidate sets CS1 and

CS2 are of manageable size for workloads of up to 100 queries.
Working on CS1, we have demonstrated that ROA and SCG scale
up to 100 queries, whereas SOA and STT outgrow the available
memory for 50 queries. Moreover, ROA achieved better savings
(up to a factor of 8) and finds rewritings for more workload queries
than its competitors. ROA (and SCG-) recommended materialized
views lead to efficient execution; in our experiments materializing
their views paid off starting from 2workload runs. ROA’s disadvan-
tage is that being randomized, it needs to be stopped by a time-out,
and is significantly slower than SCG. However, in practice, ROA
achieves significant cost reductions (bigger than SCG) after rela-
tively short times, of the order of minutes in our experiments. This
confirms its interest for recommending views on complex XQuery
workloads featuring many return nodes and value joins.

7. RELATED WORK
Our view selection approach bears similarities to those used in

the relational databases [7, 8, 9]: breaking and joining views to
find common sub-expressions, and especially heavily relying on
the (rewriter and) optimizer’s recommended best plans, since a ma-
terialized view is only useful if the rewriting-optimization pipeline
identifies recognizes it as such.

The complexity of XML data has lead to several index propos-
als, such as the DataGuide [5], indexes for navigation in a tree [30],
adaptive path indexes of fixed length [6] etc. Indexes can be seen
as a specialized class of materialized views, based on which one



only retrieves the identifiers of nodes that need to be retrieved from
the store in order to return the query results. In contrast, we fo-
cus on materialized views that can help to completely answer com-
plex queries, featuring multiple returning nodes and value joins. In
the space of XML view-based query rewriting, closest to our work
are the equivalent rewriting algorithms: for an XPath query using
one view [11, 12, 13, 31], and for XPath/XQuery using several
views [14, 15, 16, 17, 20, 21, 27, 32]. In this work, we built a view
selection framework that exploits the recent multiple-view equiva-
lent rewriting algorithm of [16], capable of handling tree patterns
with multiple return nodes and value joins. We are the first to study
the automated selection of materialized views in this context.

Among the XML view recommender systems, the closest works
consider one-view XML query rewriting [11, 19]. We discussed
them in Section 5, implemented adapted versions of their algo-
rithms for our problem and show that our ROA algorithm scales
better than [19] which requires materializing an exponential-size
lattice, and is more effective than [11] since it exploits multi-view,
more sophisticated rewritings.

In [33] the authors study view selection to support the recon-
struction an XML subtree out of shredded data in relational tables.
They show this is NP-hard, and present a PTime approximative
solution. The focus in [18] is on recommending relational DB2
XMLTable1 materialized views for XQuery workloads. Their can-
didate views are inspired from the XPath snippets appearing in the
for, where, let and return XQuery clauses; a transformation close to
our GENERALIZE is applied to obtain more generic views. XQuery
rewriting consists of translating XQuery into SQL queries over
the XMLTable views and taking advantage of the XPath rewriting
(based on one XPath views) supported by DB2. Their selection
algorithm is a knapsack-style greedy, and experimented on a small
workload of 10 queries. They explore a more limited space of alter-
natives, since they do not split and re-compose tree patterns through
ID and structural joins, which ROA does extensively. Moreover, as
we have shown, greedy algorithms (e.g., UDG) become impractical
for complex view and query languages and multiple-view rewrit-
ings, since the repeated re-computation of benefit (through rewrit-
ing) takes prohibitive time.

8. CONCLUSIONS AND PERSPECTIVES
In this work, we considered the selection of materialized views

for an XQuery dialect consisting of joined tree patterns, and assum-
ing a rich algebraic rewriting framework capable of value, ID-based
and structural joins, XPath navigation etc. We formalized the space
of candidates which is extremely large, showed how to prune it,
and provided a transformation-based algorithm which is efficient
and effective for this problem. In the future, we plan to experi-
ment with query template as in [11, 13], grouping together similar
queries under a single representative, to support larger workloads.
We also plan to investigate the extension of the query template min-
ing approach of [13], focused on single-view XPath rewritings, to
our more complex language and query rewriting framework.
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