V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics, vol.35, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00423530

V. Acary and B. Brogliato, Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems, Systems & Control Letters, vol.59, issue.5, pp.284-295, 2010.
DOI : 10.1016/j.sysconle.2010.03.002

URL : https://hal.archives-ouvertes.fr/inria-00423576

V. Acary and F. Pérignon, Siconos: A software platform for modeling, simulation, analysis and control of nonsmooth dynamical systems, Simul. News Eur, vol.17, pp.3-4, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00522740

V. Acary, B. Brogliato, and D. Goeleven, Higher order Moreau???s sweeping process: mathematical formulation and numerical simulation, Mathematical Programming, vol.43, issue.4, pp.133-217, 2008.
DOI : 10.1007/BFb0109998

URL : http://www.inrialpes.fr/bipop/publis/AcBrGo2008MATHPROGA.pdf

V. Acary, O. Bonnefon, and B. Brogliato, Improved circuit simulator, p.2605, 2009.

V. Acary, O. Bonnefon, and B. Brogliato, Time-Stepping Numerical Simulation of Switched Circuits Within the Nonsmooth Dynamical Systems Approach, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.29, issue.7, pp.1042-1055, 2010.
DOI : 10.1109/TCAD.2010.2049134

V. Acary, B. Brogliato, and Y. Orlov, Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection, IEEE Transactions on Automatic Control, vol.57, issue.5, 2010.
DOI : 10.1109/TAC.2011.2174676

URL : https://hal.archives-ouvertes.fr/inria-00494417

V. Acary, O. Bonnefon, and B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, Lecture Notes in Electrical Engineering, vol.69, 2011.
DOI : 10.1007/978-90-481-9681-4

URL : https://hal.archives-ouvertes.fr/inria-00522358

S. Bächle and F. Ebert, Element-based topological index reduction for differential-algebraic equations in circuit simulation, Inst. f. Mathematik, 2005.

S. Bächle and F. Ebert, Graph theoretical algorithms for index reduction in circuit simulation, Inst. f. Mathematik, 2005.

J. Bastien and M. Schatzman, Numerical precision for differential inclusions with uniqueness, ESAIM: Mathematical Modelling and Numerical Analysis, vol.29, issue.3, pp.427-460, 2002.
DOI : 10.1137/0729026

URL : http://www.esaim-m2an.org/articles/m2an/pdf/2002/03/m2an01105.pdf

S. C. Billups, S. P. Dirkse, and M. C. Ferris, A Comparison of Large Scale Mixed Complementarity Problem Solvers, Comput. Optim. Appl, vol.7, pp.3-25, 1997.
DOI : 10.1007/978-0-585-26778-4_2

D. Biolek and J. Dobes, Computer Simulation of Continuous-Time and Switched Circuits: Limitations of SPICE-Family Programs and Pending Issues, 2007 17th International Conference Radioelektronika, pp.1-11, 2007.
DOI : 10.1109/RADIOELEK.2007.371451

B. Brogliato and D. Goeleven, Well-posedness, stability and invariance results for a class of multivalued Lur???e dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, vol.74, issue.1, pp.195-212, 2011.
DOI : 10.1016/j.na.2010.08.034

URL : https://hal.archives-ouvertes.fr/inria-00442081

B. Brogliato and L. Thibault, Well-posedness results for non-autonomous complementarity systems, J. Convex Anal, vol.17, pp.3-4, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00079220

M. K. Camlibel, W. P. Heemels, and J. M. Schumacher, Consistency of a time-stepping method for a class of piecewise-linear networks, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.49, issue.3, pp.349-357, 2002.
DOI : 10.1109/81.989170

M. K. Camlibel, W. P. Heemels, and J. M. Schumacher, On Linear Passive Complementarity Systems, European Journal of Control, vol.8, issue.3, pp.220-237, 2002.
DOI : 10.3166/ejc.8.220-237

M. K. Camlibel, W. P. Heemels, A. J. Van-der-schaft, and J. M. Schumacher, Switched networks and complementarity, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.50, issue.8, pp.1036-1046, 2003.
DOI : 10.1109/TCSI.2003.815195

URL : http://www.math.rug.nl/~arjan/DownloadPublicaties/cas-final.pdf

M. Cao and M. C. Ferris, A Pivotal Method for Affine Variational Inequalities, Mathematics of Operations Research, vol.21, issue.1, pp.44-64, 1996.
DOI : 10.1287/moor.21.1.44

URL : ftp://ftp.cs.wisc.edu/tech-reports/reports/1992/tr1114.ps

H. S. Chung and A. Ioinovici, Fast computer-aided simulation of switching power regulators based on progressive analysis of the switches' state, IEEE Transactions on Power Electronics, vol.9, issue.2, pp.206-212, 1994.
DOI : 10.1109/63.286813

H. Elmqvist, S. E. Mattsson, and M. Otter, Object-oriented and hybrid modeling in Modelica, J. Eur. Syst. Autom, vol.35, issue.4, pp.395-404, 2001.

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I & II, 2003.

R. Frasca, M. K. Camlibel, I. C. Goknar, and F. Vasca, State discontinuity analysis of linear switched systems via energy function optimization, 2008 IEEE International Symposium on Circuits and Systems, pp.540-543, 2008.
DOI : 10.1109/ISCAS.2008.4541474

R. Frasca, M. K. Camlibel, I. C. Goknar, L. Iannelli, and F. Vasca, Linear Passive Networks With Ideal Switches: Consistent Initial Conditions and State Discontinuities, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.57, issue.12, pp.3138-3151, 2010.
DOI : 10.1109/TCSI.2010.2052511

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Mathematical Programming, vol.24, issue.1-3, pp.99-110, 1992.
DOI : 10.1007/BF01585696

S. Greenhalgh, V. Acary, and B. Brogliato, Preservation of the dissipativity properties of a class of nonsmooth dynamical systems with the (?, ? )-algorithm, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00596961

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differentialalgebraic Problems, Series in Computational Mathematics, 1996.
DOI : 10.1007/978-3-642-05221-7

L. Han, A. Tiwari, K. Camlibel, and J. S. Pang, Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems, SIAM Journal on Numerical Analysis, vol.47, issue.5, pp.3768-3796, 2009.
DOI : 10.1137/080725258

W. P. Heemels, M. K. Camlibel, and J. M. Schumacher, A time-stepping method for relay systems, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), pp.461-466, 2000.
DOI : 10.1109/CDC.2001.914610

URL : http://aldebaran.elo.utfsm.cl/datasheet/cdc/cdc00/PDF/AUTHOR/CD001653.PDF

W. P. Heemels, J. M. Schumacher, and S. Weiland, Linear Complementarity Systems, SIAM Journal on Applied Mathematics, vol.60, issue.4, pp.1234-1269, 2000.
DOI : 10.1137/S0036139997325199

URL : https://hal.archives-ouvertes.fr/hal-00834580

J. B. Hiriart-urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, 1993.
DOI : 10.1007/978-3-662-02796-7

L. Iannelli, F. Vasca, and M. K. Camlibel, Complementarity and passivity for piecewise linear feedback systems, Proceedings of the 45th IEEE Conference on Decision and Control, pp.4212-4217, 2006.
DOI : 10.1109/CDC.2006.377145

A. Isidori, Nonlinear Control Systems, 1995.

D. M. Leenaerts and W. M. Bokhoven, Piecewise Linear Modeling and Analysis, 1998.
DOI : 10.1007/978-1-4757-6190-0

D. M. Leenarts, On linear dynamic complementary systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.46, issue.8, pp.1022-1026, 1999.
DOI : 10.1109/81.780383

T. D. Luca, F. Facchinei, and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Program, vol.75, issue.3, pp.407-439, 1996.

P. Maffezzoni, L. Codecasa, and D. D-'amore, Event-Driven Time-Domain Simulation of Closed-Loop Switched Circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.25, issue.11, pp.2413-2426, 2006.
DOI : 10.1109/TCAD.2006.882121

M. D. Marques, Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications, 1993.
DOI : 10.1007/978-3-0348-7614-8

K. Mayaram, D. C. Lee, D. A. Moinian, and J. Roychowdhury, Computer-aided circuit analysis tools for RFIC simulation: algorithms, features, and limitations, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.47, issue.4, pp.274-286, 2000.
DOI : 10.1109/82.839663

URL : http://www.ece.orst.edu/~karti/ece679/karti.pdf

J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, Journal of Differential Equations, vol.26, issue.3, pp.347-374, 1977.
DOI : 10.1016/0022-0396(77)90085-7

J. J. Moreau, Bounded variation in time, Topics in Nonsmooth Mechanics, pp.1-74, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01363799

J. S. Pang and D. Stewart, Differential variational inequalities, Mathematical Programming, vol.12, issue.2, pp.345-424, 2008.
DOI : 10.1007/s10107-004-0544-5

URL : https://hal.archives-ouvertes.fr/hal-01366027

A. Y. Pogromski, W. P. Heemels, and H. Nijmeijer, On solution concepts and well-posedness of linear relay systems, Automatica, vol.39, issue.12, pp.2139-2147, 2003.
DOI : 10.1016/S0005-1098(03)00237-1

R. T. Rockafellar, Convex Analysis, 1970.
DOI : 10.1515/9781400873173

R. W. Sargent, An efficient implementation of the Lemke algorithm and its extension to deal with upper and lower bounds, Math. Program. Stud, vol.7, pp.36-54, 1978.
DOI : 10.1007/BFb0120780

W. M. Van-bokhoven, Piecewise linear analysis and modelling, 1981.

W. M. Van-bokhoven and J. A. Jess, Some new aspects of P and P 0 matrices and their application to networks with ideal diodes, Proc. of the IEEE International Symposium on Circuits and Systems, pp.806-810, 1978.

W. M. Van-eijndhoven, A piecewise linear simulator for large scale integrated circuits, 1984.

M. T. Van-stiphout, Plato?a piecewise linear analysis for mixed-level circuit simulation, 1990.

L. Vandenberghe, B. L. Moor, and J. Vandewalle, The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits, IEEE Transactions on Circuits and Systems, vol.36, issue.11, pp.1382-1391, 1989.
DOI : 10.1109/31.41295

F. Yuan and A. Opal, Computer methods for switched circuits, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.50, issue.8, pp.1013-1024, 2003.
DOI : 10.1109/TCSI.2003.815193

D. L. Zhu and P. Marcotte, Modified descent methods for solving the monotone variational inequality problem, Operations Research Letters, vol.14, issue.2, pp.111-120, 1993.
DOI : 10.1016/0167-6377(93)90103-N

D. L. Zhu and P. Marcotte, An extended descent framework for variational inequalities, Journal of Optimization Theory and Applications, vol.58, issue.2, pp.349-366, 1994.
DOI : 10.1007/BF02192941