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Abstract: In the present work a criterion on the reduction of the stochastic dimensions has
been investigated in the context of the stochastic partial differential equations. Three different
types of equations have been analyzed: elliptical, parabolic and an hyperbolic. For each equation,
both mean and variance have been computed on some scalar output of interest. The complete
and the reduced models have been compared in terms of statistical moments. The validity and
the efficiency of a criterion based on TSI index has been investigated, and an error correlation has
been found between the error on the variance and the TSI, that will be validated in a future work
for more complex equations.
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Analyse et étude de l’influence du "Total

Sensitivity Index" dans la solutions des équations

stochastiques aux dérivées partielles

Résumé : Dans ce rapport nous avons étudié un critère pour la réduction
des dimensions stochastiques dans le contexte des équations aux dérivées par-
tielles. On a pris en compte trois types différentes d’équations : elliptiques,
paraboliques et hyperboliques. Pour chaque équation, la moyenne et la vari-
ance des quelques outputs spécifiques ont été calculées. Les modèles compléts
et réduits ont été comparés en terme de moments statistiques. On a éstimé la
précision et l’efficacité de ce critère basé sur le TSI, et on a trouvé une correla-
tion sur l’erreur permettant de lier l’erreur sur la variance et le TSI, ce qui sera
validé dans le futur sur des équations plus complexes.

Mots-clés : analyse ANOVA, EDP, incertitude, TSI, réduction des dimensions
stochastiques
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1 Introduction

In the last years the interest in the uncertainty quantification (UQ) has moti-
vated an increasing effort in the analysis of stochastic partial differential equa-
tions (sPDEs) [1]. The common requirement of the analysis of sPDEs with a
large number of parameters has motivated a series of approaches for an efficient
reduction of the stochastic dimension of the problems. In this context the major
effort has been devoted in the so-called ANOVA decomposition [2] and related
techniques. However even if efficient techniques exist for the computation of
the ANOVA decomposition terms an open question, related to the choice of of
most important parameters, remains. Recently Hestaven has proposed a strat-
egy for the dimensional reduction of ordinary differential equations based on
the so-called total sensitivity index (TSI) of the variables. The TSI of a given
variable measures the contribution of this variable to the variance, including all
the interactions with the other variables. The idea proposed by Hestaven is to
freeze (replacing with their mean value) all the variables with a TSI inferior to a
prescribed threshold. After an extensive experimental campaign, the Hestaven
criterion has been calibrated to two percent for ordinary differential equations.

The aim of the present work is to investigate numerically the possibility to
extend this criterion to sPDEs. Moreover, the idea is to set up a strategy in
order to estimate the error associated to the statistical moments when only the
reduced model is used, i.e. when all the non-important parameters are frozen,
computed with respect to the references values of the complete model.

2 ANOVA decomposition and Sobol indices

Let us consider to have a given equation, or a systems of equations, to solve
and to have an output of interest f = f(ξ). The output of the system is
dependent by d uncertainties parameters ξi assumed so that ξ = {ξ1, . . . , ξd} ∈
Ξ ⊂ R

d. In this work we assume independent distributed random variables
ξi ∈ Ξi and, consequently, the space Ξ can be obtained by tensorization of their
monodimensional spaces, i.e. Ξi ⊂ R, Ξ = Ξ1 × · · · × Ξd.

From the independence of the random variables follows directly p(ξ) =
∏

i p(ξi). Assuming f(ξ) ∈ L2(ξ, p(ξ)) then a Sobol unique functional decom-
position exists:

f(ξ) =
∑

u⊆{1,...,d}
fu(ξu) (1)

where u is a set of integers with cardinality v = |u| and ξu = {ξu1
, . . . , ξuv

}.
Each function fu is computed by the relation[3]:

fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
−

∑

w⊂u

fw(ξw) (2)

where Ξū is the space Ξ without the dimensions contained in u and ξ
ū

is the
vector ξ without the variables in u.

By definition

f0 =

∫

Ξ

f(ξ)p(ξ)dξ (3)
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is the mean of the function f(ξ). This functional decomposition is called
ANOVA if each of the 2d elements of the decomposition, except f0, verifies
for every ξi:

∫

Ξi

fu(ξu)p(ξi)dξi = 0, ∀i ∈ u (4)

Directly from eq. 4 follows the orthogonality:

∫

Ξ

fu(ξu)fw(ξw)p(ξ)dξ = 0, u 6= w (5)

2.1 Sobol sensitivity indices

We are interested in the reduction of the stochastic problem, i.e. computing
statistical moments of the function f = f(ξ) by reducing the computational cost
as much as possible. We propose to identify the important stochastic variables,
that must be retained in the stochastic analysis, by means of the so-called total
sensitivity indices (TSI) for every random variable ξi. Further details on the
choice of this criterion will be discussed in the next session.

Employing the ANOVA decomposition it is possible to decompose the vari-
ance of f = f(ξ):

σ2(f) =
∑

u⊆{1,...,d}
u 6=0

σ2
u
(fu) (6)

where

σ2
u
(fu) =

∫

Ξu

f2
u
(ξu)p(ξu)dξu (7)

and Ξu = Ξu1
× · · · × Ξuv

.
The Sobol sensitivity indices (SI), are defined as:

Su =
σ2
u

σ2
(8)

measuring the sensitivity of the variance due to the v-order (v = |u|) interaction
between the variables in ξu. It is evident that the summation of the 2d−1 Sobol
indices is equal to one. The total sensitivity indices measure the sensitivity of
each variable (or group of variables) to the overall variance:

TSIj =
∑

j∈u

Su. (9)

2.2 TSI computation from PC expansion

The computation of the Sobol indices is possible using every sample stochastic
method (Monte Carlo, quasi-Monte Carlo) but can be done in a very efficient
way when a polynomial expansion of the solution is adopted. The idea is to com-
pute the expansion of the solution (truncated) and compute the Sobol indices
from the expansion instead of computing them on the real function. Remember
the polynomial expansion:

f(ξ) = f̃(ξ) +OT =

P
∑

k=0

βkΨk(ξ) +OT , (10)

RR n° 7911
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with a number of terms related to the maximum degree of the polynomial re-

construction no and the dimension of the system d: P + 1 = (no+d)!
no!d!

. For
further details on the polynomial chaos techniques see [4]. Each element fu of
the functional decomposition of f(ξ) is approximated by the relative term f̃u:

fu(ξu) ≈ f̃u(ξu) =
∑

k∈Ku

βkΨk(ξu), (11)

where the set of indices Ku is given by

Ku =







k ∈ {1, . . . , P}|Ψk(ξu) =

|u|
∏

i=1

φαk
i
(ξui

), αk
i > 0







(12)

and φαk
i
(ξui

) are the monodimensional polynomials for every direction ξi of

degree k chosen with respect to the so-called Wiener-Askey scheme [5].
Thanks to the orthogonality it is possible to obtain directly the variance

σ̃2(f) = σ2(f̃) ≈ σ2(f) and the conditional variance σ̃2
u
(fu) = σ2

u
(f̃u) ≈ σ2

u
(fu)

from the following relations:

σ̃2(f) =

P
∑

k=1

β2
k〈Ψk,Ψk〉 (13)

σ̃2
u
(fu) =

∑

k∈Ku

β2
k〈Ψk,Ψk〉.

Sobol sensitivity indices follows directly from eq. 13:

Su ≈ S̃u =
σ̃2
u
(fu)

σ̃2(f)
=

∑

k∈Ku

β2
k〈Ψk,Ψk〉

∑P
k=1 β

2
k〈Ψk,Ψk〉

(14)

and the total sensitivity index is always defined by the equation 9.

3 Problem setting

In the framework of the PDEs, a generic second order equations, for a scalar
variable u(x, t) defined on [a, b]× [0, T ] 7→ R, reads

ω
∂u

∂t
−

d

dx

(

ν
du

dx

)

+ τ
du

dx
+ σu = f(x, t), (15)

correlated by the opportune boundary and initial conditions. For the sake of
simplicity, in the following, only Dirichlet boundary conditions are adopted







u(a, t) = α
u(b, t) = β
u(x, 0) = u0(x),

(16)

while the initial condition is a polynomial function of x.
In this work all the types of PDE have been investigated. For the elliptic

and parabolic equation we solved the scalar equations obtained directly from 20

RR n° 7911
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choosing opportunely the coefficients and setting the boundary, i.e. minimum
and maximum values allowed, for the remaining parameters, while for the hy-
perbolic equation we solved the compressible nozzle flow problem. In the first
two cases the output of the system is identified as

F (T ) =

∫ b

a
u(x, T )dx
∫ b

a
dx

(17)

while in the third case, the hyperbolic one, the output of the system is chosen
as the shock position in the divergent part of the nozzle.

For the output F (T ) the expected value and its variance is then computed
by the following relations

E(T ) =

∫

Ξ

F (T )dΞ

Var(T ) =

∫

Ξ

(F (T )− E)2dΞ. (18)

In the numerical section §4 the error with respect to the complete problem
will be computed according to the following definitions:

errmean =
|E − Er|

E
100

errvariance =
|Var−Varr|

Var
100,

where the symbol ()r represents the reduced problem.

4 Numerical results

In this section we present the numerical results obtained for three sPDEs. In
this work only uniform pdf are taken into account. Anyway, remark that the
proposed analysis can be easily extended to a pdf of whatever form. First the
complete problem, i.e. considering all the stochastic dimensions, is analyzed
with a quasi-Monte Carlo method with 400000 deterministic runs: this solution
is assumed to be the reference solution. The Sobol indices have been then
computed, as explained in §2, with PC. Proceeding progressively, the problem is
reduced freezing the unimportant variables until the monodimensional problem.
For every reduced problem the error on the expected value and the variance is
computed and correlated to the total amount of TSI relatively to the non-frozen
stochastic dimensions.

4.1 Elliptic

The elliptic equation is obtained from 17 setting

ω = 0, ν = 1, τ = 1, a = 0 and b = 1. (19)

If we indicate with the symbol ′ the derivative with respect to x the equation
reads:

u′′ + σu = f(x) = γ cos δx

RR n° 7911
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with the boundary conditions
{

u(0) = α
u(1) = β

(20)

For this equation the exact solution can be expressed as

u(x) = c1e
−√

σx + c2e
√
σx +

γ

δ2 + σ
cos δx

and the coefficient can be computed imposing the boundary conditions and
resolving the linear system

[

1 1

e−
√
σ e

√
σ

]{

c1

c2

}

=

{

α− γ
δ2+σ

β − γ
δ2+σ

cos δ

}

.

In the table 1 the bounds for the stochastic parameters are reported.

Variable Min Max Mean Uncertainty
σ 0.01 0.05 0.03 ± 66.67%
γ 8 12 10 ± 20%
δ 0.5 1.5 1.0 ± 50%
α 0.0 5.0 2.5 ± 66.67%
β 3.0 8.0 5.5 ± 45.55%

Table 1: Bounds for the stochastic variables in the elliptic problem

In the table 2 the values for the total sensitivity index, calculated as shown
in §2, are reported for the complete problem.

Variable TSI
σ 2.276639e-05
γ 6.223883e-03
δ 4.134716e-03
α 4.948589e-01
β 4.948210e-01

Table 2: TSI values for the elliptical complete problem

It is evident from the table 2 that the boundary values (α and β) are the
most important sources of uncertainties, while σ is the less influent parameter.
If we proceed freezing, in the order, σ, δ, γ and β we can compute the errors, for
the expected value and for the variance, with respect to the complete problem.

The total amount of TSI for each uncertainty in the reduced problem, is
then computed as a percentage of the total amount of TSI (of the complete
problem):

%TSI =

∑

i TSIi
∑

j TSIj
100, (21)

where the index i runs on the non-frozen variables, while j runs on all the
variables of the complete problem.

For all the problems, 400000 deterministic runs have been employed. In the
figure 1 the errors for the expected value (a) and variance (b) are reported.

RR n° 7911
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Figure 1: Errors for the mean (a) and variance (b) as function of the total
amount of TSI with respect to the complete elliptic problem.
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4.2 Parabolic

The parabolic equation is obtained from 17 setting

ω = 1, σ = 0, τ = 0, a = 0 and b = γ, (22)

with the source term f(x, t) = 0. The final equation becomes, for x ∈ [0, γ] and
t ∈ [0, T ],

∂u

∂t
− ν

∂2u

∂x2
= 0,

with boundary and initial conditions:







u(0, t) = 0
u(γ, t) = 0
u0(x, t) = Ax2 +Bx+ C.

(23)

In the following results the final time is chosen as T = 0.1. The equation 23 can
be solved employing a modal solution:

u(x, t) =

√

2

γ

+∞
∑

i=1

Ci sin

(

πxi

γ

)

e
−π2i2νt

γ2

with the coefficients Ci obtained after imposing the initial conditions:

Ci =

√

2

γ

∫ γ

0

sin

(

πxi

γ

)

u0(x)dx.

In the present work, the series is truncated and a preliminary study of conver-
gence has been performed, not reported here for brevity, in order to asset the
modal convergence of the solution.

In the table 3 the bounds for the five stochastic parameters are reported.

Variable Min Max Mean Uncertainty
ν 0.02 0.08 0.05 ± 60%
γ 0.7 1.3 1.0 ± 30%
A 2.0 4.0 3.0 ± 33.33%
B -3.0 -1.0 -2.0 ± 50%
C 0.0 2.0 1.0 ± 100%

Table 3: Bounds for the stochastic variables in the parabolic problem

The complete problem has been solved with 400000 deterministic runs and
the Sobol indices have been computed as reported in §2. In the table 4 TSI
indices are reported for the complete problem.

The parameter ν is nearly not influent, while C is the most influent. Note
that a variable with a narrow variability can be more influent than a variable
with a larger one. In this case we proceeded freezing in the order ν, A, γ and
B.

In the figure 2 the errors for the expected value (a) and variance (b) are
reported.
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Variable TSI
ν 4.675377e-03
γ 9.337960e-02
A 8.078432e-02
B 1.751148e-01
C 6.650567e-01

Table 4: TSI values for the parabolic complete problem
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Figure 2: Errors for the mean (a) and variance (b) as function of the total
amount of TSI with respect to the complete parabolic problem.
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4.3 Hyperbolic

For the hyperbolic case we considered a nozzle problem, for which an analytical
solution is possible.

The five parameters in this case are the polytropic coefficient of the gas γ, the
ratio between the external pressure and the reservoir pressure Pe/P0, the ratio
of the exit and throat area Ae/At and two coefficients used in the geometrical
representation of the nozzle shape α and β. A complete description of the nozzle
shape parametrization is given in Appendix A.

In the table 5 the bounds for the five stochastic parameters are reported.

Variable Min Max Mean Uncertainty
γ 1.3 1.5 1.4 ± 7.142%

Pe/P0 0.8181855 0.8347145 0.8264500 ± 1.0%
Ae/At 1.4 1.6 1.5 ± 6.667%

α 0.00 0.01 0.005 ± 100%
β 0.4 0.6 0.5 ± 20%

Table 5: Bounds for the stochastic variables in the hyperbolic problem

In this case the TSI for the five parameters are reported in the table 6.

Variable TSI
γ 1.701168e-01

Pe/P0 1.813889e-01
Ae/At 5.359230e-01

α 6.193598e-03
β 1.240211e-01

Table 6: TSI values for the hyperbolic complete problem

The non-important parameter in this case is α while the most influent is the
ratio Ae/At. We proceed freezing progressively α, β, γ e Pe/P0 obtaining the
errors for the expected value and variance, reported in figure 3.

5 Conclusions

In all the configurations that we studied, the error on the expected value is
always inferior to the error on the variance. Moreover, we remark that the error
on the variance is roughly a linear function of the %TSI. This result can be
used to obtain a confidence estimation when a reduced model is used in order
to reduce an high-dimensional stochastic problem.

6 Perspectives

This work, focused on the analysis of a TSI criterion for a stochastic dimensional
reduction, is part of a wider research that aims to develop efficient strategy for
the robust optimization under uncertainties. We hope to apply soon this study
to more complex configurations.
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Figure 3: Errors for the mean (a) and variance (b) as function of the total
amount of TSI with respect to the complete hyperbolic problem.
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A Geometry description of the nozzle

We report here the equations used for the geometrical description of the nozzle.
The nozzle is a classical de Laval configuration.

yc = 1 + 0.75x2

yd = 1 + αx+ βx2 + γdx
3 with γd = Ae/At − 1− α− β
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