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SOFA, a Multi-Model Framework for
Interactive Physical Simulation

François Faure and Christian Duriez and Hervé Delingette and Jérémie Allard and

Benjamin Gilles and Stéphanie Marchesseau and Hugo Talbot and Hadrien

Courtecuisse and Guillaume Bousquet and Igor Peterlik and Stéphane Cotin

Abstract SOFA (Simulation Open Framework Architecture) is an open-source C++

library primarily targeted at interactive computational medical simulation. SOFA

facilitates collaborations between specialists from various domains, by decompos-

ing complex simulators into components designed independently and organized in a

scenegraph data structure. Each component encapsulates one of the aspects of a sim-

ulation, such as the degrees of freedom, the forces and constraints, the differential

equations, the main loop algorithms, the linear solvers, the collision detection al-
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gorithms or the interaction devices. The simulated objects can be represented using

several models, each of them optimized for a different task such as the computation

of internal forces, collision detection, haptics or visual display. These models are

synchronized during the simulation using a mapping mechanism. CPU and GPU

implementations can be transparently combined to exploit the computational power

of modern hardware architectures. Thanks to this flexible yet efficient architecture,

SOFA can be used as a test-bed to compare models and algorithms, or as a basis for

the development of complex, high-performance simulators.

1 Introduction

Programming interactive physical simulations of rigid and deformable objects re-

quires multiple skills in geometric modeling, computational mechanics, numerical

analysis, collision detection, rendering, user interface and haptics feedback, among

others. It is also challenging from a software engineering standpoint, with the need

for computationally efficient algorithms, multi-threading, or the deployment of ap-

plications on modern hardware architectures such as the GPU. The development

of complex medical simulations has thus become an increasingly complex task, in-

volving more domains of expertise than a typical research and development team

can provide. The goal of SOFA is to address these issues within a highly modular

yet efficient framework, to allow researchers and developers to focus on their own

domain of expertise, while re-using other expert’s contributions.

SOFA introduces the concept of scenegraph-based multi-model representation

to easily build simulations composed of an arbitrary number of objects. The pool

of simulated objects and algorithms used in a simulation (also called a scene) is

described using a hierarchical data structure similar to scenegraphs used in graph-

ics libraries. The simulated objects are decomposed into collections of independent

components, each of them describing one feature of the model, such as state vec-

tors, mass, forces, constraints, topology, integration scheme, and solving process.

As a result, switching from internal forces based on springs to a finite element ap-

proach can be done by simply replacing one component with another, all the rest

(mass, collision models, time integration, ...) remaining unchanged. Similarly, it is

possible to keep the same solver and modify other components to compute the forces

on the GPU instead of the CPU. Moreover, the simulation algorithms, embedded in

components, can be customized with the same flexibility as the physical models.

In addition to this first level of modularity, it is possible to go one step further and

decompose simulated objects into a set of specialized models, each optimized for a

given type of computation. A physical object in SOFA is typically described using

three models: an internal model with the independent degrees of freedom (DOFs),

the mass and the constitutive laws, a collision model with contact geometry, and a

visual model with detailed geometry and rendering parameters. Each model can be

designed independently of the others, and more complex combinations are possible,

for instance for the coupling of two different physical objects. During run-time, the
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models are synchronized using a generic mechanism called mapping to propagate

forces and displacements.

SOFA was first released in 2007 [1]. Since then, it has evolved toward a compre-

hensive, high-performance library used by an increasing number of academics and

commercial companies.

This chapter is organized as follows. Section 2 introduces the multi-model frame-

work of SOFA and the component-based architecture. Section 3 details the data

structures used to represent complex scenes, and the way data is stored and propa-

gated. The high-level simulation algorithms, including ODE solution and collision

detection algorithms, are presented in Section 4, while input-outputs and the user

interface are sketched in Section 5. Complex simulation examples are shown in

Section 6, and a conclusion and perspectives are briefly drawn is Section 7.

2 Multi-model representation

Consider the deformable model of a liver shown in the left of Figure 1. It is sur-

rounded by different anatomical structures (including the diaphragm, the ribs, the

stomach, the intestines, etc.) and it is also in contact with a grasper (modeled as an

articulated rigid chain). In SOFA, this liver can be simulated using three different

Fig. 1 A simulated Liver. Left: The liver displayed in its environment. Right: Three representations

are used for the liver: one master model for the internal deformable mechanics, one for the colli-

sions, and one for the visualization. Mappings (black arrows) are used to propagate positions (X)

and velocities (V) from master to slaves, while forces (F) are propagated in the opposite direction.

models. The first is used to represent its internal mechanical behavior, which may

be computed using Finite Element Method (FEM) or other models. The geometry

of this model is optimized for the computation of internal forces, typically using a

reduced number of well-shaped tetrahedra for speed and stability. However, the best

trade-off between precision and speed in collision detection may require another
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geometrical model, while the realistic visualization certainly requires a smoother

and more detailed geometry. We thus use a second model for collision detection and

response, while a third one is dedicated to the visual rendering process. This section

presents these models and their connections.

2.1 Solid Mechanics

The deformable solid continuum shown in Figure 2 is modeled using a dynamic

or quasi-static system of particles (also called simulation nodes). The node coordi-

nates are the independent DOFs of the object, and they are typically governed by

equations of the following type:

a = PM−1 ∑
i

fi(x,v) (1)

where x and v are the position and velocity vectors, the fi are the different force

functions (volume, surface and external forces in this example), M is the mass ma-

trix and P is a projection matrix to enforce boundary conditions on displacements.

Note that the modeling of rigid body dynamics leads to the same type of equations.

The corresponding model in SOFA is a set of components connected to a com-

mon scenegraph node. Scenegraph nodes, not to be misunderstood as simulation

nodes, are discussed in Section 3. Each component is responsible for a reduced set

of tasks implemented using virtual functions in an object-oriented approach. Each

Fig. 2 Mechanical model of a liver. Boxes highlight fixed particles, while arrows denote external

forces. In order to facilitate the combination of models and algorithms, the liver is described as a

composition of specialized components.
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operator in Equation 1 corresponds to a component. MeshLoader is used to read the

topology and the geometry from a file. The coordinate vector x of the mesh nodes

and all the other state vectors (velocity v , net force ∑ f, etc.) are stored in a Mechan-

icalState, which is the core component of the mechanical model. The tetrahedral

connectivity is stored in TetrahedronSetTopologyContainer, and made available to

other components such as TetrahedralCorotationalFEMForceField, which accumu-

lates force based on the Finite Elements. An arbitrary number of force functions can

be attached to the scenegraph node, such as SpringForceField, which accumulates

the forces generated by the external surface membrane, and ConstantForceField,

which accumulates external forces to a given subset of simulation nodes (for in-

stance the pressure exerted by the diaphragm on the liver). DiagonalMass is used

to implement the product with matrix M−1. FixedConstraint implements the prod-

uct with matrix P to cancel the displacements of the particles depicted in squares

in the figure. EulerSolver implements the logic of time integration. In this example,

the connections between the components need not be represented explicitly. Each

component can query its parent node to get access to the local MechanicalState and

topology. High level algorithms, such as time integration, are implemented using

visitors traversing the data structure, as explained in sections 3 and 4.

This design is highly modular because the components are completely indepen-

dent of each other. In the example of Figure 2, replacing springs with FEM for the

membrane force only requires to replace SpringForceField with TriangleFEMFor-

ceField. Similarly, the mass matrix, stored as diagonal matrix in this example, can

be stored as a single scalar value (UniformMass) if less accuracy but faster compu-

tation is sought, in combination with an iterative implicit solver for instance.

For efficiency, the MechanicalState contains the state vectors of all the simulation

nodes of the object, to avoid multiple calls of virtual functions. The vector size is

the number of nodes, and each vector entry has the size of the node type, such as

3 for 3d particles. We use C++ templates to avoid code redundancy between scalar

types (float, double) and between node types (particles or frames, in 1d, 2d or 3d,

or generalized coordinates). In this document, the type instances are shown in the

scenegraph figures when necessary, and omitted most of the time. All the nodes in

a vector have the same type, known at compile time, to allow aggressive compiler

optimizations. Simulation nodes of different types must be gathered in different

MechanicalStates attached to different scenegraph nodes, possibly connected with

interaction forces, as discussed in Section 3.

More than 30 classes of forces are implemented in SOFA, including springs,

FEM for volumetric (tetrahedron or hexahedron) or surface (triangular shell and

membrane) deformable objects using corotational or hyperelastic formulations, and

for wire or tubular object (beam models meshed with segments), have been im-

plemented. Different types of elastic forces allow for easy and fast modeling of

the deformations (bending, compression/traction, volume, interactions between two

bodies, joints...). In rigid objects, the main components are the degrees of freedom

(a single frame with 3 rotations and 3 translations) and the mass matrix that con-

tains the inertia of the object. Surfaces can be attached to objects using mappings,

as discussed in Section 2.5.
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2.2 Other physical models

Research on interactive medical simulation is often limited to (bio-) mechanical as-

pects. However, an important step needs to be accomplished to better capture the

physiology of the patient. This involves integrating into the simulation more infor-

mation relevant to the procedure, which can be of different nature such as electrical

or fluid.

In order to simulate fluids in a free environment (like blood leaks) Smoothed-

Particle Hydrodynamics (SPH) models can be employed. This Lagrangian model

is similar to the deformable models described previously: a set of particles, with a

given mass, are linked by a force function. The method is mesh-free: at each step

of the simulation, particles are grouped by neighborhoods and attraction-repulsion

forces are computed between them. As the method relies on particles, the coupling

with deformable model can be easily done by repulsion forces (see Figure 3). More

advanced fluid models, based on Eulerian approaches, were also implemented in

SOFA (see [29] for instance).

Fig. 3 Simulation of interaction between a fluid model and a cloth model in SOFA.

The flexible structure of Sofa allows the simulation of non-mechanical phenom-

ena such as electrical waves in cardiac electrophysiology. While this topic is a work

in progress in Sofa, different ways of modeling these electrical waves have been

implemented, namely with an eikonal approach and with monodomain cell models,

see Section 6.1.

When simulating the evolution of a physical field defined on a mesh, the state

vectors of the electric potential are placed in a new component named Electrical-

State (see Figure 4). A further extension of the framework has been to allow the

coupling between mechanical and physical model evolution.

2.3 Collision models

When a lot of primitives come into contact, collision detection and response can

become the bottleneck of a simulation. Several collision detection approaches have

been implemented: distances between pairs of geometric primitives (triangles and

spheres), points in distance fields, distances between colliding meshes using ray-
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Fig. 4 Electrophysiology model: a dedicated component implements the propagation of the poten-

tial field, based on the model of Monodomain Cell.

tracing [18], and intersection volume using images [3]. The collision pipeline is

described in section 4.4 with more detail.

In order to adapt the models to the data structure of the different collision algo-

rithms, a separate collision model is employed. This model is similar to an internal

model, except that its topology and its geometry are of its own and can be stored in

a data structure dedicated to collision detection. For instance, the component Trian-

gleModel is the interface for the computation of collision detection on a triangular

mesh surfaces.

If collision detection takes too much time, or if we wish to model contacts using a

small number of points, the collision mesh can be set coarser than the internal mesh.

Conversely, if precise collision detection and response between detailed surfaces is

needed, it is sometimes suitable to use more detailed mesh for collision detection.

2.4 Visual models

In the context of surgical simulation for training, to reach the state of what is often

called suspension of disbelief i.e. when the user forgets that he or she is dealing with

a simulator, there are other factors than the mechanical behavior. Realistic rendering

is one of them. It involves visually recreating the operating field with as much de-

tail as possible, as well as reproducing visual effects such as bleeding, smoke, lens

deformation, etc. The main feature of the visual model of SOFA is that the meshes

used for the visualization can be different from the models used for the simula-

tion. The mappings described in section 2.5 maintain the coherency between them.

Hence, SOFA simulation results can easily be displayed using models much more

detailed than used for internal mechanics. They can also be rendered using external

libraries such as OGRE1 and Open Scene Graph2.

1 www.ogre3d.org
2 www.openscenegraph.org
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We have also implemented our own rendering library based on openGL. This

library allows for modeling and render the visual effects that occurs during an in-

tervention or the images that the surgeon is watching during the procedure. For

instance, in the context of interventional radiology simulator, we have developed a

dedicated interactive rendering of X-ray and fluoroscopic images.

2.5 Mappings

As previously discussed, objects simulated in SOFA, like the liver in Figure 1, typ-

ically rely on several models: one for the internal model, one for collision, and one

for the visual rendering. To enforce consistency, one of them, typically the internal

model, acting as the master, imposes its displacements to slaves (typically the visual

model and the collision model), using mappings. Mapped model can be masters of

other models in turn, creating a hierarchy whith the independent DOFs at the root.

Figure 5 illustrates the hierarchies of two objects. The visual models, in additional

branches, are omitted for clarity. The independent DOF of the objects, on top, are

the masters of contact models based on triangle vertices. When the contact models

collide, pairs of contact points are created, each point a slave of a contact model.

Let J be the function used to map the positions xm of a master model to the

positions xs of a slave:

xs = J (xm) (2)

The velocities are mapped in a similar way:

vs = Jvm (3)

The Jacobian matrix J = ∂xs

∂xm
encodes the linear relation between the master and

slave velocities. Accelerations can be mapped using:

as = Jam +
∂J

∂xm

vm (4)

In linear mappings, operators J and J are the same, otherwise J is nonlinear with

respect to xm and it can not be written as a matrix. For surfaces embedded in de-

formable cells, matrix J contains the barycentric coordinates. For surfaces attached

to rigid bodies, each row of the matrix encodes the usual relation v = ȯ+ω ×(x−o)
for each vertex.

The positions and the velocities are propagated top-down in the hierarchy. Con-

versely, the forces are propagated bottom-up to the independent DOFs, where New-

ton’s law f = Ma is applied. Given forces fs applied to a slave model, the map-

ping computes and accumulates the equivalent forces fm applied to its master. Since

equivalent forces must have the same power, the following relation holds:

vT
mfm = vT

s fs
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The kinematic relation vs = Jvm allows us to rewrite the previous equation as

vT
mfm = vT

mJT fs

Since this relation holds for all possible velocities vm, the principle of virtual work

allows us to simplify the previous equation to obtain:

fm = JT fs (5)

When a model has several slaves, each slave accumulates its contribution to the

forces on the master using its mapping. This hierarchical kinematic model allows

us to compute displacements and to apply forces at all levels. So far, 22 variants of

mappings have been implemented to attach models to rigid objects and deformable

primitives such as tetrahedra, hexahedral grids, splines, blended frames, flexible

beams and scalar fields. Mappings are also used to connect generalized coordinates,

such as joint angles, to world-space geometry, as in the grasper of Figure 5.

3 Data structure

The organization of simulation data is a complex issue. We have identified three

relevant levels, and proposed different solutions for each of them. The main struc-

ture is a scenegraph, used to hierarchically organize the groups of objects and their

different models (Section 3.1). Additionally, a network of dependencies between

component attributes can be created (Section 3.2). Finally, the geometrical models

and the topological changes deserve a special attention (Section 3.3).

3.1 Scenegraph and visitors

The main structure of the scene is defined by the scenegraph nodes, which serve

different purposes. They are used to gather the components associated with the same

DOFs or topology. DOFs connected by a mapping within a kinematic hierarchy

must be located in different nodes, and the master must be placed as parent or higher

than the slave in the hierarchy, to ensure that it is traversed first during visitor top-

down traversals. Scenegraph nodes can also be used to represent arbitrarily nested

object groups, with group elements set as children of the group node. To apply a

simulation algorithm, implemented in a high level component (Section 4), to a list

of objects, it is necessary to gather the objects in a group and to attach the component

at the root of the group or higher in the hierarchy. The nesting of sub-groups does

not impact the behavior of the algorithms, as long as masters are higher than slaves

in the hierarchy. In the example shown in Figure 6, the scene contains two objects

animated using different time integrators, collision detection components (discussed

in Section 4.4), an interaction force, and a camera to display the objects. The root
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Fig. 5 Mappings between the DOFs and the contact points. Left (top to bottom): the internal model

of the liver is based on Finite Element model. A triangular mesh is mapped for collision detection

with the surface. The two contact points found by the collision detection (with the grasper) are

mapped on the collision model. Right (bottom to top): the contact points are also mapped on the

collision model of the grasper. This collision model is a simplification of the grasper shape and is

mapped on the rigid body frames. The motion of these frame is mapped on the state of the joints

which are the independent DOFs of the grasper.

node represents the whole simulation. It contains the two simulated objects, each in a

child node, and components applied to these objects. The rigid object node contains

the independent degrees of freedom of the rigid object, a single moving frame in

this case, and the components which process the associated state vectors (positions,

forces, etc.), here only the mass. Collision spheres are attached to the rigid body

using a RigidMapping called sphereMapping, as illustrated in Figure 8. A child node

is required for the sphere centers, first because they are not independent DOFs, but

also due to the different types, frame and points. The deformable object is based

on a single set of simulation nodes, thus only one scenegraph node is necessary to

model it.
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scene

collisionPipeline

broadPhase

narrowPhase

contactManager

ContactSpring

camera

rigid

deformable

MechanicalState<Point>

MechanicalState<Point>

MechanicalState<Rigid>

rigidMass

eulerSolver

contactModel

Mapping<rigid,point>

spheres

particleMasses

spheres

rungeKutta4Solver

internalForces

Fig. 6 A scenegraph with collision detection and two independent objects interacting through a

spring. Graph nodes and components are represented by hexahedra and boxes, respectively. The

plain arrows represent the scenegrap structure, while dashed lines are pointers between components

attached to different nodes.

Connections between non-sibling components such as mappings or inter-object

force fields require explicit references, shown as dashed arrows in Figure 6. Compo-

nents shared by two objects are attached to their common group node. Most of them

process the children by sending visitors. However, since the interaction force field

is specific to a given pair of objects, it requires pointers to their MechanicalStates.

The data structure is processed using visitors, discussed below, which apply vir-

tual functions to each node they traverse, which in turn apply virtual functions to the

components they contain. In simple scenegraph frameworks, the visitors are only

fired from an external control structure such as the main loop of the application. In

SOFA, the components are allowed to suspend the current traversal to send an arbi-

trary number of other visitors, then to resume or to prune the suspended visitor. This

allows us to implement global algorithms (typically ODE solution or collision detec-

tion), such as the explicit Euler velocity update of Equation 1, in components which

fire lower-level visitors. The visitors are implemented in separate classes which are

available to all the components. The scenegraph-visitor approach neatly decouples

the physical model from the simulation algorithms, in sharp contrast with dataflow

graphs which intricate data and algorithms in the same graph. Replacing a time in-

tegrator requires the replacement of one component in our scenegraph, whereas the

corresponding dataflow graph would have to be completely rewritten.

Interactions between objects can be handled using penalty forces or Lagrange

multipliers. In all cases, a component connected to the two objects is necessary to

geometrically model the contact and compute the interaction forces. This shared

component is located in their common ancestor node. The coupling created by

penalty forces should be considered soft or stiff, depending on the stiffness and the

size of time step [4]. A soft coupling can be modeled by an interaction force constant
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during each time step. In this case, each object can be animated using its own, possi-

bly different, ODE solver. The assumption of constant interaction force during each

time step is compatible with all explicit time integration methods. However, when

the interaction forces are stiff, implicit integration is necessary to apply large time

steps without instabilities. This requires the solution of an equation system involv-

ing the two objects as well as their interaction force. In this case, the ODE solver is

placed in the common ancestor node, at the same level as the interaction component.

This is also true for constraint-based interaction which requires the computation of

Lagrange multipliers based on interaction Jacobians. Due to the superlinear time

complexity of equation solvers, it is generally more efficient to process independent

interaction groups using separated solvers rather than a unique solver.

We implement the simulation using visitors which traverse the scene top-down

and bottom-up, and call the corresponding virtual functions at each graph node

traversal. A possible implementation of the traversal of a tree-like graph is shown

in the left of Figure 7. Algorithmic operations on the simulated objects are imple-

mented by deriving the Visitor class and overloading its virtual functions topDown( )

and bottomUp( ). This approach hides the scene structure (parent, children) from the

components, for more implementation flexibility and a better control of the execu-

tion model. Moreover, various parallelism strategies can be applied independently

of the mechanical computations performed at each node. The data structure is ac-

tually extended from strict hierarchies to directed acyclic graphs to handle more

general kinematic dependencies. The top-down node traversals are pruned unless

all the parents of the current node have been traversed already, so that nodes with

multiple parents are traversed only once all their parents have been traversed. The

bottom-up traversals are made in the reverse order.

void Visitor::traverse(Node n)

bool continue = this.topDown( n )

if continue then

for all c child of n do

this.traverse( c )

end for

this.bottomUp( n )

end if

bool AnimateVisitor::topDown(Node n)

if n.animationLoop then

n.animationLoop.animate(this.dt)

return false

end if

if n.collisionPipeline then

n.collisionPipeline.modelContacts()

end if

if n.odeSolver then

n.odeSolver.solve(this.dt)

return false

end if

for all InteractionForce n.f do

n.f.apply()

end for

return true

Fig. 7 Left: a recursive implementation of the visitor traversal. Right: the AnimateVisitor.

An example of visitor is AnimateVisitor, whose traversal method triggers for-

ward time stepping, as shown in the right of Figure 7. Applied to the simple scene
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in Figure 8, it triggers the ODE solver, which in turn applies its algorithm using vis-

itors for mechanical operations such as propagating states through the mappings or

accumulating forces. Note that the traversal of the AnimateVisitor is pruned when

an ODE solver is encountered. This allows the ODE solver to take control of its

subgraph, overriding the solvers lower in the hierarchy. In the more complex scene

shown in Figure 6, the AnimateVisitor triggers the collision detection, which may

create a contact between the chidren, such as contactSpring. The visitor then trig-

gers the computation of the interaction force, which will be seen by the objects as a

constant, external force during the time step. The visitor then continues the traversal

and triggers each object ODE solver. The default behavior is to model the contacts

prior to applying time integration. To implement other strategies, an AnimationLoop

can be used to prune the visitor and apply time integration and collision detection in

a different order, possibly looping until all collisions are solved.

Liver

EulerImplicitSolver

MeshLoader

TetrahedronSetTopologyContainer

MechanicalState<Point>

DiagonalMass

TetrahedralCorotationalFEMForceField

SpringForceField

FixedConstraint

ConstantForceField

ContactModel

BarycentricMapping<point,point>

MechanicalState<Point>

TSphereModel

Fig. 8 Left: simple internal (blue) and collision (yellow) models of a liver. Right: the correspond-

ing scenegraph. The plain arrows denote hierarchy, while the stippled arrows represent connections.

3.2 Data and Engines

Component parameters are stored in member objects using Data containers, tem-

plated on the type of attribute they represent. For instance, the list of particle indices

constrained by a FixedConstraint is stored in a Data< vector<unsigned> >. These contain-

ers provides a reflective API, used for serialization in XML files and the automatic

creation of input/output widgets in the user interface, as discussed in Section 5. Ad-

ditionally, we can create connections between Data instances to keep their value

synchronized. This is used for instance when a Loader component loads several at-

tributes from a file (such as topology, positions, stiffnesses, boundary conditions)

which are then connected to one or more components using it as input. In some

cases we need to not simply copy an existing value but compute it from one or sev-

eral others. This feature is provided by Engine components. Engines contain input
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and output Data, and their update method computes the output based on the input.

A mechanism of lazy evaluation is used to recursively flag Data values that are not

up-to-date, but they are recomputed only when necessary. For instance, based on a

bounding box and a vector of coordinates, a BoxROI engine computes the list of

indices of the coordinates inside the box. These indices can then be used as input of

a FixedConstraint to define a fixed boundary condition. With this design, the simu-

lation can transparently be setup either from data stored in static files, or generated

automatically with engines.

The network of interconnected Data objects defines a data dependency graph,

superimposed on the scenegraph. This two-graph framework has been used in other

graphics software such as OpenInventor and Maya, where the engines are used to

generate the animation, by periodically updating the state vectors using time as in-

put, while the scenegraph represents the frame hierarchy. This approach works well

for straightforward animation pipelines, such as keyframe interpolation, but it does

not easily allow the branching and loop control structures used in more sophisti-

cated physical simulation algorithms. It is also a rather low-level representation,

essentially encoding every computation steps required to compute a given Data.

Consequently, we only use engines to implement straightforward relations between

the parameters of the model, which may remain unchanged during the simulation. In

SOFA, the state update algorithms are implemented in components communicating

using scenegraph visitors, as explained in Section 4.

3.3 Topology and Geometry

While mesh geometry describes the location of mesh vertices in space, mesh topol-

ogy indicates how vertices are connected to each other by edges, triangles or any

type of mesh element. Both information are required on a computational mesh to

perform mesh visualization, mechanical modeling, collision detection, haptic ren-

dering, scalar or vectorial field description. We consider meshes that are cellular

complexes made of k-simplices (triangulations, tetrahedralisation) or k-cubes (quad

or hexahedron meshes). These meshes are the most commonly used in real-time

surgery simulation and can be hierarchically decomposed into k-cells, edges being

1-cells, triangles and quads being 2-cells, tetrahedron and hexahedron being 3-cells.

To take advantage of this feature, the different mesh topologies are structured as a

family tree (see Fig. 9) where children topologies are made of their parent topology.

This hierarchy makes the design of simulation components very versatile since

a component working on a given mesh topology type will also work on its derived

types. For instance a spring-mass mechanical component only requires the knowl-

edge of a list of edges (an EdgeSetTopology as described in Fig. 9) to be effective.

With this design, a spring-mass component can be used at no additional cost on

triangulation or hexahedral meshes that derive from an EdgeSetTopology mesh.
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Fig. 9 Hierarchy of mesh topology. Dashed arrows indicate possible Topological Mappings from

a topology object to another.

Topology objects are composed of four functional members( Container, Mod-

ifier, Geometry and Algorithms ) to create, modify the topologies arrays, or give

access to geometrical and adjacent information.

Another important concept introduced in SOFA is the notion of Topological

Mapping. Those mappings define a mesh topology from another mesh topology

using the same DOFs. These topologies will therefore be assigned to the same Me-

chanicalState. For instance, one may need to apply specific forces on the surface

bounding a volume (for instance to model the Glisson capsule surrounding the liver

parenchyma). In this context, a Tetra2TriangleTopologicalMapping may be used to

generate in a subnode (for instance the node Surface in Figure 10) the list of tri-

angles on the border of a tetrahedral surface. Similarly, one may obtain the set of

edges bordering a triangular mesh or the set of quads at the surface of an hexahedral

mesh. Topological mapping may also be used to split topological cells into other

types of cells. Thus, a quad may be split into 2 triangles and an hexahedron into 5 or

6 tetrahedra. Specific mapping components exist to create a tetrahedral mesh from

a set of hexahedra or to create triangular meshes from quads.

Mesh Data Structure

Specific data structure storing mesh information (material stiffness, list of fixed ver-

tices, nodal masses, ...) are stored in components and are spread out in the sim-

ulation tree. They consist of simple arrays with contiguous memory storage and a
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MecaNode

MeshTetahedrisationLoader

MechanicalState<Point>

TetrahedronSetTopologyContainer

TetrahedronSetTopologyModifier

TetrahedronSetTopologyAlgorithms

TetrahedronSetGeometryAlgorithms

Surface

TetraToTriangleTopologicalMapping

TriangleSetTopologyContainer

TriangleSetTopologyModifier

TriangleSetTopologyAlgorithms

TriangleSetGeometryAlgorithms

Fig. 10 Scenegraph of a simple tetrahedral mesh where a topological mapping is defined to have

the set of triangles located at the surface of the volumetric mesh, with their DOF in the parent scene

node.

short direct access time. This is important for real-time simulation, but bears some

drawbacks when elements of these arrays are being removed since it entails the

renumbering of elements. Fortunately, all renumbering tasks that maintain consis-

tent arrays can be automated and hidden to the user when topological changes in the

mesh arise. Therefore, efficient access of mesh data structures is granted while the

complexity of keeping the arrays consistent with topological changes is automated.

There are as many specific data structures as topological elements, currently:

vertices, edges, triangles, quads, tetras, hexas. These containers are similar to the

STL std::vector classes and allow one to store any component-related data struc-

ture. A typical implementation of spring-mass models would use an edge container

that stores for each edge, the spring stiffness and damping value, the ith element of

that container being implicitly associated with the ith edge of the topology.

4 Simulation Algorithms

While typically most components in a scene implement low-level methods implying

a small number of other components, such as accumulating force or mapping state

vectors, some of them perform more abstract operations to implement simulation

algorithms applied to arbitrary scenes, by overloading visitor traversals and firing

their own visitors. These include ODE integration, linear equation solution, complex

constraints, and collision detection, and may also involve components implemented

on the GPU.
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4.1 ODE solvers

ODE solvers implement animation algorithms applied at each time step to integrate

time and compute positions and velocities one time step forward in time. The solvers

do not directly address the physical models. Each state vector used by a solver (such

as position or force) is actually scattered over all the MechanicalStates in the differ-

ent scenegraph nodes in the scope of the solver. The state vectors are thus denoted

by symbolic identificators, called VecIds. Each mechanical operation, such as allo-

cating a state vector or accumulating the forces, is implemented using a specialized

visitor parameterized on VecIds and on control values such as the time step. A given

VecId uniquely identifies the corresponding state vector in each MechanicalState.

This allows one to implement the solvers completely independenly of the physical

model, as illustrated in the algorithm shown in Figure 11. This design avoids the

void ExplicitEulerSolver::solve(VecId x, VecId v, double dt)

create auxiliary vectors a,f

resetForce(f)

accumulateForce(f,x,v)

computeAcceleration(a,f)

project(a,a)

v += a * dt

x += v * dt

Fig. 11 Euler’s explicit time integration. Each statement is implemented using a visitor.

assembly of global state vectors (i.e. copying Vec3 and quaternions to and from vec-

tors of scalars). Moreover, the virtual function calls are resolved at the granularity of

the state vectors (i.e. all the particles together, and all the moving frames together)

rather than each primitive (i.e. each particle and each frame independently), and al-

low to optimize each implementation independently. There is thus virtually no loss

of efficiency when mixing arbitrary types in the same simulation.

Explicit ODE solvers are variants of the Euler explicit solver presented in Fig-

ure 11, and are easily implemented in Sofa using the same operators. Implicit

solvers, which consider the derivative at the end or somewhere in the middle of

the time step, typically require the solution of equation systems such as:

(αM+βB+ γK)
︸ ︷︷ ︸

A

δv = b (6)

where M is the mass matrix, while K = ∂ f
∂x

and B = ∂ f
∂v

respectively are the stiffness

and damping matrices (the method is explicit if β and γ are null). In order to apply

simple displacement constraints, a projection matrix P can be used [4], and the sys-

tem becomes PT APδv = PT b. Implicit integration has the advantage of being more

stable for stiff forces or large time steps. The solution of these equation systems

requires linear solvers, discussed in the next section. Currently, eight ODE solvers
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have been implemented, including symplectic Euler and explicit Runge-Kutta4, im-

plicit Euler and statics solution.

4.2 Linear solvers

Conjugate Gradient An interesting feature of visitor-based mechanical computa-

tions is their ability to efficiently and transparently compute matrix products. Thus,

we have proposed in SOFA an implementation of the Conjugate Gradient, based

on the graph traversal. The visitor shown in Figure 12 computes the force change

df based on a given displacement dx, as repeatedly performed in Conjugate Gra-

dient algorithm. An arbitrary number of forces and projections may be present in

all the nodes, resulting in a complicated stiffness matrix, as shown in the following

equation:

df = ∑
i

(

∏
j∈path(i)

J j

)T

Ki

(

∏
j∈path(i)

J j

)

dx (7)

where Ki is the stiffness matrix of force i, matrix J encodes the first-order mapping

relation of a node with respect to its parent, and path(i) is the list of mappings from

the independent DOFs to the node the force applies to. This complex product is

bool ComputeDfVisitor::topDown():

dof.resetF(this.df)

if mapping then

mapping.applyJ(this.dx)

end if

return true

void ComputeDfVisitor::bottomUp():

for all forceField F do

F.addDF( this.df,this.dx )

end for

if mapping then

mapping.applyJT(this.df)

end if

Fig. 12 Computing df given dx using a visitor. The top-down visitor propagates the given dis-

placement and clears the force vectors, while the bottom-up visitor accumulates the forces and

maps them up to the independent DOFs.

computed using only matrix-vector products and with optimal factoring thanks to

the recursive implementation. It allows us to efficiently apply implicit time integra-

tion to arbitrary scenes using the Conjugate Gradient, and to trade-off accuracy for

speed by limiting the number of steps of the iterative solution.

Direct Solvers Direct solvers are also available in SOFA. They can be used

as preconditionners of the conjugate gradient algorithm [8] or for directly solv-

ing equation 6. Their implementation are based on external libraries such as Eigen,

MKL and Taucs. When dealing with Finite Element Models, the matrices are gener-

ally very sparse and efficient implementations based on sparse factorizations allow

for fast computations. Moreover, when dealing with specific topologies, such as

wire-like structures, tri-diagonal band solvers can be used for extremely fast results
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in O(n) These different linear solvers address matrices which can be stored in dif-

ferent formats, adapted to the numerical library. The type of matrix is a parameter

of the linear solver, and of the visitors the solver uses. Ten linear solvers have been

implemented in SOFA. They can be interchanged to compare their efficiency.

4.3 Constraint solvers

SOFA allows the use of Lagrange multipliers [12] to handle complex constraints,

such as contacts and joints between moving objets that can not be straightforwarly

implemented using projection matrices as in Section 4.1. They may be combined

with explicit or implicit integration. Each constraint depends on the relative position

of the interacting objects, and on optional parameters (such as a friction coefficient,

etc.)3:
Φ(x1,x2, ...) = 0

Ψ(x1,x2, ...)≥ 0
(8)

where Φ represents the bilateral interaction laws (attachments, sliding joints, etc.)

whereas Ψ represents unilateral interaction laws (contact, friction, etc.). These func-

tions can be non-linear. The Lagrange multipliers are computed at each simulation

step. They add force terms to Equation (6):

A1δv1 = b1 +HT
1 λ

A2δv2 = b2 +HT
2 λ

(9)

where

H1 = [
δΦ

δx1
;

δΨ

δx1
] H2 = [

δΦ

δx2
;

δΨ

δx2
]. (10)

Matrices H1 and H2 are stored in the MechanicalState of each node. Thus, when

the constraint applies to a model that is mapped (see section 2.5), the constraints are

recursively mapped upward like forces to be applied to the independent degrees of

freedom [11]. Solving the constraints is done by following these steps:

Step 1, Free Motion: interacting objects are solved independently while setting

λ = 0. We obtain what we call a free motion δv
f
1 and δv

f
2 for each object. After

integration, we obtain xf
1 and xf

2. During this step, each object solves equation (9)

with λ = 0 independently using a dedicated solver.

Step 2, Constraint Solving: The constrained equations can be linearized and

linked to the dynamics (see [10] for details).

[
Φ(x1,x2)
Ψ(x1,x2)

]

=

[
Φ(xf

1,x
f
2)

Ψ(xf
1,x

f
2)

]

+ hH1δv
c
1 +hH2δv

c
2

︸ ︷︷ ︸

h[H1A−1
1 HT

1 +H2A−1
2 HT

2 ]λ

(11)

3 For simplicity, we present the equations for two interacting objects (rigid or deformable) 1 and

2, but the solution applies to an arbitrary number of interacting bodies.
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With δv
c = δv−δv

f
. Together with equation (8), these equations compose a Mixed

Complementarity Problem that can be solved by a variety of solvers. We compute

the value of λ using a projected Gauss-Seidel algorithm that iteratively checks and

projects the various constraint laws contained in Φ and Ψ [13].

Step 3, Corrective Motion: when the value of λ is available, the corrective mo-

tion is computed as follows:

xt+h
1 = xf

1 +hδv
c
1 with δv

c
1 = A−1

1 HT
1 λ

xt+h
2 = xf

2 +hδv
c
2 with δv

c
2 = A−1

2 HT
2 λ

(12)

An AnimationLoop, typically placed at the top of the graph of SOFA, has the role

of imposing this new scheduling to the rest of the graph.

Fig. 13 Contact process using constraints: A unilateral constraint is placed at the level of the

contact points. The constraint direction is mapped to the degrees of freedom of the objects to obtain

matrix HT . The ConstraintCorrections components compute the compliance to obtain equation

11. The Constraint solver found a new value of λ which is sent to the ConstraintCorrections to

compute an adequate corrective motion. The AnimationLoop is placed at the root of the simulation

graph to impose the steps of the simulation process.

Compliance computation : Equations 11 and 12 involve the inverse of matrix A

(called compliance matrix), which changes at every time step in case of a non-linear

model. Depending on the simulation case, computing this inverse could be time
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consuming for real-time simulation. When this is too time-consuming, we propose

several strategies to improve the speed of the algorithm such as using the diagonal of

A instead of the whole matrix, or a precomputed inverse [27], or an asynchronous

factorization on the GPU [9]. These strategies are implemented in a category of

components, called ConstraintCorrections that provide different ways of computing

δv
c

given a value of λ . Given a simulation, it is very easy to make tests and chose

the best solution.

4.4 Collision detection and response

Collision detection is split in several phases, each implemented in a different com-

ponent, and scheduled by a CollisionPipeline component. Each potentially collid-

ing object is associated with a collision geometry based on or mapped from the

independent DOFs. The broad phase component returns pairs of colliding bounding

volumes (currently, axis-aligned bounding boxes). Based on this, the narrow phase

component returns pairs of geometric primitives, along with the associated contact

points. This is passed to the contact manager, which creates contact interactions of

various types based on customizable rules. Repulsion has been implemented based

on penalties or on constraints using Lagrange multipliers, and is processed by the

solvers together with the other forces and constraints. When stiff contact penalties

or contact constraints are created by the contact manager, an optional GroupMan-

ager component is used to create interaction groups handled by a common solver,

as discussed in Section 3. When contacts disappear, interaction groups can be split

to keep them as small as possible. The scenegraph structure thus changes along with

the interaction groups.

This framework has allowed us to efficiently implement popular proximity-based

repulsion methods as well as novel approaches based on ray-casting [18] or surface

rasterization [15, 3]. Its main limitation is that the contacts can be mechanically

processed only after they all have been modeled by the collision pipeline. This

does not allow to mechanically react to a collision as soon as it is detected, possibly

avoiding further collisions between primitives of the same objects.

4.5 GPU support

By targeting complex interactive simulations, SOFA needs to achieve high com-

putational performances. For this reason, we have extended the architecture and

functionalities to handle GPU-based computations.

Thanks to the scene-graph design, components such as ODE and linear solvers

can be applied to both CPU and GPU models, as they do not directly manipulate

the state vectors. Other components such as force fields and constraints needs to be

specifically adapted. However, most of their code is reused from the CPU version
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thanks to templated generic programming. As explained in Section 2.1, mechanical

components (but also mappings and some collision models) are templated by the

type of the state variables they manipulate. This template parameter (DataTypes)

specify the type of DOFs in use, but also their containers, which on CPU are sim-

ple vectors. To implement GPU support, an hybrid CPU/GPU vector container was

created, replacing standard vectors by adding new methods and functionnalities to

transparently provide a GPU-side version of the contained data. This is necessary

because currently GPUs use their own memory. The hybrid vector container pro-

vides methods to access the data either on the CPU or GPU, for read or write oper-

ations. Flags are used internally to execute allocation and transfer operations when

necessary. Standard operators such as random access are also provided, so that ex-

isting CPU codes can be used.

As a consequence, to implement GPU support in an existing SOFA component,

we first need to instanciate the existing code to a new hybrid DataTypes template.

Then, only the few computationally intensive methods that are used during the sim-

ulation loop will need to be specialized and rewritten to be executed on GPU. All

initialization, debugging and validation codes can be reused, and data transfers hap-

pen transparently. Below are two important examples of components where the use

of GPU-based computation has proved very beneficial.

4.5.1 Physical models with implicit time integration

We implemented FEM using a Conjugate Gradient-based implicit time integration

scheme on GPU. In contrast with existing GPU-based sparse solvers [19, 5], we do

not explicitly build the system matrix, but instead parallelize the vector operations

and matrix-vector products based on topological elements. The parallelization strat-

egy relies on first computing the contribution of mesh elements using one thread per

tetrahedron, followed by a parallel gather to accumulate contributions at vertices.

This considerably reduces the number of operations required, and more importantly

the consumed bandwidth, enabling the method to be fast enough for interactive sim-

ulations of soft bodies. Further optimizations include mesh ordering, compact data

structures, memory layout, and changing sequences of operations to reduce syn-

chronization points. More detail can be found in [2]. A deformable object with 45k

tetrahedral elements is simulated at 212 FPS on a Nvidia GeForce GTX 480, 18×

faster than our most optimized sequential implementation on an Intel Core i7 975

3.33GHz CPU.

The conjugate gradient solver does not access the objects directly, and stays on

the CPU. The only values it gathers from the simulated objects are dot products,

which are easily read back from the GPU and summed up to the dot products of

other objects. This allows one to transparently combine objects simulated on the

CPU and on the GPU in the same equation system , including simple and complex

constraints discussed in sections 4.1 and 4.3, using mechanical state containers to

encapsulate the data transfers.
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In addition to FEM, several components in SOFA have a GPU-based implemen-

tation (using CUDA for most of them, and OpenCL in a few instances), such as

linear springs, and a fluid simulation based on Smoothed Particle Hydrodynamics

(SPH) [22], allowing more than 32k particles to be simulated at 25Hz on a GeForce

GTX 280 GPU.

4.5.2 Image-based Collisions

Collision detection can also benefit from GPU-based computation. We have inte-

grated image-based collision and response methods [15, 3] which are well suited

for handling complex deformable objects. They compute intersection volume gradi-

ents which are discretized on pixels and accumulated on vertices. Applied to com-

plex geometries, this results in dramatically simpler equation systems than those

of traditional mesh contact models. Contact between highly detailed meshes can

be simplified to a single unilateral constraint equation, or accurately processed at

arbitrary geometry-independent resolution with simultaneous sticking and sliding

across contact patches. Complex contacts involving both rigid and deformable ob-

jects can be detected and their response computed at interactive rates and without

precomputations, making the method suitable for large deformations and cutting.

5 Interface

SOFA is a library which can be called from any external C++ program. The dis-

tribution comes with an executable providing a batch execution mode, a simple

Glut window and a more sophisticated Qt-based graphics user interface (GUI). The

scenes can be built procedurally or read from XML files, as presented in the follow-

ing section. Gnuplot files can be exported during the simulation for replaying the

animation or plotting trajectory curves. Interactive visualization can be performed

using OpenGL, Ogre or OpenSceneGraph. Sequences of geometry files can also be

exported, to create high quality images and videos using state-of-the-art renderers.

5.1 Scene files

An interesting feature of scenegraphs is their ability to be read from and written to

text files. The following code corresponds to the scene shown in Figure 6.

1 <?xml version="1.0"?>
2 <Node name="scene" showVisualModels="1" showBehaviorModels="1" showCollisionModels="1"

showMappings="0" showForceFields="0" >
3 <DefaultPipeline name="collisionPipeline" />
4 <BruteForceDetection name="broadPhase" />
5 <NewProximityIntersection name="narrowPhase" />
6 <DefaultContactManager name="contactManager" response="default" />
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7 <Node name="rigid" >
8 <EulerSolver name="eulerSolver" />
9 <MechanicalState template="Rigid" name="rigidDofs" position="0 0 0 0 0 0 1" />

10 <UniformMass template="Rigid" name="rigidMass" />
11 <Node name="contactModel" >
12 <MechanicalState template="Vec3d" name="sphereCenters" position="0 0 0" />
13 <SphereModel template="Vec3d" name="spheres" fileSphere="mesh/liver.sph" />
14 <RigidMapping name="sphereMapping" input="@../rigidDofs" output="@sphereCenters" />
15 </Node>
16 </Node>
17 <Node name="deformable" >
18 <RungeKutta4Solver name="rungeKutta4Solver" />
19 <MechanicalState template="Vec3d" name="particleDofs" position="2 0 0 3 0 0" />
20 <DiagonalMass template="Vec3d" name="particleMasses" massDensity="1" />
21 <SphereModel template="Vec3d" name="paricleSpheres" />
22 <SpringForceField template="Vec3d" name="internalForces" />
23 </Node>
24 <SpringForceField template="Vec3d" name="contactSpring"

object1="rigid/contactModel/sphereCenters" object2="deformable/particleDofs" />
25 </Node>

5.2 User interface

The GUI is shown in Figure 14. It is mainly composed of a graphics viewer, and

tabs to tune the viewing or to display alternative views, like the scenegraph shown

in this example. Selecting a component in the scenegraph window allows to open its

GUI and to interactively edit the parameters using specialized widgets. The edition

of parameters directly in the graphic window is not yet implemented. An application

included in the distribution, Modeler, allows the addition and removal of nodes and

components in a scenegraph, which can be loaded from and exported to XML files.

The Data objects used to store the attributes of the components are used to automat-

ically create the component GUIs. These can be customized to display additional

features such as the convergence of the linear solver shown in the right of the fig-

ure. The GUI can also display a graphical view of the computation time measured

hierarchically per visitor or per object, as shown in Figure 15. This is also useful to

trace the call graph. The tree view shows the two visitors fired during one time step,

along with the visitors they have triggered, recursively.

5.3 Haptic Rendering

The main interest of interactive simulation is that the user can modify the course

of the computations in real-time. This is essential for surgical simulation : during a

training procedure, when a virtual medical instrument comes into contact with some

models of a soft-tissue, instantaneous deformations must be computed. This visual

feedback of the contact can be enhanced by haptic rendering so that the surgeon can

really feel the contact.
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Fig. 14 SOFA’s default user interface. Left: the main window, with the scenegraph on the left.

Right: the GUI of the CGLinearSolver selected in the scenegraph.

Fig. 15 The visual display of computation times for each visitor. In the left, the triangles denote

visitors, while squares denote traversed nodes. In the right, the computation time is displayed per

component (top) and per visitor (bottom).

There are two main issues for a platform like SOFA for providing haptics: the

first is that haptic forces need to be computed at 1kHz whereas real-time visual

feedback (without haptic) is obtained at 30Hz. The second is that haptic feedback

could artificially add some energy inside the simulation that creates instabilities, if

the control is not passive.

Thus two different approaches are currently implemented in SOFA. The first one

is the Virtual Coupling technique and the other, more advanced, allows for rendering

the constraints presented in section 4.3.

Virtual Coupling: the coupling of a haptic device is bidirectional: the user ap-

plies some motions or some forces on the device and this device, in return, applies

forces and/or motions to the user. The majority of the haptic devices propose a

Impedance coupling: the position of the device is provided by the API and this
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API asks for force values from the application. A very simple scheme of coupling,

presented in Figure 16, could have been used. In this direct coupling case, the sim-

ulation would play the role of a controller in an open loop.

Fig. 16 Direct coupling

Such a design is not suitable when stable and robust haptic feedback on a virtual

environment is desired. Indeed some combination of the environment impedance

and human user reactions can generate instabilities [14]. To avoid this, a virtual me-

chanical coupling is set. It corresponds to the use of a damped stiffness between

the position measured on the device and the simulated position in the virtual envi-

ronment (see Fig17). If very stiff constraints are being simulated, then the stiffness

perceived by the user will not be infinite but will correspond to the stiffness of this

virtual coupling. Hence, a compromise between stability and performance must be

found by tuning the stiffness value of the coupling.

Fig. 17 Virtual coupling technique. A 6-DoF damped spring is placed between the haptic loop and

the simulation.

The damped spring is simulated two times. One time in the haptic loop and one

time in the simulation loop. If the two loops are synchronized, then the result is the

same. But it can also be used in asynchronous mode: fast update of the haptic loop

and low rates in the simulation. In this case, the haptic feedback remains stable but

the delay between the two loops creates artificial damping. There is an option to

cancel this artificial damping if no contact is detected in the simulation. However,

this option can create a sensation of sticking contacts. The main advantage of the

virtual coupling technique is that it can be easily employed with every simulation

of SOFA. The main drawback is that the haptic rendering is not transparent (i.e. the

haptic interaction does not feel the same as the real interaction it is reproducing).

Constraint-based rendering: A novel way of dealing with haptic rendering

for medical simulation has been proposed in the context of SOFA (see [27] and

[24]). The approach deals with the mechanical interactions using appropriate force

and/or motion transmission models named compliant mechanisms (see Fig18).

These mechanisms are formulated as a constraint-based problem (like presented in

section 4.3) that is solved in two separate threads running at different frequencies.
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The first thread processes the whole simulation including the soft-tissue deforma-

tions, whereas the second one only deals with computer haptics. With this approach,

it is possible to describe the specific behavior of various medical devices while rely-

ing on a unified method for solving the mechanical interactions between deformable

objects and haptic rendering.

Fig. 18 Compliant mechanisms technique. The simulation shares the mechanical compliance of

the objects and the constraints between them. The constraint response is being computed at low

rate within the simulation and at high rates within a separate haptic thread. A 6-DoF damped spring

is still used to coupled the position of the device to its position in the simulation

6 Examples

In this section, we detail three examples of advanced use of SOFA. The first, in Sec-

tion 6.1, presents a multiphysics model coupling. The second, in Section 6.2, studies

the introduction of a novel deformable model in the SOFA framework. Finally, Sec-

tion 6.3 details a complete simulation of liver resection.

6.1 Cardiac modeling

The heart is a complex machine that is controlled by an electro-mechanical cou-

pling: an electrical wave propagates through the heart and depolarizes the cardiac

cells or muscle fibers (see Figure 19 ) leading to the contraction of ventricles which

then eject the blood in the aorta and pulmonary arteries. The fiber relaxation then

follows and the ventricles are filled again with incoming blood from the atria.

Modeling the heart

As for the modeling of skeletal muscles, cardiac mechanics is based on separated

components : a passive part that deals with hyper-elasticity and viscosity, and an ac-

tive part during the contraction and relaxation phases corresponding to the binding

and unbinding of the actine-myosine bridges in the sarcomeres. We chose to imple-

ment the electro-mechanical coupling model proposed by Bestel-Clement-Sorine

(BCS) [6]. It is schematically represented in Figure 20.
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Right Atrium

Right Ventricle
Left Ventricle

Left Atrium

Aorta

Pulmonary Artery

Fig. 19 (Left) Heart Anatomy showing the right and left heart that work synchronously to pump

the blood in the pulmonary and general system, from Wikipedia. (Right) Representation of the

fibers where the colors describe the orientation of the primary eigenvector according to the color

sphere, from [26].

To describe the blood flow that goes in and out of the heart cavities, we chose

to apply blood pressures as constraints. A valve model was therefore implemented

in order to apply alternatively different boundary conditions depending on the four

phases of the cycle [28]: filling, isovolumetric contraction, ejection and isovolumet-

ric relaxation.

Simulating the heart in SOFA

The geometry of the heart muscle was first segmented from images then meshed

with tetrahedra, and the fibers were extrapolated from an atlas (more details about

fibers and so on can be found in [26]). Fiber directions are crucial for both the elec-

trophysiological resolution and the mechanical resolution since the wave follows

those fibers and the muscle is stiffer in the fiber directions.

Each mechanical or electrophysiological component was implemented sepa-

rately and independently. We used MultiTagAnimationLoop to deal with the electro-

mechanical coupling. This solver enables to solve two different systems in the same

scene, at each time step. The complete model of the heart is represented through the

diagram Fig. 20. We can therefore find, like in all SOFA scenes, solvers, topological

components, a loader, a Mass and forcefields components. In this case, the passive

part of the model is the hyperelastic forcefield MooneyRivlin. The active part is more

complicated since it needs the resolution of a electrophysiological system done in

ElecNode, which gives a 1D potential for each element of the mesh. This potential

is then used in ContractionForceField for the unidirectional coupling. Each step of

the electromechanical model first requires the solution of the ElecNode to estimate

the wave potential u which is necessary to the ContractionForceField component

to obtain τc and finally update the mechanical system. Boundary conditions are im-
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Fig. 20 (Left) SOFA graph with the different components to simulate the complete model of the

Heart. (Right) Complete rheological model. We is the strain energy of the chosen hyperelastic mate-

rial, here Mooney Rivlin. η represents the viscosity of the passive part. u is the electrophysiological

potential that controls the contraction stress τc. µ deals with active relaxation in forms of damping,

and Es is a linear spring to enforce stress in the fiber direction. The indices s,c,1D respectively

refer to the contraction terms, the linear spring in series and the projection along the fiber direction

plemented through the PressureConstraint and ProjectivePressureConstraint com-

ponents which apply forces in the endocardium due to blood pressure and projects

the velocity field to satisfy the valve model. Finally the base of the heart is attached

with springs (BaseConstraint) which is equivalent to add extra diagonal terms in

the stiffness matrix of the basal nodes.

Results of the simulation

This complex simulation takes around 3 minutes for a full cycle (representing on

average 0.8s), with a time step of 10ms, with 14000 mesh nodes, on a normal lap-

top. More than 95% of the cost is due to the mechanical solution. An example of

resulting geometry during a cycle is shown in Figure 21. We also managed to re-

cover the volume and pressure curves that clearly contain the four phases, as shown
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in Fig. 21.
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Fig. 21 (Left) Resulting pressure and volume curves for the left ventricle, for one heart cy-

cle. (Right) Resulting geometry at different times of the cycle overlaid with the initial mesh (in

shadow). The color map indicates the potential wave, solutions of the electrophysiological node.

The complete multi-physics model can therefore be successfully implemented on

SOFA, the simulation time is short enough so that numerous parameter estima-

tion techniques can be though of. Moreover, several cardiac therapy simulations are

made possible with SOFA interactivity, such as Cardiac Resynchronization Therapy

or cardiac Radio-Frequency Ablation [20],[23].

6.2 Knee joint mechanics

In this section, we show an example of leveraging the versatility of the framework to

create new physical deformable models, while re-using available high performance

components for collision and time integration. The knee is a complex joint includ-

ing four bones connected by ligaments with complex shapes (fig. 23). Its physical

simulation has been difficult to achieve, because an important limitation of FEM

comes from the necessity of partitioning the objects in elementary volumes, each of
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them filled with a uniform material, resulting in high computation times which do

not allow interactive applications.

Noticing that the deformations are typically smooth, we model the deformation

by blending a small number of rigid displacements, to dramatically reduce the num-

ber of independent DOFs and the associated computation time. This frame-based,

mesh-free deformation function alleviates the sampling issues of the traditional

FEM and particle-based approaches, and it is straightforwardly applied to arbitrar-

ily detailed geometry. The deformation energy is computed at integration points,

summed up and differentiated with respect to the independent DOFs, as usual in

Continuum Mechanics. The frames and their distribution, the computation of their

relative influence, the choice of blending functions, the distribution of the integration

points and the computation of their associated energy are detailed in [17] and [16].

All the steps involved in this pipeline are modeled using the SOFA components

shown in Figure 22. The MechanicalState<Frame> component contains the inde-

pendent DOFs (frames with 6, 12 or 30 DOFs per frame were implemented). To

measure local deformations in the solid, the spatial derivatives of the displacement

function (i.e., the deformation gradient, a 3× 3 matrix) are necessary. Therefore, a

mapping computes the deformation gradients and deformation gradient rates stored

in the MechanicalState<DeformationGradient>, based on the frame positions and

velocities. The deformation gradients are converted to strains by a ForceField us-

ing the Green-Lagrange strain (other measures where implemented), and the corre-

sponding stresses are computed using a material law defined in MaterialMap. The

VolumePreservationForceField additionally penalizes the volume change based on

the determinant of the deformation gradient. The stresses are converted to defor-

mation gradient forces, which are generalized forces represented by 3× 3 matri-

ces accumulated in the MechanicalState, and which are then mapped up to frame

forces. External forces acting on the collision model are incorporated through a

Scene

CudaRasterizer

EulerImplicitSolver

CGLinearSolver

Deformable Object

MechanicalState<Frame>

DiagonalMass

MaterialMap

SpatialIntegrationNode

CollisionNode

FrameBlendingMapping
<Frame,DeformationGradient>

FrameBlendingMapping
<Frame,Point>

MechanicalState<DeformationGradient>

VolumePreservationForceField

GreenLagrangeForceField

MeshLoader

TriangleTopology

MechanicalState<Point>

Fig. 22 SOFA graph of a frame-based simulation.

low order specialization of the mapping, where only 3d points are mapped in-

stead of deformation gradients. After summation of DOF forces, a standard implicit

ODE solver updates the positions and velocities according to the generalized frame

stiffness matrix, mass and damping coefficients. GPU collision detection and re-

sponse is applied using the available component CudaRasterizer [3]. In summary,
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the component-based architecture of SOFA is used to customize each stage of the

simulation pipeline: the DOF type, the kinematic interpolation method, the strain

measure, the material constitutive law, the spatial integration method and the degree

of integration samples.

The framework structure provided us with implementation guidelines, and avail-

able components for implicit integration and gpu collision detection where directly

reused.

The frame-based deformation framework produces interactive simulations of

complex heterogeneous objects, such as the knee shown in Figure 23. The simula-

tion is one to three orders of magnitude faster than using FEM, thanks to the reduced

number of DOFs, and this allows us to interactively extend the joint by pulling the

upper ligament. We emphasize that the joint behavior is entirely created by the tis-

sue elasticity and the contact forces between the bones. Though this simple model

needs improvements to meet the precision requirements of biomedical applications,

it illustrates the efficiency and the extensibility of SOFA.

Fig. 23 Interactive simulation of a knee joint. Left: the moving frames (arrows) and the integration

points (squares). Middle: the contact between the bones. Right: the user stretches the knee by

pulling a ligament.

6.3 Simulation of hepatic resection

The liver is one of the major organs in the human body and is in charge of more

than hundred vital functions. For this reason, its pathologies are varied, numerous

and often lethal. Nevertheless, surgery is not always performed due to several lim-

itations, in particular the pre-operative estimation of the liver volume remaining

after resection. This volume highly depends on the choice of the operative strat-

egy as well as anatomical constraints defined by the vascular network (see figure

24). Such limitations could be overcome by improving the quality of the planning,

which relies on a combination of components, mostly image processing, registra-
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tion, and biomechanical modelling. In the context of the PASSPORT project4 we

have developed a simulation in SOFA as a proof of concept towards this goal. This

work covers four main areas: a model of the whole liver, composed of its three main

components: parenchyma, vascular network, and Glisson capsule; collision detec-

tion and response adapted to complex contact configurations; topological changes

for simulating the resection of a part of the liver.

Fig. 24 Liver anatomy: (left) with an average weight of about 1.5 kg, the human liver is the largest

internal organ. It is located in the right upper quadrant of the abdominal cavity, resting just below

the diaphragm. It lies to the right of the stomach and overlies the gallbladder. (Right): the liver is

connected to the hepatic artery and the portal vein. The hepatic artery carries blood from the aorta,

whereas the portal vein carries blood containing digested nutrients from the entire gastrointestinal

tract and also from the spleen and pancreas. The vascular structure of the liver provides a functional

subdivision of the liver into eight subsegments.

6.3.1 Liver biomechanical model

In spite of various results in the area of liver simulation and modeling, a key el-

ement is required for providing an accurate hepatic resection system: an accurate

biomechanical model of the liver, compatible with (near) real-time simulations to

enable augmented reality approaches. An important body of work exists regard-

ing the biomechanical model of the liver and its mechanical properties, and several

works have addressed the issue of real-time simulation. Yet, none of the existing

approaches take into account the biomechanical influence of the vascular structures

of the liver nor its capsule. To address this limitation, we have developed a vascu-

larized model of the liver, which takes into account separate constitutive laws for

the parenchyma and vessels, and defines a coupling mechanism between these two

entities. Similarly, a capsule model can be linked to this vascularized liver model to

build a complete liver model.

4 PAtient Specific Simulation and PreOperative Realistic Training for liver surgery –

www.passport-liver.eu
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Parenchyma model: multiple biomechanical studies concerning the liver have

reported constitutive models and parameters for the parenchyma, with an overall

agreement on a viscoelastic behaviour. Yet, depending on the application, a simpler

non-linear elastic model can be sufficient. This is typically the case when the tran-

sient part of the deformation may not be of interest, but rather the static equilibrium

under some specific loading conditions. SOFA makes it easy to choose between dif-

ferent constitutive models, and different implementation of these models. In a va-

riety of examples we have used a finite element co-rotational method (Tetrahedral-

CorotationalFEMForceField to simulate the deformation of the parenchyma. This

method allows for large displacements or rotations in the model, while relying on a

linear expression of the stress-strain relationship. As such it offers a very good trade-

off between realism of the behavior and computational efficiency. However, this

approach does not enforce incompressibility. We have also experimented with the

MJED [21] model. The Multiplicative Jacobian Energy Decomposition (MJED) is

a method for discretizing hyperelastic materials on linear tetrahedral meshes which

leads to faster computation than the standard Finite Element Method and enables

this way to reach near real-time simulations. In the remainder of this section, we will

illustrate results based on the co-rotational method (TetrahedralCorotationalFEM-

ForceField in SOFA).

Vascularized liver model: blood vessels are modeled using serially linked beam

elements (BeamFEMForceField). In this model, each beam element is flexible (i.e.

handles stretching, bending and torsion), and can take into account the particular

nature of vessels through specific cross section profiles and moments of inertia. A

beam element is defined by two nodes, each described by six degrees of freedom,

three of which correspond to the spatial position, and three to the angular position

of the node in a global reference frame. The resulting representation allows for ge-

ometrically non-linear deformations. The process of converting a patient specific

surface model of the vascular system into a set of beam elements is done automati-

cally through centerline extraction of the vessels and conversion into a set of Bézier

curves. This continuous parametric representation of the vessels can then be sam-

pled (according to various criteria) to generate series of beam elements. During the

process, parameters such as the minimal radius of selected vessels or density of the

discretization points can be adjusted.

To create the vascularized liver model, we used a dedicated mapping between

the mesh nodes of the vessels and the volumetric elements of the FEM model

for the parenchyma. This particular mapping links vessel nodes (with 6 DOFs)

to parenchyma nodes (with 3 DOFs). Since no relative motion between the ves-

sels and parenchyma is observed in reality, the mapping can be implemented as

a position constraint. At each step of the simulation, the actual displacements of

the parenchyma mesh nodes are mapped to the vessel nodes and reciprocally, the

force contribution due to the deformation of the vessel is propagated back to the

parenchyma.

Complete liver model: A complete mechanical model of the liver should include

the influence of the Glisson capsule surrounding the liver parenchyma. This mem-

brane can be described using shell elements [7] or by using angular springs Triangu-
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larBendingSprings, both models being available in SOFA. The resulting combined

model can be simulated in real-time thanks to an advanced solver using an asyn-

chronous preconditioning strategy (see section 4), particularly well-suited for this

case where different material stiffness parameters of the constituents of the liver

lead to an ill-conditioned system matrix (this bad conditioning is due to the im-

portant difference in stiffness between parenchyma and vessels, the stiffness in the

direction of the main axis of the vessel being several orders of magnitude higher

than the parenchyma).

Fig. 25 Deformable liver simulation based on components available in SOFA: non-linear finite

element model with implicit time-integration implemented on GPU, mechanical coupling between

vessels, parenchyma and capsule based on multi-model representation, efficient numerical solver

based on asynchronous preconditioning, and improvements in visual rendering. The liver geometry

is based on meshes generated automatically from abdominal CT scan images.

6.3.2 Complex contact handling and haptic feedback

Collision detection and collision response: collision detection is based on the LDI

method introduced in section 4.5.2. Using this approach, fast contact response can

be provided using constraints with friction, even when relying on detailed surface

meshes. Figure 26 illustrates a real-time simulation involving contacts between sur-

gical instruments and the liver, as well as between the liver and surrounding organs.

Haptic feedback: the motion of the laparoscopic instrument or camera can be

controlled using an haptic interface. SOFA incorporates drivers for different haptic

interfaces, and provides haptic rendering algorithms. In particular, we have devel-

oped a generic formalism for solving complex interactions between various medical

devices and anatomical structures, and for computing the associated haptic render-

ing. The proposed approach models the interactions using virtual mechanisms (that

are extended here for deformable objects) and solved using a constraint-based pro-

cess. With this approach, it is possible to describe the specific behavior of various

medical devices while relying on a unique method for solving the interactions and

computing haptic feedback [25]. In this approach, the dynamics of the virtual ob-
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Fig. 26 Real-time complex interactions inside the abdominal cavity. Left: visualization of the col-

lision models. The green surface is the diaphragm, which motion is controlled to reproduce the

respiratory cycle. Right: final rendered image of the tissue interactions, involving tissue-tool con-

tacts but also contacts between multiple anatomical structures (liver, stomach, ribs).

jects is computed at low-rate in the simulation and the mechanical interaction forces

are modeled and solved using constraints. But these forces are re-computed at high-

rate, in the haptic loop based on an intermediate representation shared between the

two loops. This intermediate representation includes (I) a physics based measure of

the mechanical coupling between the different interactions and (II) a set of kine-

matic links that capture the interactions’ behavior and which are modeled by using

constraint laws). As such, this intermediate representation is then analogous to the

concept of virtual mechanisms.

6.3.3 Simulation of hepatic resection

Simulation of liver resection requires to take topological changes into account.

Several approaches for cutting volumetric meshes have been developed within the

SOFA framework. The first one relies on triangular or tetrahedral meshes that are lo-

cally remeshed to simulate the contact with a scalpel or with a bipolar cautery device

(see Figure 27). The second approach is based on hierarchical hexahedral meshes

inside which surfaces are embedded, in which case topological changes can be simu-

lated by splitting the hexahedral meshes and modifying the embedded meshes. Each

approach has benefits and drawbacks, and a trade-off between complexity, stability,

and computational efficiency has to be found for each application. As a result, a

combination of several advanced components available in SOFA made it possible

to develop a convincing proof of concept of hepatic surgery simulation, involving

complex interactions with multiple organs in the abdominal cavity while providing

an improved level of realism compared to previous systems.
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Fig. 27 Interactive simulation of hepatic resection. Left: global view of the operative field, with

the bottom-right insert showing the actual view from the laparoscopic camera. Middle: laparo-

scopic view showing instrument interactions with the liver. Right: local resection of the liver using

volumetric topological changes.

7 Conclusion

The need for reusability, versatility and performance has driven the design of SOFA,

which has reached a decent level of usability. The extension to a multi-thread frame-

work and the easier management of topological changes are work in progress, as

well as the improvement of the learning curve through better documentation and

cleaner code. In future work, we plan to enhance the multi-physics capabilities and

the deployment on the GPU, and to make collision detection and response more

easily customizable and intertwinable with ODE and constraint solutions.

Within five years, SOFA has become one of the major open-source medical sim-

ulation softwares, with more than 100,000 downloads of the public version, and an

increasing number of research teams and industrials using it. We believe that the

versatile yet efficient design of the framework make it a good basis for long-term

developments. The project has received an important funding by INRIA, and it has

to evolve toward a more sustainable model. The foundation of an international con-

sortium would be an interesting move, and we are open to proposals from academic

institutes and companies.

References

1. Jérémie Allard, Stéphane Cotin, François Faure, Pierre-Jean Bensoussan, François Poyer,

Christian Duriez, Hervé Delingette, and Laurent Grisoni. SOFA - an open source frame-

work for medical simulation. In Medicine Meets Virtual Reality, MMVR 15, February, 2007,

pages 1–6, Long Beach, California, Etats-Unis, 2007.

2. Jérémie Allard, Hadrien Courtecuisse, and François Faure. Implicit FEM solver on GPU

for interactive deformation simulation. In GPU Computing Gems Jade Edition, chapter 21.

Elsevier, 2011.

3. Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez, and

Paul G. Kry. Volume contact constraints at arbitrary resolution. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2010), 29(3), August 2010.



38 Authors Suppressed Due to Excessive Length

4. David Baraff and Andrew Witkin. Large steps in cloth simulation. In SIGGRAPH ’98, pages

43–54. ACM Press, 1998.

5. Luc Buatois, Guillaume Caumon, and Bruno Lévy. Concurrent number cruncher - a GPU im-

plementation of a general sparse linear solver. Int J Parallel Emerg. Distrib. Syst., 24(3):205–

223, 2009.

6. D. Chapelle, P. Le Tallec, P. Moireau, and M.Sorine. An energy-preserving muscle tissue

model: formulation and compatiblediscretizations. IJMCE, 2010.

7. Olivier Comas, Christian Duriez, and Stéphane Cotin. Shell model for reconstruction and

real-time simulation of thin anatomical structures. In Tianzi Jiang, Nassir Navab, Josien Pluim,

and Max Viergever, editors, Medical Image Computing and Computer-Assisted Intervention –

MICCAI 2010, volume 6362 of Lecture Notes in Computer Science, pages 371–379. Springer

Berlin / Heidelberg, 2010.

8. Hadrien Courtecuisse, Jérémie Allard, Christian Duriez, and Stéphane Cotin. Asynchronous

preconditioners for efficient solving of non-linear deformations. In Proceedings of Virtual

Reality Interaction and Physical Simulation (VRIPHYS), November 2010.

9. Hadrien Courtecuisse, Jérémie Allard, Christian Duriez, and Stéphane Cotin. Preconditioner-

based contact response and application to cataract surgery. In MICCAI 2011. Springer,

September 2011.

10. Hadrien Courtecuisse, Hoeryong Jung, Jérémie Allard, Christian Duriez, Doo Yong Lee, and

Stéphane Cotin. Gpu-based real-time soft tissue deformation with cutting and haptic feedback.

Progress in Biophysics and Molecular Biology, 103(2-3):159–168, December 2010. Special

Issue on Soft Tissue Modelling.

11. Christian Duriez, Hadrien Courtecuisse, Juan-Pablo de la Plata Alcalde, and Pierre-Jean Ben-

soussan. Contact skinning. In Eurographics conference (short paper), 2008.

12. Christian Duriez, Frederic Dubois, Claude Andriot, and Abderrahmane Kheddar. Realistic

haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions

on Visualization and Computer Graphics, 12(1):36–47, 2006.

13. Christian Duriez, Christophe Guébert, Maud Marchal, Stéphane Cotin, and Laurent Grisoni.

Interactive simulation of flexible needle insertions based on constraint models. In Guang-

Zhong Yang, David Hawkes, Daniel Rueckert, Alison Noble, and Chris Taylor, editors,

Proceedings of MICCAI 2009, volume 5762, pages 291–299. Springer, 2009.

14. Richard J. Adams et Blake Hannaford. Stable haptic interaction with virtual environments.

IEEE Transactions on Robotics and Automation, pages 465–474, 1999.

15. François Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou. Image-based collision

detection and response between arbitrary volumetric objects. In ACM Siggraph/Eurographics

Symposium on Computer Animation, SCA 2008, July, 2008, Dublin, Irlande, July 2008.

16. François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. Sparse meshless

models of complex deformable solids. ACM Transactions on Graphics, 2011.

17. Benjamin Gilles, Guillaume Bousquet, François Faure, and Dinesh K. Pai. Frame-based elas-

tic models. ACM Transactions on Graphics, 30(2), April 2011.

18. Everton Hermann, François Faure, and Bruno Raffin. Ray-traced collision detection for

deformable bodies. In 3rd International Conference on Computer Graphics Theory and

Applications, GRAPP 2008, January, 2008, Funchal, Madeira, Portugal, January 2008.

19. Jens Krüger and Rüdiger Westermann. A GPU framework for solving systems of linear equa-

tions. In GPU Gems 2, chapter 44, pages 703–718. Addison-Wesley, 2005.

20. Tommaso Mansi, Barbara André, Michael Lynch, Maxime Sermesant, Hervé Delingette,

Younes Boudjemline, and Nicholas Ayache. Virtual pulmonary valve replacement interven-

tions with a personalised cardiac electromechanical model. In Recent Advances in the 3D

Physiological Human, pages 201–210. Springer, November 2009.

21. Stéphanie Marchesseau, T. Heimann, Simon Chatelin, Rémy Willinger, and Hervé Delingette.

Multiplicative jacobian energy decomposition method for fast porous visco-hyperelastic soft

tissue model. In Proc. Medical Image Computing and Computer Assisted Intervention

(MICCAI’10), LNCS. Springer, 2010.

22. J.J Monaghan. An introduction to sph. Computer Physics Communications, 48,(1):88–96,

1988.



SOFA, a Multi-Model Framework for Interactive Physical Simulation 39

23. E. Pernod, M. Sermesant, E. Konukoglu, J. Relan, H. Delingette, and N. Ayache. A multi-

front eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency

ablation. Computers and Graphics, 35:431–440, 2011.

24. Igor Peterlick, Mourad Nouicer, Christian Duriez, Stephane Cotin, and Abderrahmane Khed-

dar. Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Transactions

on Haptics, Accepted with minor rev.

25. Igor Peterlik, Mourad Nouicer, Christian Duriez, Stephane Cotin, and Abderrahmane Khed-

dar. Constraint-based haptic rendering of multirate compliant mechanisms. Transactions

on Haptics - Special Issue on Haptics in Medicine and Clinical Skill Acquisition, to appear,

September 2011.

26. Jean-Marc Peyrat, Maxime Sermesant, Xavier Pennec, Hervé Delingette, ChenYang Xu,

Eliot R. McVeigh, and Nicholas Ayache. A computational framework for the statistical anal-

ysis of cardiac diffusion tensors: Application to a small database of canine hearts. IEEE

Transactions on Medical Imaging, 26(11):1500–1514, November 2007. PMID: 18041265.

27. Guillaume Saupin, Christian Duriez, and Stephane Cotin. Contact model for haptic medical

simulations. In ISBMS ’08: Proceedings of the 4th international symposium on Biomedical

Simulation, pages 157–165, Berlin, Heidelberg, 2008. Springer-Verlag.

28. M Sermesant, J M Peyrat, P Chinchapatnam, F Billet, T Mansi, K Rhode, H Delingette,

R Razavi, and N Ayache. Toward patient-specific myocardial models of the heart. Heart

Failure Clinics, 4(3):289–301, July 2008.

29. Yiyi Wei, Stephane Cotin, Le Fang, Jeremie Allard, Chunhong Pan, and Songde Ma. To-

ward real-time simulation of blood-coil interaction during aneurysm embolization. In Medical

Image Computing and Computer-Assisted Intervention, MICCAI 2009, volume 5761, pages

198–205. Springer Berlin / Heidelberg, 2009.


