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1. Introduction 
Obstacle detection is an essential task for mobile robots. This subject has been investigated for 
many years by researchers and a lot of obstacle detection systems have been proposed so far. Yet 
designing an accurate and totally robust and reliable system remains a challenging task, above all 
in outdoor environments. The DARPA Grand Challenge (Darpa, 2005) proposed efficient systems 
based on sensors redundancy, but these systems are expensive since they include a large set of 
sensors and computers: one can not consider to implement such systems on low cost robots. Thus, 
a new challenge is to reduce the number of sensors used while maintaining a high level of 
performances. Then, many applications will become possible, such as Advance Driving Assistance 
Systems (ADAS) in the context of Intelligent Transportation Systems (ITS).  
Thus, the purpose of this chapter is to present new techniques and tools to design an 
accurate, robust and reliable obstacle detection system in outdoor environments based on a 
minimal number of sensors. So far, experiments and assessments of already developed 
systems show that using a single sensor is not enough to meet the requirements: at least two 
complementary sensors are needed. In this chapter a stereovision sensor and a 2D laser 
scanner are considered. 
In Section 2, the ITS background under which the proposed approaches have been 
developed is introduced. The remaining of the chapter is dedicated to technical aspects. 
Section 3 deals with the stereovision framework: it is based on a new technique (the so-
called “v-disparity” approach) that efficiently tackles most of the problems usually met 
when using stereovision-based algorithms for detecting obstacles. This technique makes few 
assumptions about the environment and allows a generic detection of any kind of obstacles; 
it is robust against adverse lightning and meteorological conditions and presents a low 
sensitivity towards false matches. Target generation and characterization are detailed. 
Section 4 focus on the laser scanner raw data processing performed to generate targets from 
lasers points and estimate their positions, sizes and orientations. Once targets have been 
generated, a multi-objects association algorithm is needed to estimate the dynamic state of 
the objects and to monitor appearance and disappearance of tracks. Section 5 intends to 
present such an algorithm based on the Dempster-Shaffer belief theory. Section 6 is about 
fusion between stereovision and laser scanner. Different possible fusion schemes are 
introduced and discussed. Section 7 is dedicated to experimental results. Eventually, section 
8 deals with trends and future research. 
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2. Intelligent Transportation Systems Background 
In the context of Intelligent Transportation Systems and Advanced Driving Assistance Systems 
(ADAS), onboard obstacle detection is a critical task. It must be performed in real time, robustly 
and accurately, without any false alarm and with a very low (ideally nil) detection failure rate. 
First, obstacles must be detected and positioned in space; additional information such as height, 
width and depth can be interesting in order to classify obstacles (pedestrian, car, truck, motorbike, 
etc.) and predict their dynamic evolution. Many applications aimed at improving road safety 
could be designed on the basis of such a reliable perception system: Adaptative Cruise Control 
(ACC), Stop’n’Go, Emergency braking, Collision Mitigation. Various operating modes can be 
introduced for any of these applications, from the instrumented mode that only informs the driver of 
the presence and position of obstacles, to the regulated mode that take control of the vehicle through 
activators (brake, throttle, steering wheel). The warning mode is an intermediate interesting mode 
that warn the driver of an hazard and is intended to alert the driver in advance to start a 
manoeuver before the accident occurs. 
Various sensors can be used to perform obstacle detection. 2D laser scanner (Mendes 2004) 
provides centimetric positioning but some false alarms can occur because of the dynamic 
pitching of the vehicle (from time to time, the laser plane collides with the ground surface 
and then laser points should not be considered to belong to an obstacle). Moreover, width 
and depth (when the side of the object is visible) of obstacles can be estimated but height 
cannot. Stereovision can also be used for obstacle detection (Bertozzi, 1998 ; Koller, 1994 ; 
Franke, 2000 ; Williamson, 1998). Using stereovision, height and width of obstacles can be 
evaluated. The pitch value can also be estimated. However, positioning and width 
evaluation are less precise than the ones provided by laser scanner.  
Fusion algorithms have been proposed to detect obstacles using various sensors at the same 
time (Gavrila, 2001 ; Mobus, 2004 ; Steux, 2002). The remaining of the chapter presents tools 
designed to perform fusion between 2D laser scanner and stereovision that takes into 
account their complementary features.  

3. Stereovision Framework 
3.1 The "v-disparity" framework 
This section deals with the stereovision framework. Firstly a modeling of the stereo sensor, 
of the ground and of the obstacles is presented. Secondly details about a possible 
implementation are given.
Modeling of the stereo sensor: The two image planes of the stereo sensor are supposed to 
belong to the same plane and are at the same height above the ground (see Fig. 1). This camera 
geometry means that the epipolar lines are parallel. The parameters shown on Fig. 1 are: 

· s the angle between the optical axis of the cameras and the horizontal, 
·h is the height of the cameras above the ground, 
·b is the distance between the cameras (i.e. the stereoscopic base). 

(Ra) is the absolute coordinate system, and Oa lies on the ground.  In the camera coordinate 
system (Rci)  ( i equals l (left) or r (right) ), the position of a point in the image plane is given 
by its coordinates (ui,vi). The image coordinates of the projection of the optical center will be 
denoted by (u0,v0), assumed to be at the center of the image. The intrinsic parameters of the 
camera are f (the focal length of the lens), tu and tv (the size of pixels in u and v). We also use 

u=f/tu and v=f/tv. With the cameras in current use we can make the following 
approximation: u v= .
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Using the pin-hole camera model, a projection on the image plane of a point P(X,Y,Z) in (Ra)
is expressed by: 
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On the basis of Fig. 1, the transformation from the absolute coordinate system to the right 
camera coordinate system is achieved by the combination of a vector translation ( Yht −= and 

( )Xbb 2/= ) and a rotation around X , by an angle of –θ . The combination of a vector 
translation ( Yht −= and ( )Xbb 2/−= ) and a rotation around X , by an angle of –θ  is the 
transformation from the absolute coordinate system to the left camera coordinate system. 

Fig. 1. The stereoscopic sensor and used coordinate systems. 

Since the epipolar lines are parallel, the ordinate of the projection of the point P on the left or 
right image is vr = vl = v, where: 
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Moreover, the disparity Δ  of the point P is: 
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Modeling of the ground: In what follows the ground is modeled as a plane with equation: 
Z=aY+d. If the ground is horizontal, the plane to consider is the plane with equation Y=0.
Modeling of the obstacles: In what follows any obstacle is characterized by a vertical plane 
with equation Z = d.
Thus, all planes of interest (ground and obstacles) can be characterized by a single equation: 
Z = aY+d. 
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The image of planes of interest in the "v-disparity" image: From (2) and (3), the plane with 
the equation Z = aY+d in (Ra) is projected along the straight line of equation (1) in the "v-
disparity" image: 
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N.B.: when a = 0 in equation (1), the equation for the projection of the vertical plane with the 
equation Z = d is obtained: 
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When a , the equation of the projection of the horizontal plane with the equation Y = 0 is 
obtained:
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Thus, planes of interest are all projected as straight lines in the “v-disparity” image. 
The “v-disparity” framework can be generalized to extract planes presenting roll with 
respect to the stereoscopic sensor. This extension allows to extract any plane in the scene. 
More details are given in (Labayrade, 2003 a).

3.2 Exemple of implementation 

"v-disparity" image construction: A disparity map is supposed to have been computed from the 
stereo image pair (see Fig. 2 left). This disparity map is computed taking into account the 
epipolar geometry; for instance the primitives used can be horizontal local maxima of the 
gradient; matching can be local and based on normalized correlation around the local maxima (in 
order to obtain additional robustness with respect to global illumination changes).
The “v-disparity” image is line by line the histogram of the occurring disparities (see Fig. 2 
right). In what follows it will be denoted as Iv .
Case of a flat-earth ground geometry: robust determination of the plane of the ground: 
Since the obstacles are defined as objects located above the ground surface, the 
corresponding surface must be estimated before performing obstacle detection. 

Fig. 2. Construction of the grey level ”v-disparity” image from the disparity map. All the 
pixels from the disparity map are accumulated along scanning lines. 
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When the ground is planar, with for instance the following mean parameter values of the 
stereo sensor: 

· = 8.5°, 
·h = 1.4 m, 
·b = 1 m,  

the plane of the ground is projected in Iv  as a straight line with mean slope 0.70. The 
longitudinal profile of the ground is therefore a straight line in Iv . Robust detection of this 
straight line can be achieved by applying a robust 2D processing to Iv . The Hough 
transform can be used for example. 
Case of a non flat-earth ground geometry: The ground is modeled as a succession of 
parts of planes. As a matter of fact, its projection in IvΔ is a piecewise linear curve. 
Computing the longitudinal profile of the ground is then a question of extracting a 
piecewise linear curve in IvΔ. Any robust 2D processing can be used. For instance it is still 
possible to use the Hough Transform. The k highest Hough Transform values are retained 
(k can be taken equal to 5) and correspond to k straight lines in IvΔ. The piecewise linear 
curve researched is either the upper (when approaching a downhill gradient) or the lower 
(when approaching a uphill gradient) envelope of the family of the k straight lines 
generated. To choose between these two envelope, the following process ca be performed. 
IvΔ is investigated along both curves extracted and a score is computed for each: for each 
pixel on the curve, the corresponding grey level in IvΔ is accumulated. The curve is chosen 
with respect to the best score obtained. Fig. 3 shows how this curve is extracted. From left 
to right the following images are presented: an image of the stereo pair corresponding to a 
non flat ground geometry when approaching an uphill gradient; the corresponding IvΔ
image; the associated Hough Transform image (the white rectangle show the research 
area of the k highest values); the set of the k straight lines generated; the computed 
envelopes, and the resulting ground profile extracted. 

Fig. 3. Extracting the longitudinal profile of the ground in the case of a non planar geometry 
(see in text for details). 

Evaluation of the obstacle position and height: With the mean parameter values of the 
stereo sensor given above for example, the plane of an obstacle is projected in Iv  as a 
straight line nearly vertical above the previously extracted ground surface. Thus, the 
extraction of vertical straight lines in Iv  is equivalent to the detection of obstacles. In this 
purpose, an histogram that accumulates all the grey values of the pixels for each column of 
the Iv  image can be built; then maxima in this histogram are looked for. It is then possible to 
compute the ordinate of the contact point between the obstacle and the ground surface 
(intersection between the ground profile and the obstacle line in the “v-disparity” image, see 
Fig. 4). The distance D between the vehicle and the obstacle is then given by: 

( )( )
Δ

−−= θθα sincos 0vvbD r   (7) 
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where vr is the ordinate of the ground-obstacle contact line in the image. 
The height of the obstacle is given by the height of the straight line segment in the “v-
disparity” image (see Fig. 4). The lateral position and left and right border of the obstacle 
can be estimated by similar processing in the “u-disparity” image (The “u-disparity” image 
is column by column the histogram of the occurring disparities). Thus, a target detected by 
stereovision is characterized by its (X,Z) coordinates, its height and its width. 
Moreover, a dynamic estimation of the sensor pitch θ can be obtained from the horizon line, 
at each fame processed: 

−=
α

θ horvv0arctan  (8) 

where vhor  is the ordinate of the horizon line. Since the horizon line belongs to the ground 
surface and is located at infinite distance (which corresponds to nil disparity), vhor is the 
ordinate of the point located on the ground profile for a nil disparity (see Fig. 4). 

Fig. 4. Extracting obstacles and deducing obstacle-ground contact line and horizon line. 

Practical good properties of the algorithm:  It should be noticed that the algorithm is able to 
detect any kind of obstacles. Furthermore, all the information in the disparity map is 
exploited and the accumulation performed increases the density of the alignments in Iv .
Any matching error that occur when the disparity map is computed causes few problems as 
the probability that the points involved will generate coincidental alignments in Iv  is low. 
As a matter of fact, the algorithm is able to perform accurate detection even in the event of a 
lot of noise or matching errors, and when there is only a few correct matches or a few 
amount of correct data in the images: in particular in night condition when the majority of 
the pixels are very dark. Eventually, the algorithm works whatever the process used for 
computing the disparity map (see (Scharstein, 2001)) or for processing the "v-disparity" 
image. Eventually, as detailed in (Labayrade, 2003 b), it is possible in a two-stages process to 
improve the disparity map and remove a lot of false matches. 

4. Laser Scanner Raw Data Processing 
The 2D laser scanner provides a set of laser impacts on the scanned plane: each laser point is 
characterized by an incidence angle and a distance which corresponds to the distance of the 
nearest object in this direction (see Fig. 6). From these data, a set of clusters must be built, 
each cluster corresponding to an object in the observed scene.  
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Initially, the first laser impact defines the first cluster. For all other laser points, the goal  is 
to know if they are a membership of the existent cluster or if they belong to a new cluster. In 
the literature, a great set of distance functions can be found for this purpose.  The chosen 
distance Di,j must comply with the following criteria 

Firstly, this function Di,j must give a result scaled between 0 and 1. The value 0 indicates 
that the measurement i is a member of the cluster j,

Secondly, the result must be above 1 if the measurement is out of the cluster j,
Finally, this distance must have the properties of the distance functions. 

Fig. 5. Clustering of a measurement. 

The distance function must also use both cluster and measurement covariance matrices. 
Basically, the chosen function computes an inner distance with a normalisation part build 
from the sum of the outer distances of a cluster and a measurement. Only the outer distance 
uses the covariance matrix: 
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In the normalisation part, the point Xμ  represent the border point of a cluster i (centre μ). 
This point is localised on the straight line between the cluster i (centre μ) and the 
measurement j (centre X). The same border measurement is used with the cluster. The 
computation of Xμ  and XX  is made with the covariance matrices Rx and Pμ. Pμ and Rx are 
respectively the cluster covariance matrix and the measurement covariance matrix. The 
measurement covariance matrix is given from its polar covariance representation (Blackman 
1999) with ρ0 the distance and θ0 the angle:  
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0θσ are the variances in both distance and  angle of each measurement provided by 

the laser scanner. From this covariance matrix, the eigenvalues σ and the eigenvectors V are 
extracted. A set of equations for both ellipsoid cluster and measurement modelling and line 
between the cluster centre μ and the laser measurement X is then deduced: 
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The solution of this set of equations gives: 

[ ]
[ ]−

−−
=Ψ

2,12,22

1,11,21

²
²

arctan
aVV
aVV

σ
σ

−∈Ψ
2

,
2

ππ      with   (13) 

From (13), two solutions are possible: 
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and
Then equation (9) is used with Xμ to know if a laser point belongs to a cluster.  

Fig.  6. Example of a result of autonomous clustering (a laser point is symbolized by a little 
circle, and a cluster is symbolized by a black ellipse). 

Fig. 5 gives a visual interpretation of the used distance for the clustering process. Fig. 6 gives 
an example of a result of autonomous clustering from laser scanner data. Each cluster is 
characterized by its position, its orientation, and its size along the two axes. 
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5. Multi-Objects Association 

Once targets have been generated from stereovision or from laser scanner, a multi-objects 
association algorithm is needed to estimate the dynamic state of the obstacles and to 
monitor appearance and disappearance of tracks. The position of previously perceived 
objects is predicted at the current time using Kalman Filtering. These predicted objects are 
already known objects and will be denoted in what follows by Yj. Perceived objects at the 
current time will be denoted by Xi. The proposed multi-objects association algorithm is 
based on the belief theory introduced by Shafer (Shafer, 1976). 

5.1 Generalities 

In a general framework, the problem consist in identifying an object designated by a 
generic variable X among a set of hypotheses Yi. One of these hypotheses is supposed 
to be the solution. The current problem consists in associating perceived objects Xi to 
known objects Yj. Belief theory allows to assess the veracity of Pi propositions 
representing the matching of the different objects.  
A magnitude allowing the characterization of a proposition must be defined. This 
magnitude is the basic belief assignment (mass mΘ( )) defined on [0,1]. This mass is very 
close to the probabilistic mass with the difference that it is not only shared on single 
elements but on all elements of the definition referential 2Θ= { A/A⊆Θ} = {∅, Y1, Y2 ,..., Yn,
Y1∪Y2 ,…,Θ}. This referential is built through the frame of discernment { }nYYY ,,, 21=Θ , which 
regroups all admissible hypotheses, that in addition must be exclusive. (Yi∩Yj=∅, ∀ i ≠ j).
This distribution is a function of the knowledge about the source to model. The whole mass 
obtained is called “basic belief assignment”. The sum of these masses is equal to 1 and the 
mass corresponding to the impossible case m(∅) must be equal to 0. 

5.2. Generalized combination and multi-objects association  

In order to succeed in generalizing the Dempster combination rule and thus reducing its 
combinatorial complexity, the reference frame of definition is limited with the constraint 
that a perceived object can be connected with one and only one known object.  
For example, for a detected object, in order to associate among three known objects,  frame 
of discernment is: 

{ }
"objectsamethebetosupposedareYandX" that meansYwhere

,*Y,Y,Y

ii

321=

In order to be sure that the frame of discernment is really exhaustive, a last hypothesis 
noted “*” is added.  This one can be interpreted as an association of a perceived object 
with any of the known objects. In fact each Yj represents a local view of the world and 
the “*” represents the rest of the world.  In this context, “*” means well: “an object is 
associated with nothing in the local knowledge set”.
The total ignorance is represented by the hypothesis Θ which is the disjunction of all 
the hypotheses of the frame of discernment.  The conflict is given by the hypothesis ∅
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which corresponds to the empty set (since the hypotheses are exclusive, their 
intersections is empty). 
A distribution of masses made up of the masses is obtained:  

)(, jji Ym : mass associated with the proposition « Xi and Yj. are supposed to be the 
same object », 

)(, jji Ym : mass associated with the proposition « Xi and Yj. are not supposed to be 
the same object », 

)( ,, jijim Θ : mass representing ignorance, 
(*),.im : mass representing the reject: Xi is in relation with nothing. 

In this mass distribution, the first index i denotes the processed perceived objects and the 
second index j the known objects (predictions). If one index is replaced by a dot, then the 
mass is applied to all perceived or known objects according to the location of this dot. 
Moreover, if an iterative combination is used, the mass (*),.im  is not part of the initial mass 
set and appears only after the first combination. It replaces the conjunction of the combined 
masses )(, jji Ym . By observing the behaviour of the iterative combination with n mass sets, a 
general behaviour can be seen which enables to express the final mass set according to the 
initial mass sets. This enables to compute directly the final masses without any recurrent 
stage. For the construction of these combination rules, the work and a first formalism given 
in (Rombaut, 1998) is used. The use of an initial mass set generator using the strong 
hypothesis: “an object can not be in the same time associated and not associated to another object”
allows to obtain new rules. These rules firstly reduce the influence of the conflict (the 
combination of two identical mass sets will not produce a conflict) and secondly the 
complexity of the combination. The rules become: 

( ) 1,. 0 HifYm ii =           (15) 

( ) ( ) 21,,.,. HifEYmKYm jjiiji ⋅⋅=           (16) 
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,1 1

( ) 0, ,1 =∃⇔ jji YmjH                                                 (17) 

( ) 0, ,2 ≠∀⇔ jji YmjH

( ) 1,. 0* Hifmi =           (18) 

( ) ( ) 2
1

,,.,. * HifYmKm
nj

jjiii ∏
=

=       (19) 

( ) 0, ,1 ≠∃⇔ jji YmjH  (20) 

( ) 0, ,2 =∀⇔ jji YmjH

( ) 121,.,. . HifEEKm ii ⋅=θ           (21) 

( ) 21,.,. HifEKm ii ⋅=θ         (22) 

( ) ( ) 343,.,. HifEEKm ii −⋅=θ         (23) 

with

with
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From each mass set, two matrices cr
i ,.Μ and cr

j.,Μ  are built which give the belief that a perceived 
object is associated with a known object and conversely. The sum of the elements of each 
column is equal to 1 because of the re-normalization.  
The resulting frames of discernment are: 

{ }jjnjjj YYYY *,,,2,1., ,,,,=Θ

and    { },*,2,1,,. ,,,, imiiii XXXX=Θ

The first index represents the perceived object and the second index the known object. The 
index “*” is the notion of “emptiness” or more explicitly “nothing”. With this hypothesis, it 
can be deduced if an object has appeared or disappeared.  
The following stage consists in establishing the best decision on association using these two 
matrices obtained previously. Since a referential of definition built with singleton 
hypotheses is used, except for Θ and *, the use of credibilistic measure will not add any 
useful information. This redistribution will simply reinforce the fact that a perceived object 
is really in relation with a known object. This is why the maximum of belief on each column 
of the two belief matrices is used as the decision criterion:  

][)( ,,.
Cr
jiji MMaxYd =          (27) 

This rule answers the question “which is the known object Yj in relation with the perceived object 
Xi”? The same rule is available for the known objects: 

][)( ,.,
Cr
ji

i
j MMaxXd =                                 (28) 

Unfortunately, a problem appears when the decision obtained from a matrix is ambiguous 
(this ambiguity quantifies the duality and the uncertainty of a relation) or when the 
decisions between the two belief matrices are in conflict (this conflict represents antagonism 
between two relations resulting each one from a different belief matrix). Both problems of 

with

with
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conflicts and ambiguities are solved by using an assignment algorithm known under the 
name of the Hungarian algorithm (Kuhn, 1955 ; Ahuja, 1993). This algorithm has the 
advantage of ensuring that the decision taken is not “ good” but “the best”. By the “best”, we 
mean that if a known object has some defective or poor sensor to perceive it, then it is 
unlikely to know what this object corresponds to, and therefore ensuring that the association 
is good is a difficult task. But among all the available possibilities, we must certify that the 
decision is the “best” of all possible decisions.  
Once the multi-objects association has been performed, the Kalman filter associated to each 
object is updated using the new position of the object, and so the dynamic state of each 
object is estimated. 

6. Fusion 
So far, the chapter has described the way in which the two sensors (stereovision and 2D 
laser scanner) are independently used to perform obstacle detection. Tables 1 and 2 remind 
the advantages and drawbacks of each sensor. 

Detection
range

Obstacle position 
accuracy 

Frequency False alarms 
occurrence 

Stereovision 
Short to 
medium range 
(up to 50 m). 

Decreases when 
the obstacle 
distance increases.

Video frame 
rate.

When the 
disparity map is 
of poor quality. 

Laser scanner 

Medium to 
long range (up 
to 120 m). 

Usually a few cm. 
Independent to 
the obstacle 
distance. 

Usually higher 
than the 
stereovision. 

When the laser 
plane collides 
with the ground 
surface.

Table 1. Features of the stereovision and 2D laser scanner sensors. 

Detection
failure

occurrence 

Ground geometry Width, height, depth, 
orientation

Stereovision 

Adverse lighting 
conditions, very 
low obstacles 
(<30 cm). 

Provide ground 
geometry, including 
roll, pitch, 
longitudinal profile.

Provide width and height 

Laser Scanner 
When the laser 
plane passes 
above obstacle. 

Cannot provide 
ground geometry. 

Provide orientation, width and 
depth (when the side of the 
obstacle is visible) 

Table 2. Features of the stereovision and 2D laser scanner sensors (continued). 

From Tables 1 and 2, some remarks can be made. Laser scanner and stereovision are 
complementary sensors: laser scanner is more accurate but a lot of false alarms can occur 
when the laser plane collides with the ground (see Fig. 7); stereovision is less accurate but 
can distinguish the ground from an obstacle, because it can provide a 3D modelling of the 
scene. The question is then to know how the data provided by stereovision and laser 
scanner can be combined and/or fused together in order to obtain the best results.  
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Fig. 7. “v-disparity” view of the laser scanner plane. a) An obstacle is detected. b) The ground 
is viewed as an obstacle, due to sensor pitch. 
In this section we discuss several possible cooperative fusion schemes.  

6.1 Laser scanner raw data filtering and clustering 

The idea is here to use the geometric description of the ground provided by stereovision in 
order to filter the laser raw data or clustered objects which could be the result of the collision 
of the laser plane with the ground surface. 
Two possibilities are available : 

. Strategy 1: firstly, remove laser points that could be the result of the collision of the 
laser plane with the ground surface from the laser raw data; secondly, cluster laser 
points from the filtered raw data (see Fig. 8), 

. Strategy 2: firstly, cluster impacts from the laser raw data; secondly, remove clustered 
objects that collide partially or totally the ground surface (see Fig. 9).  

Fig. 8. Laser scanner raw data filtering and clustering. Strategy 1. 

Fig. 9. Laser scanner raw data filtering and clustering. Strategy 2. 
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6.2 Simple redundant fusion  

At this step, filtered objects from laser scanner and stereovision are available. The idea of the 
first fusion strategy is very simple. It consists in introducing redundancy by matching the 
set of obstacles detected by stereovision with the set of obstacles detected by laser scanner. If 
an obstacle detected by laser scanner is located at the same position than an obstacle 
detected by stereovision, this obstacle is supposed to be real, otherwise it is removed from 
the set of obstacles (see Fig. 10). However this scheme provide no information about the 
dynamic states (velocities, etc.) of the obstacles. 

Fig. 10. Simple redundant fusion. 

6.3 Fusion with global association 

More complex strategies consist in introducing global association, using the algorithm 
presented in section 5. The idea consists in: a) performing multi-obstacles tracking and 
association for each sensor in order to obtain multi-tracks for each sensor; b) performing 
multi-track association between the tracks from the stereovision and the tracks from the 
laser scanner; c) fusing the tracks together in order to increase their certainty. Fig. 11 
presents a fusion scheme including tracking and association for both stereovision and laser 
scanner sensor,  and global fusion. 

Fig. 11. Fusion with tracking and global association. 

From our experiments, it seems that the tracking is difficult to perform for the stereovision 
tracks when the obstacles are beyond 15 meters, because of the unaccuracy of the 
positioning provided by the stereovision and resulting in noisy speed used in the linear 
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Kalman filter. Another strategy is then to perform multi-obstacles tracking and association 
for the single laser scanner, and then to check whether an obstacle has been detected by the 
stereovision at the tracked positions. If so, the certainty about the track is increased. Fig. 12 
presents the corresponding fusion scheme.  
Fig. 13 shows another scheme which consists in using the stereovision only to confirm the 
existence of an obstacle tracked by the laser scanner: the stereovision detection is performed 
only at the positions corresponding to objects detected by the laser scanner, in order to save 
computational time (indeed the stereovision will only be performed in the part of the image 
corresponding to the position of obstacles detected by laser scanner). Then the existence of 
an obstacle is confirmed if the stereovision detects an obstacle at the corresponding position. 
This scheme presents the advantage to work with complex ground geometry since this 
geometry can be estimated locally around the position of the tracked laser objects. 
For each fusion scheme, the resulting positioning of each obstacle is the centimetric 
positioning provided by laser scanner. The estimated velocity is estimated through a linear 
Kalman filter applied on laser clustered data. Orientation, width and depth come from laser 
scanner, and  height comes from stereovision. 

Fig. 12. Fusion with tracking of laser objects. 

Fig. 13. Fusion with laser scanner tracking and confirmation by stereovision. 
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6.5 Stereovision-based obstacle confirmation criteria 

To confirm the existence of an obstacle in a region of interest given by the projection of a 
laser-tracked object onto the image, three approaches can be used. 
Number of obstacle-pixels: The first approach consists in classifying the pixels of the region 
of interest. A local ground profile is first extracted using the “v-disparity” iamge. 
Afterwards, the (ur, ,v) coordinates of each pixel are analyzed to determine whether it 
belongs to the ground surface. If not, the pixel is classified as an obstacle-pixel. At the end of 
this process, every pixel in the region of interest has been classified as ground or obstacle. 
The number of obstacle-pixels gives a confidence on the existence of an object over the 
ground surface. Therefore, an obstacle is confirmed if the confidence is above a threshold. 
The obstacle-pixels criterion has the advantage to avoid any assumption on the obstacles to 
detect. Moreover, this method gives a confidence, in an intuitive way. However, as it considers 
each pixel individually, it can be strongly influenced by errors in the disparity map. 
Prevailing alignment orientation: Assuming that the obstacles are seen as vertical planes by the 
stereoscopic sensor, an other confirmation criterion can be defined (Fig. 4 and 7 a). The prevailing 
alignment of pixels in the local “v-disparity” image is extracted using the Hough transform. The 
confirmation of the track depends on the orientation of this alignment: a quite vertical alignment 
corresponds to an obstacle. Other alignments correspond to the ground surface. The Prevailing 
Alignment criterion relies on a global approach in the region of interest (alignment seeking). This 
makes it more robust with respect to the errors in the disparity map. 
Laser points altitude: Many false detections are due to the intersection of the laser plane 
with the ground (see Fig. 4). The knowledge of the longitudinal ground geometry allows to 
deal with such errors. Therefore, the local profile of the ground is estimated through “v-
disparity” framework. The altitude of the laser points is then compared to the altitude of the 
local ground surface. An obstacle is confirmed if this altitude is high enough. 

7. Experimental Results
7.1 Experimental protocol 

The algorithm has been implemented on one of the experimental vehicle of LIVIC to assess their 
behaviour in real conditions. The stereoscopic sensor is composed of two SonyTM 8500C cameras 
featuring ComputarTM Auto Iris 8.5 mm focal length. Quarter PAL 8 bits gray-scale images are 
grabbed every 40 ms. The baseline is b = 1 m, the height h = 1.4 m and the pitch  = 5°. The laser 
sensor is a SickTM scanner which measures 201 points every 26 ms, with a scanning angular field 
of view of 100 °. It is positioned horizontally 40 cm over the ground surface. The whole algorithm 
runs at video frame rate on a dual Intel XeonTM 1.8 GHz personal computer. 

7.2 Results

The main objective is to obtain a correct detection rate and almost no false detections. 
Several aspects must be highlighted: the global performances (rates of non detections and 
false detections), the robustness of the criteria with respect to errors in the local disparity 
map, and the ability to work with various types of obstacles. 
False detections: To assess the false detection rate, the test vehicle has been driven on a very 
bumpy and dent parking area to obtain a large number of false detections due to the 
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intersection of the laser plane with the ground surface. The results are reported in Table 3 
(7032 images have been processed). 
False detections are globally correctly invalidated using the obstacle-pixels and prevailing 
alignment criteria. The laser points altitude criterion provides more false 

 Laser 
scanner

Number of 
obstacle-pixels 

Prevailing alignment 
orientation

Laser points 
altitude

False Detections 781 3 10 167 
Table 3. Number of false detections with the different criteria. 

detections than expected, because of its high sensibility to the calibration errors between 
stereovision and laser scanner. Indeed, a slight error in the positioning of the scanner 
relative to the cameras can lead to a serious error in laser points projection, especially at long 
ranges. The other criteria are not dramatically affected by this issue. Most of the remaining 
false detection occur when the local ground surface is uniform, without any texture 
allowing to match pixels. So they can be removed using simple heuristics as: no obstacle can 
be confirmed without enough information in the region of interest. It hardly affects the 
detection rate, and the false detection rate of obstacle-pixels criterion almost falls to zero. 
The main source of errors for the prevailing alignment algorithm comes from cases where 
the ground surface has non relevant texture, but where the region of interest contains a 
small part of a nearby object (wall, vehicle, . . . ). 
Detection failure: The rate of correct laser detections that have been confirmed by the 
different criteria has been assessed. To check, at the same time, that it can indifferently deal 
with various kinds of obstacles, this test has been realized with two different obstacles: a 
vehicle followed by the instrumented vehicle (1268 images processed), and a pedestrian 
crossing the road at various distances (1780 images processed). The confirmation rate of 
each criterion (number of obstacles detected by the laser / number of obstacles confirmed) 
for these two scenarios is reported in Table 4. The three criteria can successfully confirm 
most of the detections with both kinds of obstacles.) d) 

 Number of obstacle-
pixels

Prevailing alignment 
orientation

Laser points 
altitude

Car 97.4 % 98.5 % 95.2 % 
Pedestrian 91.9 % 94.9 % 97.8 % 

Table 4. Rate of correct detection successfully confirmed. 

Conclusion of the comparison: None of the presented obstacle confirmation criteria 
really outperforms the others. The obstacle-pixels is based on an intuitive approach and 
can deal with any types of obstacles. But it is seriously influenced by the quality of the 
disparity map. The more global feature of the prevailing alignment criterion makes it 
more robust to this kind of errors. 
The laser points altitude is not sufficiently reliable to be exploited alone. Thus an efficient 
architecture for the application consists in using the laser points altitude to invalidate some 
false laser targets before the tracking step. Then the tracked obstacles are confirmed using 
obstacle-pixels criterion. 
Performances of the perception system embedded in a collision-mitigation system: a
collision mitigation system has been designed on the basis of the fusion scheme described 
above. This collision mitigation system can be divided into three sub-systems and a decision 
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unit that interconnects these sub-systems. The first sub-system is the very obstacle detection 
system, implementing the number of obstacle-pixels criteria for confirmation; the second 
sub-system is a warning area generation system that predict the path the vehicle will follow 
and that uses an odometer and an inertial sensor. The decision unit checks whether an 
obstacle is located in the warning area, and whether its Time To Collision (i.e. distance / 
relative speed) is under 1 second; if so, a warning message is sent to the third sub-system. 
The third sub-system is an automatic braking system, based on an additional brake circuit 
activated when a warning message is received. 
The detection rate has been tested on test tracks on the basis of different driving scenarios, 
including cross roads and suddenly appearing obstacles. The detection rate is 98.9 %. 
Then, to assess the false alarm rate, this collision mitigation system has been tested in real 
driving conditions, on different road types: freeway, highways, rural roads and downtown. 
All these tests took place on the French road network around Paris. The automatic braking 
system was turned off and only the warning messages were checked. In normal driving 
situations, an automatic system should never be launched. Each time an emergency braking 
would have been launched is thus considered as a false alarm. The tests have been carried 
out under various meteorological situations: sunny, cloudy, rainy, and under various traffic 
situations: low traffic to dense traffic. 
403 km have been ridden on freeways. The velocity was up to 36 m / s. No false alarm was 
observed during these tests. Fig. 14 (a) and (b) presents some typical freeway situations 
under which the system has been tested. 78 km have been ridden on highways and 116 km 
on rural roads. The velocity was up to 25 m / s. No false alarm was observed during these 
tests. Fig. 14 (c) (d) presents some typical highway situations, and Fig. 14 (e) (f) some rural 
road situations under which the system has been tested. The downtown tests are certainly 
the most challenging tests since the context is the more complex. 140 km have been ridden in 
downtown and in urban areas. The velocity was up to 14 m/s. A false alarm was observed 
twice. The first one is due to a matching error during association, and the second one is due 
to a false target detected by stereovision on a uphill gradient portion. Fig. 15 presents some 
typical urban situations under which the system has been tested.  
For the 737 km ridden, two false alarms were observed. The false alarm rate is thus 2.7 false 
alarms for 1000 km. No false alarm was observed either on freeways or on highways and 
rural roads. The two remaining false alarms were observed in downtown. Thus, the false 
alarm rate in downtown is thus 1.4 false alarm for 100 km. These results are quite promising, 
even if the false alarm rate must be reduced by a factor of about 1000 before the system can 
be envisaged to be put in the hands of common driver. 

Fig. 14. Typical images of freeway and rural road situations. (a) truck following on a 
freeway, dense traffic - (b) freeway with low traffic - (c)(d) peri-urban highway - (e)(f) rural 
road with tight uphill gradient. 
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8. Trends and Future Research 
Experiments of the proposed system give the feeling that an accurate and totally robust and 
reliable obstacle detection system can be designed on the basis of the techniques described 
in this chapter. Some tuning of the different modules are required to still improve the 
performances: for instance, combination of various confirmation criteria should allow to 
avoid any false alarm. Yet, some issues still need to be tackled, such as the  auto-calibration  
of   the  set  of  sensors.   Moreover,  laser  scanner  remain  a  quite. 

Fig. 15. Typical images of urban situations. (a) pedestrian crossing - (b) road works - (c) car driving 
out of parking lot - (d) car and bus traffic - (e) narrow road and tight curve - (f) tight curve, non flat 
road - (g) dense traffic - (h) road with high roll - (i) narrow paved road, tight curve. 

Expensive device. Designing a medium range cheap obstacle detection system featuring high 
performances is still a challenge for the next years but should be possible. The key could be to use 
only the stereovision sensor and to implement various competitive stereovision algorithms 
designed to confirm each other. On a global view, a first algorithm could generate a set of targets 
that would be tracked along time and confirmed by the other algorithms. The confirmation criteria 
presented above could be used for this purpose. To reach acceptable accuracy, sub-pixel analysis 
should be used. Auto-calibration techniques are also required, above all for long baseline stereo 
sensors. Since stereovision algorithms require massive computations, real-time performance could 
be achieved only at the cost of a dedicated powerful chipset. Once designed, such a chipset should 
be not expansive to produce. Thus, a breakthrough in the field of robotics is foreseeable and would 
result in many applications that can not be considered nowadays because of the dissuasive cost of 
state-of-the-art obstacle detection systems. 
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