Skip to Main content Skip to Navigation
New interface
Journal articles

Multiscale modeling of macromolecular biosystems.

Samuel C Flores 1 Julie Bernauer 2 Seokmin Shin 3 Ruhong Zhou 4 Xuhui Huang 5 
2 AMIB - Algorithms and Models for Integrative Biology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France
Abstract : In this article, we review the recent progress in multiresolution modeling of structure and dynamics of protein, RNA and their complexes. Many approaches using both physics-based and knowledge-based potentials have been developed at multiple granularities to model both protein and RNA. Coarse graining can be achieved not only in the length, but also in the time domain using discrete time and discrete state kinetic network models. Models with different resolutions can be combined either in a sequential or parallel fashion. Similarly, the modeling of assemblies is also often achieved using multiple granularities. The progress shows that a multiresolution approach has considerable potential to continue extending the length and time scales of macromolecular modeling.
Complete list of metadata
Contributor : Julie Bernauer Connect in order to contact the contributor
Submitted on : Monday, April 2, 2012 - 1:48:39 PM
Last modification on : Sunday, November 20, 2022 - 3:26:54 AM

Links full text



Samuel C Flores, Julie Bernauer, Seokmin Shin, Ruhong Zhou, Xuhui Huang. Multiscale modeling of macromolecular biosystems.. Briefings in Bioinformatics, 2012, 13 (4), pp.395-405. ⟨10.1093/bib/bbr077⟩. ⟨hal-00684530⟩



Record views