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Abstract

We propose a novel approach to find the locations of the multi-

pulse sequence that approximates the speech source excitation.

This approach is based on the notion of Most Singular Manifold

(MSM) which is associated to the set of less predictable events.

The MSM is formed by identifying (directly from the speech

waveform) multiscale singularities which may correspond to

significant impulsive excitations of the vocal tract. This iden-

tification is done through a multiscale measure of local pre-

dictability and the estimation of its associated singularity ex-

ponents. Once the pulse locations are found using the MSM,

their amplitudes are computed using the second stage of the

classical MultiPulse Excitation (MPE) coder. The multipulse

sequence is then fed to the classical LPC synthesizer to recon-

struct speech. The resulting MSM-based algorithm is shown to

be significantly more efficient than MPE. We evaluate our al-

gorithm using 1 hour of speech from the TIMIT database and

compare its performances to MPE and a recent approach based

on compressed sensing (CS). The results show that our algo-

rithm yields similar perceptual quality as MPE and outperforms

the CS method when the number of pulses is low.

Index Terms: Multipulse speech coding, source excitation

approximation, multiscale signal processing, singularity expo-

nents.

1. Introduction

Multipulse source coding has been widely used and studied

within the framework of Linear Predictive Coding (LPC). It

consists in finding a sparse representation of the excitation

source (or residual) which yields a source-filter reconstruction

with high perceptual quality. The MultiPulse Excitation (MPE)

method [1, 2] is the first and one of the most popular techniques

to achieve this goal. MPE provides a sparse excitation sequence

through an iterative Analysis-by-Synthesis procedure to find the

position and amplitudes of the excitation one at a time [1], and

then re-optimizing the amplitudes once the locations for all of

the pulses are found [2]. The well known Code Excited Linear

Prediction (CELP) is essentially a multipulse coder which uses

vector quantization to search in a codebook of excitation signals

to determine the excitation sequence.

Most of multipulse coding methods depend on the choice

on the vocal tract model, such as the all-pole filter parameters

in LPC. That is, a predictor (typically an autoregressive model)

is first learned to model the vocal tract transfer function, then

the sparse residual approximation is obtained using this predic-

tor. In this paper we adopt a different strategy, we argue that

the locations of the pulse excitations can be retrieved directly

from the observed speech waveform and independently of the

predictor. The principle behind this strategy is the following: in

voiced speech, impulsive excitation takes places around Glottal

Closure Instances (GCI), i.e., when air flow through the glottis

is blocked by closure of the vocal folds. This produces multi-

scale singularities on the observed waveform and, hence, pre-

diction cannot be correctly performed around these instances.

We thus define a measure of predictability and argue that the

sparse multipulse excitation should be located within the set of

less predictable points. This measure is not specific to voiced

speech, but is rather geometric and local. We thus assume that

it should also work for unvoiced speech.

To define this measure of predictability we follow the same

philosophy as in our recent work [3, 4] on speech analysis us-

ing the Microcanonical Multiscale Formalism (MMF). In that

work, we showed that singularity exponents (a notion central to

MMF) of speech signals permit to develop an accurate and effi-

cient algorithm for unsupervised phonetic segmentation which

outperforms state-of-the-art techniques. In this paper, we go

further and analyze another notion central to MMF, the Most

Singular Manifold (MSM). We show that MSM provides a good

approximation to the locations of the sparse multipulse excita-

tions and compare it to the standard MPE method [2] and a re-

cent Compressed Sensing (CS) based approach [5]. The results

show that our MSM approach yields similar performances than

MPE while it is much faster. They also show that that our ap-

proach outperforms the CS method, which has roughly the same

computational as the MPE, when number of pulses per speech

frame is low.

The paper is organized as follows. In section 2 we recall the

basic concepts of MMF, define the measure of local predictabil-

ity and describe how to form the MSM. In section 3 we present

the MSM-based algorithm to approximate the multipulse source

excitation. In section 4 the experimental results are presented.

Finally, in section 5, we draw our conclusion and perspectives.

2. Most Singular Manifold of speech signals

We have been recently developing a novel framework for non-

linear analysis of speech signals based on the Microcanonical

Multiscale Formalism (MMF) [6]. The latter allow the study

of the local geometrico-statistical properties of complex signals

from a multiscale perspective. It can be seen as an extension

of previous approaches for the analysis of turbulent data, in the

sense that it considers quantities defined at each point of the

signal’s domain, instead of averages used in canonical formu-

lations (moments and structure functions) [7]. Central to the

formalism is the computation of Singularity Exponents (SE) at



every point in a signal’s domain which unlocks the relations be-

tween geometry and statistics in a complex signal. When cor-

rectly defined and estimated, these exponents alone can provide

valuable information about the local dynamics of complex sig-

nals and have been successfully used in many applications rang-

ing from signal compression to inference and prediction [8, 9].

The singularity exponent h(t) for any given d-dimensional sig-

nal s(t), can be estimated by the evaluation of the limiting

power-law scaling behaviour of a multiscale functional Γr over

a set of fine scales r:

Γr (s(t)) = α(t) rd+h(t) + o
(

rd+h(t)
)

r → 0 (1)

where Γr (s(t)) can be any multiscale functional comply-

ing with this power-law like the gradient-based measure intro-

duced in [6]. The term o
(

rd+h(t)
)

means that for small scales

the additive terms are negligible compared to the factor and thus

h(t) dominantly quantifies the multiscale behaviour of the sig-

nal at the time instant t.
In MMF, a particular set of interest is the level set called

the Most Singular Manifold (MSM) which comprises the points

having the smallest SE, and which provides indications in the

acquired signal (a pressure i.e. an intensive physical variable) of

most critical transitions of the associated dynamics [6]. These

are the points where sharp and sudden local variations take

place and hence they have the lowest possible predictability

from their neighbouring points. The formal definition of MSM

reads:

F∞ = {t ∈ Ω | h(t) = h∞}, h∞ = min(h(t)) (2)

In practice, once the signal is discretized, h∞ should be

defined within a certain quantization range and hence MSM is

formed as a set of points where h(t) is below a certain thresh-

old. It has been shown that, for many real world signals, the

whole signal can be reconstructed using only the information

carried by the MSM. For example, a reconstruction operator is

defined for natural images in [8] which allows very accurate re-

construction of the whole image when applied to its gradient

information over the MSM. The reconstruction quality can be

further improved, using the Γr measure defined in [10] which

makes a local evaluation of the reconstruction operator to pe-

nalize unpredictability.

For the application we consider in this paper, we have

tried different measures Γr and different estimation methods of

their associated SE. The Γr we tried are however all gradient-

modulus based as suggested in [6]. We found that the measure

which yields the best performances is the following:

Γr(s(t)) =

∫ r

0

|∇τs(t)|dτ (3)

where

∇τs(t) = |2s(t)− s(t− τ)− s(t+ τ)| (4)

Once Γr is specified, there are many ways to estimate

the SE h(t) (log-log regression, adaptation of the 2D method

in [10] to 1D,...). We found that the estimation method which

yields the best performances is the one used and theoretically

motivated in [9, 11]. With this method, the MSM actually

corresponds to the set of points where energy concentrates as

it transfers across scales and, in that sense, it is a least pre-

dictable/reconstructible manifold. Under some hypothesis, this

leads to a simple estimation method of the SE, as the sum of a

set of transitional exponents:

h(t) =

j
∑

i=1

hri(t) (5)

where hri(t) are the transitional exponents, which can be

computed as:

hri(t) =
log(Γri(s(t)))

log(ri/fs)
(6)

where fs is the sampling frequency of the signal. The SE

computed according to Eq. (5) are then being used to form the

MSM as explained above. We will come back in the next sec-

tion on this method of SE estimation to provide a practical ex-

planation of its good performances.

3. MSM multipulse approximation of
source excitation

It is well known that significant impulsive excitations are re-

flected over the whole speech spectral band [12]. Consequently,

excitation impulses would produce “strong” local singularities

at different scales of the waveform. This legitimate the use

of the multiscale power-law of Eq. (1) to identify and quan-

tify these singularities. This also makes it natural to expect the

co-existence of negative transitional SE (Eq. (6)) at different

scales around these singularities. Their summation (Eq. (5))

would thus result in lower negative values. Such singulari-

ties would then belong to the MSM and considered as unpre-

dictable. Fig.1 shows an example which confirms this intuition.

In Fig.1(top) a segment of voiced sound is shown, along with its

corresponding pitch marks given by the Electro-Glottal Graph

(EGG) data [13]. The pitch marks are taken around the Glot-

tal Closure Instants (GCI) when the most significant impulsive

excitation of vocal cords happens. In Fig.1(bottom), the MSM

points of this segment are shown with their value of SE. The

MSM is formed as the 5% of samples having lowest value of

SE. It can be seen that MSM points are indeed located around

the reference GCI. Note also that, around every single GCI, the

MSM point with the lowest SE value is the closest one to the

GCI mark. This example shows that our MSM can indeed iden-

tify the location where significant impulsive excitations occur.

We emphasize however that our purpose is not to develop a GCI

identification method, we did not investigate (yet) this matter

and it is beyond the scope of this paper. We recall that our pur-

pose in this paper is to define a notion of predictability which

allows a multipulse approximation of the excitation using the

set of less predictable points, the MSM.

Once the MSM is formed, we have to estimate the corre-

sponding pulse amplitudes and then feed it to a filter which

models the vocal tract in order to reconstruct the speech signal.

To do so we use the second stage of the standard MultiPulse

Excitation (MPE) coder [2]. We recall that the latter applies an

Analysis-by-Synthesis scheme in two stages. In the first one,

pulses are added iteratively one at a time by minimizing mean

squared error (mse) between the original and reconstructed sig-

nal. The computation required in this first stage is K searches

of order N , where K is the number of desired pulses and N
is the number of signal samples. In the second stage, once the

locations of all pulses are found, their amplitudes are jointly

re-optimized such that the mse is minimized [2].

In our MSM based algorithm, we replace the first stage of

MPE, i.e., the iterative search to find the pulse locations, by the



Figure 1: (top) A voiced segment of the speech signal “arc-

tic a0001” of the male speaker BLD from the publicly available

“CMU ARCTIC” database [13]. The reference pitch marks are

represented by vertical red lines, (bottom) MSM samples and

their corresponding SE values.

following procedure. We form the MSM by taking 2K samples

having the lowest SE values. Then, assuming that the pulses

are located on the MSM grid, we find their amplitudes using

the same joint optimization as in the second stage of the MPE.

Finally, we choose the K pulses with the highest amplitude as

the excitation sequence. Clearly, our approach is computation-

ally more efficient than MPE since the whole first stage of the

classical MPE (K searches of order N ) is replaced by a simple

sort of SE values to form the MSM.

4. Experimental results

We have tried to follow the same experimental protocol as

in [5]. That is, we evaluate our method using about 1 hour

of clean speech signal randomly chosen from TIMIT database

(re-sampled to 8kHz) uttered by speakers of different genders,

accents and ages which provides enough diversity in the char-

acteristics of the analyzed signals. 10 prediction coefficients

are computed for frames of 20ms (N=160) and the search for

impulses are separately performed in each of two subframes of

10 ms, following the procedure explained in [2]. We use the

four finest scales to estimate SE, j = 4 in Eq. (5). No long-

term pitch prediction is performed. All the results we show are

without quantization and are almost the same with different ran-

domizations. We compare the performance of our method with

the classical MPE [2] and the CS-based method [5].

Before starting this comparison, we first show an example

of the reconstruction quality using the MSM method. Fig. 2

shows a stationary voiced sound (a), the MSM excitation se-

quence with 7 (resp. 14) pulses per 20 ms (b) (resp. (d)), and

its reconstruction (c) (resp. (e)). This example shows clearly

that our method can indeed yield good reconstruction quality of

voiced speech even when using only few pulses.

Fig. 3 shows the average normalized reconstruction error

(ēN = ‖s−ŝ‖2
‖s‖2

) of the MSM and MPE methods for different

number K of pulses per 20ms of speech. This results shows

that our method achieves a satisfactory performance but is still

less accurate than MPE in terms of mean square error (mse).

This can be explained by the fact that MPE finds and adds itera-

tively one pulse to the previous ones so as to minimize the mse.

In others words, MPE focuses on mse minimization which is

not the focus of the MSM method as it provides pulse locations

Figure 2: (a) 40 ms segment of stationary voiced speech, (b)

the MSM excitation sequence using 7 pulses per 20 ms, (c) the

reconstructed signal, (d) the MSM excitation sequence using 14

pulses per 20 ms, and (e) the reconstructed signal.

candidates using a multiscale geometrical approach. This defi-

nitely penalizes the MSM method in terms of mse, but it makes

it much more efficient than MPE. Still, our method surprisingly

outperforms the CS one [5] in terms of mse when K < 10 (see

Fig.1 in [5]). For instance, for K=8, we achieve ēN = 0.55
while CS method gives ēN ≈ 0.68. For K = 10, which is the

typical operating point of a multipulse coder, our method and

the CS method perform almost the same. Meanwhile, the CS

method has a computational complexity which is roughly the

same as MPE, so our method is also much more efficient than

the CS one.

The computational processing times are compared in Ta-

ble 1, in terms of the average empirical Relative Computation

Time:

RCT (%) = 100.
CPU time (s)

Sound duration (s)

On the other hand, mse is not the best way to assess the

perceptual quality of reconstructed speech. First, our infor-

mal subjective listening test showed that the perceptual qual-

ity of our method is indeed very close to that of MPE. Espe-

cially for K=20, both methods provide almost the same per-

ceptual quality. Second, we evaluated the perceptual quality of

reconstructed speech from MSM and MPE using the compos-

ite measure of speech quality CMOS [14]. This measure is a

combination of PESQ, Cepsterum distance measure, LLR and

Itakura-Saito distance. It provides a score of perceptual quality

in the range of 1 (the worst quality) to 5 (the best quality). The

results are shown in Table 1. This comparison confirms our in-



Figure 3: The average normalized reconstruction error, aver-

aged over 1 hour of speech signals from TIMIT database.

formal listening tests. Indeed, the perceptual quality (measured

in terms of CMOS) of the MSM and MPE methods are roughly

the same.

In summary, all these results suggest that the MSM

method achieves similar perceptual quality of reconstruction

as MPE [2], with much higher computational efficiency. They

also suggest that our method outperforms the recent CS-based

method [5] when K < 10 in terms of both mean squared error

and efficiency.

Table 1: Comparison between the average perceptual quality of

reconstruction and the average Relative Computation Time.

Method K CMOS RCT (%)

MSM 10 4.0 9.6

20 4.2 21.7

MPE [2] 10 4.1 71.9

20 4.2 143.7

5. Conclusion and perspectives

Following our recent research on the use of the Microcanoni-

cal Multiscale Formalism (MMF) for speech analysis, we in-

troduced in this paper the concept of MSM and its relation to

unpredictability. We defined a multiscale measure of local pre-

dictability and provided an estimation algorithm of its associ-

ated singularity exponents. We first showed that the resulting

MSM can indeed identify (directly from the waveform) singu-

larities which correspond to significant impulsive excitations

(GCI for instance). We then used the MSM to efficiently de-

termine the locations of the multipulse sequence, their ampli-

tudes are then found using the second stage of MPE. We showed

that the resulting algorithm is significantly more efficient than

MPE. The experimental results showed that the MSM algorithm

achieves similar perceptual quality as MPE and outperforms the

recent CS method in terms of mse when K < 10. These en-

couraging results suggest (again) that the MMF has indeed a

promising potential in speech processing and should be further

investigated. Many perspectives can be drawn from the pre-

sented work. For instance, as our approach is independent of the

predictor, we can investigate the use of a sparse predictor such

as in the CS formulation, instead of the LPC minimum vari-

ance predictor. Another interesting and challenging problem is

to explore the automatic identification of GCI. This would open

the gap for all the GCI related applications, in particular closed-

phase LPC would be the readiest application of our approach.

This will be the purpose of future communications.
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