
HAL Id: hal-00684943
https://inria.hal.science/hal-00684943

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Grid’5000: A Large Scale And Highly Reconfigurable
Experimental Grid Testbed

Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric
Desprez, Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc,

Nouredine Melab, et al.

To cite this version:
Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric Desprez, et al.. Grid’5000: A
Large Scale And Highly Reconfigurable Experimental Grid Testbed. International Journal of High
Performance Computing Applications, 2006, 20 (4), pp.481-494. �10.1177/1094342006070078�. �hal-
00684943�

https://inria.hal.science/hal-00684943
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


GRID’5000: A LARGE 

SCALE AND HIGHLY 

RECONFIGURABLE 

EXPERIMENTAL GRID 

TESTBED

Raphaël Bolze
1
 

Franck Cappello
2
 

Eddy Caron
1
 

Michel Daydé
3
 

Frédéric Desprez
1
 

Emmanuel Jeannot
4
 

Yvon Jégou
5
 

Stephane Lanteri
6
 

Julien Leduc
2
 

Noredine Melab
7
 

Guillaume Mornet
5

Raymond Namyst
8
 

Pascale Primet
1
 

Benjamin Quetier
2
 

Olivier Richard
9
 

El-Ghazali Talbi
7
 

Iréa Touche
10

Abstract

Large scale distributed systems such as Grids are difficult
to study from theoretical models and simulators only.
Most Grids deployed at large scale are production plat-
forms that are inappropriate research tools because of
their limited reconfiguration, control and monitoring capa-
bilities. In this paper, we present Grid’5000, a 5000 CPU
nation-wide infrastructure for research in Grid computing.
Grid’5000 is designed to provide a scientific tool for com-
puter scientists similar to the large-scale instruments
used by physicists, astronomers, and biologists. We
describe the motivations, design considerations, architec-
ture, control, and monitoring infrastructure of this experi-
mental platform. We present configuration examples and
performance results for the reconfiguration subsystem.

Key words: Grid, P2P, experimental platform, highly recon-
figurable system

1 Introduction

Grid is well established as a research domain and pro-
poses technologies that are mature enough to be used for
real-life applications. Projects such as e-Science (http://
www.nesc.ac.uk), TeraGrid (http://www.teragrid.org),
Grid3 (http://www.ivdlg.org/grid2003), DEISA (http://
www.deisa.org), and NAREGI (http://www.naregi.org/
index_e.html/), demonstrate that large-scale infrastructures
can be deployed to provide scientists with fairly easy access
to geographically distributed resources belonging to dif-
ferent administration domains. Despite its establishment
as a workable computing infrastructure, there are still
many issues to be solved and mechanisms needed to opti-
mize in performance, fault tolerance, QoS, security, and
fairness.

As large-scale distributed systems, Grid software and
architecture combine several characteristics which make
them difficult to study by following a theoretical approach.
Most of the research conducted in Grids is currently per-
formed using simulators, emulators or production plat-
forms. As discussed in the next section, all these tools
have limitations making the study of new software and
optimizations difficult. Given the complexity of Grids,
there is a strong need for highly configurable real-life
experimental platforms that can be controlled and moni-
tored directly. Such tools already exist in other contexts.
The closest example is PlanetLab (Chun et al. 2003). It
consists of a set of PCs connected to the Internet and
forming an experimental distributed system. PlanetLab is
used for network studies as well as for distributed sys-
tems research.

In this paper we present the Grid’5000 http://www.grid
5000.org project, still under construction but already in
use in France. We first explain the motivation for devel-
oping a large scale, real-life experimental platform by
discussing the limitations of existing tools. In Section 3,
we present the design principles of Grid’5000 which
were based on the results of Grid researchers’ interviews.

1LIP, ENS LYON
2INRIA, LRI, PARIS (FCI@LRI.FR)
3INPT/IRIT, TOULOUSE
4LORIA, INRIA
5IRISA, INRIA
6INRIA SOPHIA ANTIPOLIS
7LIFL, UNIVERSITÉ DE LILLE
8LABRI, UNIVERSITÉ DE BORDEAUX
9LABORATOIRE ID-IMAG
10LGC, TOULOUSE

1



The implementation of Grid’5000 is described in Sec-
tion 4. In Section 5 we present evaluation results for
the deployment and reboot system, a key component of
Grid’5000. Section 6 gives some configuration exam-
ples, demonstrating the high reconfigurability of the plat-
form.

2 Motivations and Related Work

As with other scientific domains, research in Grid com-
puting is based on a variety of methodologies and tools.
Figure 1 presents the spectrum of methodologies used by
researchers to study research issues in distributed sys-
tems. In large distributed systems, numerous parameters
must be considered and complex interactions between
resources make analytical modeling impractical. Thus sim-
ulators, emulators, and real platforms are preferred.

Simulators focus on a specific behavior or mechanism
of the distributed system and abstract the rest of the sys-
tem. Their fundamental advantage is their independence
of the execution platform. For example, Bricks (Takefusa
et al. 1999) was proposed for studies and comparisons of
scheduling algorithms and frameworks. Researchers can
specify network topologies, server architectures, commu-
nication models and scheduling framework components
to study multi-client, multi-server Grid scenarios. Some
Bricks components are replaceable by real software, allow-
ing validation of external sofware. SimGrid (Casanova,
Legrand, and Marchal 2003) is used to study single-client
multi-server scheduling in the context of complex, dis-
tributed, dynamic, and heterogeneous environments. Sim-
Grid is based on event-driven simulation, providing a set
of abstractions and functionalities to build a simulator
corresponding to the applications and infrastructures.
Resources latency and service rate may be set as con-

stants or evolve according to traces. The topology is fully
configurable. GangSim (Dumitrescu and Foster 2005) con-
siders a context where hundreds of institutions and thou-
sands of individuals collectively use tens or hundreds of
thousands of computers and the associated storage systems.
It models usage policies at the site and Virtual Organiza-
tion (VO) levels and can combine simulated components
with instances of a VO Ganglia Monitoring toolkit run-
ning on real resources.

Surprisingly, very few studies have provided validation
for these simulators. The validation of Bricks was per-
formed by incorporating NWS (Network Weather Serv-
ice) in Bricks and comparing the NWS results measured
on a real Grid with the ones obtained on a Grid simulated
by Bricks. SimGrid validation consisted in comparing
the simulator results with the ones obtained analytically
on a mathematically tractable problem.

In some situations, complex behaviors and interactions
of the distributed system nodes cannot be simulated, because
of the difficulty of capturing and extracting the factors influ-
encing the distributed systems. Emulators can address this
limitation by executing the actual software part of the dis-
tributed system, in its whole complexity. Emulators are
generally run on rather ideal infrastructures (i.e. controlled
clusters). MicroGrid (Liu, Xia, and Chien 2004) allows
researchers to run Grid applications on virtual Grid
resources. Resource virtualization is done by intercepting
all direct use of resources. The emulation coordination essen-
tially controls the simulation rate, which is determined by
the virtualization ratio for all resources. The emulation
time base is controlled by a virtualization library returning
adjusted times to the system routines. Accurate processor
virtualization relies on specific schedulers and the network
virtualization (Liu, Xia, and Chien 2004) uses the MaSSF
system for a scalable online network simulation.

Fig. 1 Methodologies used in distributed system studies. 

2



The authors of MicroGrid have conducted a thorough
validation (Liu, Xia, and Chien 2004). The internal tim-
ing of MicroGrid was validated using the AutoPilot sys-
tem. The capacity of the emulator to enforce memory
limitation and to maintain the processing model under
CPU and I/O competition was validated using microbench-
mark. Emulation results were compared with experimen-
tal ones on real platforms for the NAS benchmark, in
order to validate the full emulation engine. Validation
with real applications compared the execution times of
CACTUS problem solving environment, Jacobi, Sca-
LAPACK, Fish, Game of life, and Fasta on real platforms
with the ones obtained by MicroGrid. Emulab (White et al.
2002) is another emulator, originally designed for network
emulation. It provides advanced controlling mechanisms
for the user, allowing the rebooting of nodes in specific
OS configurations and the control of the network topology.

Because emulators use the real software, they cannot
scale as well as simulators. Furthermore, there is still a
gap between emulators and the reality: even traffic and
fault injection techniques, generally based on traces or
synthetic generators cannot capture all the dynamic, variety
and complexity of real-life conditions. Real-life experi-
mental platforms solve this problem by running the real
software on realistic hardware. DAS2 (http://www.cs.
vu.nl/das2/) is basically an idealized Grid, all sites being
connected on the Internet. Experiments are run on top of a
Grid middleware managing the classical security and
runtime interface issues related to Grid platforms. The
nodes are voluntarily homogeneous, providing a much sim-
pler management and helping a better environment for
performance comparison (speed up of parallel applica-
tions) and understanding. PlanetLab (Chun et al. 2003) is
another real-life experimental platform, connecting real
machines through the Internet, at the planet scale. Some
production Grids (TeraGrid, eScience, DataGrid) have
also been used as experimental platforms, before being
opened to actual users or during dedicated time slots.

Two major limitations of real-life platforms as experi-
mentation tools are 1) their low software reconfiguration
capability and 2) the lack of deep control and monitoring
mechanisms for the users. The next section highlights
how Grid’5000 addresses these limitations.

3 Designing Grid’5000

The design of Grid’5000 derives from the combination of
1) the limitations observed in simulators, emulators and
real platforms and 2) an investigation into the research
topics conducted by the Grid community. These two ele-
ments led to the proposal for a large scale experimental
tool, with deep reconfiguration capability, a controlled
level of heterogeneity and a strong control and monitor-
ing infrastructure.

3.1 Experiment Diversity

During the preparation of the project (2003), we asked
researchers in Grid computing which experiments they
were willing to conduct on a large scale real-life experi-
mental platform. The members of 10 teams in France,
involved in different aspects of Grid computing and well
connected to the international Grid community, proposed
a set of about 100 experiments. It was surprising to dis-
cover that almost all teams required different infrastructure
settings for their experiments. The experiment diversity
nearly covered all layers of the software stack used in
Grid computing: networking protocols (improving point
to point and multipoints protocols in the Grid context, etc.);
operating systems mechanisms (virtual machines, single
system image, etc.); Grid middleware; application runt-
imes (object oriented, desktop oriented, etc.); applications
(life science, physics, engineering, etc.); problem solving
environments. Research in these layers concerns scalabil-
ity (up to thousands of CPUs), performance, fault toler-
ance, QoS, and security.

3.2 Deep Reconfiguration

For researchers involved in network protocols, OS and
Grid middleware research, the software setting for their
experiments often requires specific OS. Some researchers
need Linux, while others are interested in Solaris10 or
Windows. For networking research, FreeBSD is preferred
because network emulators such as Dummynet and Mod-
elnet run only on this operating system. Some researchers
also need to test and improve protocol performance (for
example changing the size of the TCP window or testing
alternative protocols). Some research on virtual machines,
process checkpointing and migration need the installation
of specific OS versions or OS patches that may not be
compatible with each other. Even for experiments over
the OS layers, researchers have some preferences: for
example some prefer Linux kernel 2.4 or 2.6 because their
schedulers differ. Researchers’ needs are quite different in
Grid middleware: some require Globus (in different ver-
sions: 3.2, 4, DataGrid version) while others need Unicore,
Desktop Grid or P2P middleware. Some other researchers
need to make experiments without any Grid middleware
and test applications and mechanisms in a multi-site,
multi-cluster environment before evaluating the Middle-
ware overhead. According to this inquiry on researchers’
needs, Grid’5000 should provide a deep reconfiguration
mechanism allowing researchers to deploy, install, boot
and run their specific software images, possibly including
all the layers of the software stack. In a typical experiment
sequence, a researcher reserves a partition of Grid’5000,
deploys its software image, reboots all the machines of the
partition, runs the experiment, collects results and relieves

3



the machines. This reconfiguration capability allows all
researchers to run their experiments in the software envi-
ronment exactly corresponding to their needs.

3.3 A Two-Level Security Approach

Because researchers must be able to boot and run their
specific software stack on Grid’5000 sites and machines,
we cannot make any assumption on the correct configura-
tion of the security mechanisms. As a consequence, we
should consider that Grid’5000 machines are not protected.
Two other constraints increase the security issue com-
plexity: 1) all the sites hosting the machines are connected
through the Internet and 2) basically inter-site communi-
cation should not suffer any platform security restriction
and overhead during experiments. From this set of con-
straints, we decided to use a two-level security design with
the following rules: a) Grid’5000 sites are not directly
connected to the Internet and b) all communication pack-
ets fly without limitation between Grid’5000 sites. The
first rule ensures that Grid’5000 will resist hacker attacks
and will not be used as basis of attacks (i.e. massive DoS
or other more restricted attacks).

These design rules led to building a large scale con-
fined cluster of clusters. Users connect to Grid’5000 from
the lab where the machines are hosted. Rigorous authen-
tication and authorization check is done first to enter the lab
and then to log in Grid’5000 nodes from the lab. In order
to participate in multiplatform experiments, it is possible
for Grid’5000 sites to open restricted routes through the
Internet to external clusters (called satellite sites).

3.4 Two Thirds as Homogeneous Nodes

Performance evaluation in Grid is a complex issue. Speedup
evaluation is hard to evaluate with heterogeneous hard-
ware. In addition, the hardware diversity increases the
complexity of the deployment, reboot and control subsys-
tem. Moreover, multiplying the hardware configurations
directly leads to an increase in the everyday management
and maintenance cost. Considering these three parame-
ters, we decided that 2/3 of the total machines should be
homogeneous. However, Grid are heterogeneous by
nature and this is an important dimension in the experi-
ment diversity. This is the reason why we chose to keep 1/3
as heterogeneous machines.

3.5 Precise Control and Measurement

Grid’5000 is used for Grid software evaluation and mak-
ing fair comparisons of alternative algorithms, software,
protocols, etc. This implies two elements: first, users
should be able to steer their experiments in a reproduci-
ble way and second, they should be able to access probes

providing precise measurements during the experiments.
The reproducibility of experiment steering includes the
capability to 1) reserve the same set of nodes, 2) deploy
and run the same piece of software on the same nodes, 3)
synchronize the experiment execution on all the involved
machines, 4) if needed, repeat sequences of operations in
a timely and synchronous way, 5) inject the same experi-
mental conditions (synthetic or trace based: fault injec-
tion, packet loss, latency increase, bandwidth reduction).
As described in the next section, Grid’5000 software set
provides a reservation tool (OAR, see Georgiou et al.
2005), a deployment tool (Kadeploy2, see Georgiou et al.
2006) and several experimental condition injectors. Pre-
cise and extensive measurement is a fundamental aspect
of experimental evaluation on real-life platforms.

Global observation of the network (from its edges) and
local observation of processor, memory or disk is diffi-
cult at the hardware level and since the users may use
their own software configuration, there is no way to pro-
vide a built-in and trustworthy monitoring system for
CPU, memory and disc. Hence, it is the responsibility of
the users to properly install, configure and manage the
software observation tools they need for their experi-
ments.

4 Grid’5000 Architecture

The Grid’5000 architecture implements the principles
described in the previous section. Based on the research-
ers requirements, the scalability needs and the number of
researchers, we decided to build a platform of 5000
CPUs distributed over 9 sites in France. Figure 2 presents

Fig. 2 Overview of Grid’5000.

4



an overview of Grid’5000. Every site hosts a cluster and
all sites are connected by high speed network (a novel
network architecture is being deployed, connecting the
sites with 10 Gbps links).

Numbers in Figure 2 give the target number of CPUs
for every cluster. Two-thirds of the nodes are dual CPU
1U racks equipped with 2 AMD Opteron processors run-
ning at 2 GHz, 2 GB of memory and two 1Gbps Ethernet
Adapters. Clusters are also equipped with high speed
networks (Myrinet, Infiniband, etc.). In the rest of this
section we present the key architectural elements of
Grid’5000.

4.1 A Confined System

As discussed earlier, the Grid’5000 architecture should
provide an isolated domain where communication is allowed
without restriction between sites and is not possible directly
with the outside world. Mechanisms based on state-of-the-
art technology such as public key infrastructures and X509
certificates, produced by the Grid community to secure all
resources accessed are not suitable for the Grid’5000. The
GSI high level security approach imposes a heavy over-
head and impacts on the performance, biasing the results
of studies not directly related to security.

A private dedicated network (PN) or a virtual private
network (VPN) are, then, the only solutions to compose a
secure grid backbone and to build such a confined infra-
structure. In Grid’5000, we chose to interconnect the sites
with a combination of DiffServ and MPLS technology
(Multiprotocol label switching) provided by RENATER
(our service provider). MPLS is an efficient way to build
secure virtual private networks. As the packet encapsulation
is done at very low level by very high performance rout-
ers, the overhead is negligible and has no impact on the
end-to-end performance. One difference between classi-
cal Internet and MPLS, is that MPLS fixes the routing of
Grid’5000 datagrams and flows. We consider that the
static routing constraint is reasonable for such a testbed.
Concerning the background traffic, and the meaningful-
ness of our end-to-end measures, we chose to let the
researcher load the network with articifially generated
traffic he can monitor rather than letting him deal with
unknown Internet traffic. It allows the calibration of tools,
the debugging of protocols and the investigation of alter-
native traffic control strategies and different types of traf-
fic models. It appears Grid’5000 is complementary to
PlanetLab as our instrument enables fine tuning and good
understanding of basic phenomenon in the absence of
extra noise. PlanetLab offers a more realistic view of the
present Internet behavior, but cannot capture behaviors at
the limit of the resource capacities and potentially the
future Internet behavior.

Many VPN implementation solutions are available
but they do not provide security and QoS guarantees
simultaneously. For security, network layer VPNs may
use tunneling or network layer encryption (layer 3 VPN).
A link layer, VPNs such as MPLS are directly provided by
network service providers (layer 2-3 VPN). The advan-
tage of the MPLS VPN over IP VPN (Ipsec) is perform-
ance. As Grid’5000 sites are connected to the same NREN
(National Research and Education Network), the multi-
domain issue of the MPLS technology is avoided here.
For performance guarantee, a combination of DiffServ and
MPLS will be configured for Grid’5000 links. The Pre-
mium service will be used for delay and bandwidth guar-
antees required for reproducible experimental conditions
and performance measurements. This MPLS-based Grid
architecture allows the creation of a trust context that even
enables to experiment with new security solutions for IP
VPN-based Grids. Figure 3 presents the resulting com-
munication architecture.

Using MPLS in Grid architecture is not an isolated
choice. Recently, a Grid VPN research group was born
within the GGF, attesting a real interest in developing and
using MPLS, G-MPLS or lower level optical switching
technologies for the Grid.

4.2 User View and Data Management

As previously mentioned, communications are done with
minimal authentication between Grid’5000 machines.
The logical consequence is that a user has a single account
across the whole platform. However, each Grid’5000 site
manages its own user accounts. Reliability of the authen-
tication system is also critical. A local network outage
should not break the authentication process on other
sites. These two requirements have been fulfilled by the
installation of an LDAP directory. Every site runs an LDAP
server containing the same tree: under a common root, a
branch is defined for each site. On a given site, the local
administrator has read-write access to the branch and can
manage its user accounts. The other branches are periodi-
cally synchronized from remote servers and are read-
only.

From the user’s point of view, this design is transpar-
ent. Once the account is created, the user can access any
of the Grid’5000 sites or services (monitoring tools,
Wiki, deployment, etc.). His data, however, are local to
every site. They are shared on any given cluster through
NFS, but distribution to another remote site is done by
the user through classical file transfer tools (rsync, scp,
sftp, etc.). Data transfers with the outside of Grid’5000
are restricted to secure tools to prevent identity spoofing
and public key authentication is used to prevent brute-
force attacks.

5



4.3 Experiment Scheduling

Experiment scheduling and resource allocation is man-
aged by a resource management system called OAR
(Georgiou et al. 2005) at cluster level and by a simple
broker at the grid level. OAR architecture is built from a
relational database engine MySql. All large-scale opera-
tions such as parallel task launching, node probing or
monitoring are performed using a specialized parallel
launching tool named Taktuk (Augerat, Martin, and Stein
2002). OAR provides most of the important features imple-
mented by other batch schedulers such as priority sched-
uling by queues, advance reservations, backfilling and
resource match making.

At grid level, a simple broker allows co-allocating sets
of nodes on every selected cluster.

The co-allocation process works as follows: 1) user
submits an experiment which needs several sets of nodes
on different clusters; 2) in round-robin sequence, the bro-
ker submits a reservation to each local batch scheduler. If
one reservation is refused, all previously accepted reser-
vations are canceled. When all local reservations are
accepted, the user receives an identifier from the broker,
allowing the user to retrieve information about the allo-
cated set of nodes.

In Grid’5000, the resource management system is cou-
pled with node reconfiguration operation at different
points. First, a specific queue is defined where users can
submit experiments requesting node reconfiguration.
Second, there is a dynamic control of deployment rights
in the prologue script that is executed before starting the
experiment. This gives the user the capability of deploy-
ing system images on the allocated node partition. Rights
are revoked in the epilogue script after the experiment.
Third, after the completion of experiments involving node
reconfiguration, all nodes are rebooted in a default envi-
ronment. This default environment provides libraries and
middleware for experiments without reconfiguration.

4.4 Node Reconfiguration

Node reconfiguration operation is based on a deployment
tool called Kadeploy2 (Georgiou et al. 2006). This tool
allows users to deploy their own software environment
on a disk partition of selected nodes. As previously men-
tioned, the software environment contains all software
layers from OS to application level needed by users for
their experiments.

The architecture of Kadeploy2 is also designed around
a database and a set of specialized operating components.

Fig. 3 Communication architecture.

6



The database is used to manage different aspects of the
node configuration (disk partition schemes, environment
deployed on every partition), user rights to deploy on
nodes, environment description (kernel, initrd, custom
kernel parameters, desired filesystem for environment,
associated postinstallation) and logging of deployment
operations.

Several deployment procedures are available, depend-
ing mainly on OS type and filesystem specificity. We
only sketch the usual deployment procedure. First, when
a user initiates a deploy operation, he provides an environ-
ment name allowing the retrieval of associated information
from the database. The user provides this information at
environment registration. Deployment begins by reboot-
ing all nodes on a minimal system through a network
booting sequence. This system prepares the target disk
for deployment (disk partitionning, partition formatting
and mounting). The next step in the deployment is the
environment broadcast which uses a pipelined transfer
between nodes with on-the-fly image decompression. At
this point, some adjustments must be done on the broad-
casted environment in order to be compliant with node
and site policies (mounting tables, keys for authentica-
tion, information for specific services that cannot support
auto-configuration). The last deployment step consists in
rebooting the nodes on the deployed system from a net-
work loaded bootloader.

5 Deployment System Evaluation

In this section, we present the evaluation of the deploy-
ment and reboot system of Grid’5000. Evaluation of other
parts of Grid’5000 will be presented in future papers. The
deployment and reboot system is certainly the most impor-
tant mechanism of Grid’5000, enabling a rapid turnaround
of experiments on the platform. Typical deployment and
reboot mechanisms for clusters cannot be coupled to a batch
scheduler. Moreover, they are not designed to concurrently
install different systems on separate cluster partitions. Our
objective is to provide a reconfiguration time (boot-to-boot:
B2B) lower than 10 minutes for the 5000 CPUs of the
platform. This means: 1) deploying the software image on
all the nodes of every site (a site may contain up to 500
nodes); 2) issuing the reboot order on all Grid’5000 nodes;
and 3) the reboot of all nodes from the deployed software
image. As previously mentioned, Kadeploy2 uses more
steps, booting a light kernel to prepare the user partition to
boot from for the experiment.

The B2B time depends not only on the performance of
Kadeploy2 but also on the OS to be booted (OS have dif-
ferent configurations and run different sets of services).
Figure 4 presents the B2B time according to the number
of nodes, in a single site, for a simple kernel without
service, on a cluster of 200 nodes.

The figure presents the completion time of every step
included in the B2B time (as a cumulated graph): 1) the
time to boot the preparation OS launching a light kernel
(first check); 2) the time to prepare the disk partitions before
the installation of the user environment (preinstall); 3)
the time to transfer the user environment archive (trans-
fer); and 4) the time to boot the user OS (lastcheck).
First, the figure shows that the boot time depends on the
number of nodes. This is because the boot time is differ-
ent for all machines and we consider only the slowest
one. In contrast, the disk preparation and environment
transfer times increase negligibly with the number of
nodes. The time to reboot the 2 OS largely dominates the
environment transfer time. Altogether, the figure clearly
shows a B2B time evolving linearly with the number of
nodes following an affine function that could be evaluated
as B2Btime = 200 secs + (0.33 × X), X being the number of
nodes.

Figure 5 presents the time diagram of a deployment
and reboot phase involving 2 Grid’5000 sites for a total
of 260 nodes (180 nodes in site 1 and 80 nodes in site 2).
The vertical axis corresponds to the number of nodes in
deployment and reboot states. At t = 0 s, all the nodes are
running an OS. At t = 30 s, a deployment sequence is
issued. At t = 50 s, all nodes are rebooting the deploy-
ment kernel. At t = 160 s all nodes have rebooted and are
preparing the user partition. The clusters start the second
reboot at t = 200 s for site 2 and t = 340 s for site 1. Site 2
nodes are rebooted with the user OS at t = 320 s. All
nodes are rebooted with the user OS (including Site 1) at
t = 450 s. At t = 800 s, the user experiment is completed
and a reboot order is issued making all nodes reboot to
default environment. This figure demonstrates that the
current B2B time at the Grid level (450 seconds) is well

Fig. 4 Time (in seconds) to deploy and boot a new OS
on a cluster with Kadeploy2.

7



below the 10 minute mark. The deployment and reboot
system is still in Alpha version. It is not tuned and there
are many optimization opportunities (Georgiou et al.
2006).

6 Grid’5000 Configuration Examples

The main objective of the Grid’5000 set of software is to
ease the deployment, execution and result collection of
large scale Grid experiments. In this section, we present 5
examples for Grid’5000 reconfiguration for experiments
in networking protocols, Grid middleware infrastruc-
tures, and GridRPC environment.

6.1 Testing Recent P2P Protocols in Grid Context

BitTorrent is a popular file distribution system outper-
forming FTP performance when delivering large and highly
demanded files. The key idea of BitTorrent is the cooper-
ation of the downloaders of the same file by uploading
chunks of the file to each other. As such, BitTorrent is a
nice broadcast protocol for large files in data and compu-
tational Grids. BitTorrent uses TCP as the transport pro-
tocol.

In this section, we describe how we can deploy, run
and collect experiment results, when performing simple
BitTorrent performance evaluation for a variation of TCP
protocol, on homogeneous nodes of Grid’5000. The
modification of the TCP stack involves the compilation
and deployment of a specific OS kernel. The experiment
requires 9 steps: Step 1) BitTorrent code is instrumented
to log reception and emission events (type of communi-
cation, sender identifier, receiver identifier, time and
chunk identifier). BitTorrent has been instrumented to

replay the logged sequence of events. Step 2) The soft-
ware image is prepared (installing specific libraries and
software – Python for BitTorrent), based on a minimal
image certified to work on the experimental nodes. The
kernel is patched and compiled with alternative TCP ver-
sions. The local root file system is then archived and reg-
istered on the deploying software database on all sites.
Step 3) Nodes are reserved possibly from the same selec-
tion file, using OAR. Step 4) The archived file system
image is deployed on a user-specified partition of all nodes,
using Kadeploy2. Step 5) Kadeploy2 reboots all the
reserved nodes and checks that the machine is respond-
ing to ping and ssh. 6) The BitTorrent file to be broad-
casted, is stored on the user home directory where the
BitTorrent master node (the seeder) will run. The list of
nodes provided by OAR is stored on the BitTorrent mas-
ter node. 7) Node clocks are synchronized using NTP-
date. 8) A distributed launcher program controls the start
of the experiment script on all the nodes. The BitTorrent
tracker is started first, then the Torrent file created is reg-
istered in the tracker, then the seeder is started on the
master and finally, the clients (leechers) are started on all
the other nodes. The BitTorrent events are recorded locally
on all the nodes. 9) All log files are collected and stored
in the user home directory of the user site gateway.
Reserved nodes are released.

6.2 Deploying a Globus Toolkit

Globus is an open source grid middleware toolkit used for
building grid systems and applications. This part describes
how we can map a Globus (Toolkit 2) virtual grid on
Grid’5000, deploy Globus, and run experiments. The
topology we chose for our virtual Globus grid was to have
one Globus installation on each Grid’5000 site. We con-
sider each site to be a separate cluster that provides serv-
ices through the Globus Toolkit. Since we are emulating a
grid, each cluster manages its own user accounts (i.e. no
grid-wide user directory). Job execution on clusters is
managed by a batch job scheduler (e.g. OAR, PBS). Each
cluster manages user accounts and job scheduling with their
software of choice, as we only need homogeneity inside
clusters. Each site runs a certification authority (CA) that
delivers user certificates for their users, as well as host
certificates. We pick a front node on each site, and install
Globus services on this front node. These services accept
requests from other sites, authenticate and authorize them,
then perform an action (e.g. submit a job) on behalf of the
client. Clients authenticate services with a host certificate
delivered by the site the services run on. The Gatekeeper
maps user certificates to the user accounts of each cluster,
and executes them with the local job scheduler. Front
nodes also run the MDS (monitoring and discovery sys-
tem) service, and GSIFTP (data transfer).

Fig. 5 Time diagram for the deployment and reboot of
a user environment on 2 sites.

8



Globus toolkit is deployed by creating a system image
that contains a Globus installation tailored for the experi-
ment (since we deploy the whole system image, everything
can be customized up to the operating system kernel).
We create for each site an image for cluster compute nodes
with a batch scheduler, and an image for the front node with
the Globus Toolkit services (Gatekeeper, MDS, GSIFTP,
and certificates). The virtual Globus grid is deployed on
Grid’5000 machines using the Kadeploy tools, thereby
turning Grid’5000 into a virtual Globus grid as long as
the Kadeploy reservation lasts. While Globus users are
running their experiments, log files are saved to the local
drives of each node. As soon as the experiment is done,
Kadeploy reboots the nodes with their default system
image, and users can retrieve their log files and process
them.

6.3 A Corba Based Grid Running DIET and TLSE

The DIET (Caron and Desprez 2006) middleware infra-
structure follows the GridRPC paradigm (Seymour et al.
2004) for client–server computing over the Grid. It is
designed as a set of hierarchical components (client, mas-
ter and local agents, and server daemons). It finds an
appropriate server according to the information provided
in the client request (problem to be solved, size of the
data involved), the performance of the target platform
(server load, available memory, communication perform-
ance), and the availability of data stored during previous
computations. The scheduler is distributed using several
hierarchies connected either statically (in a Corba fash-
ion) or dynamically (in a peer-to-peer fashion).

The main goal of the Grid-TLSE project (Dayde et al.
2004) is to design an expert site that provides an easy
access to a number of sparse matrix solver packages
allowing their comparative analysis on user-submitted
problems, as well as on matrices from collections also
available on the site. The site provides user assistance in
choosing the right solver for its problems and appropriate
values for the solver parameters. A computational Grid
managed by DIET is used to deal with all the runs related
to user requests. Our goal in the Grid’5000 project is two-
fold. First we want to validate the scalability of our dis-
tributed scheduling architecture at a large scale (using
thousands of servers and clients) and then to test some
deployments of the TLSE architecture for future produc-
tion use.

In the current availability of Grid’5000 platform, the
deployment of DIET with TLSE server works in three
phases. The first step consists in sending one OAR request
at each site, to reserve a maximum of available nodes.
The second phase consists in receiving OAR information
to know which nodes are given by reservation. The third
phase generates an XML file with the dynamic informa-

tion as well as names of nodes at each site. These files
will be used by GoDIET to deploy DIET. Our main goal
during this first experience is to corroborate a theoretical
study of the deployment with the hardware capability of
Grid’5000 platform (CPU performance, bandwidth, etc.)
to design a hierarchy that achieves a good scalability and a
good efficiency for DIET. From this XML file, GoDIET
deploys agents (or schedulers), servers and services bound
to DIET as Corba services (i.e. naming service) along with
a distributed log tool designed for the visualization tools
(VizDIET, see Bolze, Caron, and Desprez 2006). Figure 6
shows a large deployment of DIET using 574 computing
nodes and 9 agents for the scheduling of 45000 requests.
The 574 servers are deployed on 8 clusters and 7 sites.

6.4 Process Design, Optimization, Planning and 
Scheduling

Process systems engineering is concerned with the under-
standing and development of systematic procedures for
the design and operation of chemical process systems,
ranging from continuous to batch processes at industrial
scale (Ponish et al. 2005). More precisely, the optimal
design continuous process consists in selecting simultane-
ously the unit operations, the topology and the best operating
conditions. Several software tools have been developed
for solving this type of problems. One of them, AG (1,2),
used at the LGC (Laboratoire de Genie Chimique) is a
serial fortran code. To give an illustration, the treated
problem instances involve problem sizes of between 170
and 210 variables. Half of them are integer, which corre-
sponds to a combinatorial aspect of about 1.e40 and 1.e50
(since 3 values are possible for each integer variable). The
problem is identified as an NP-hard problem.

This application is multi-parametric by nature since it
uses a stochastic algorithm where the execution is repeated
100 times with different parameters. Each execution
requires 4 hours on the previous example giving a total
execution time of 400 hours on a single PC.

Gridification of such applications is straightforward.
The first step consists in modifying the code in order to
be able to schedule the 100 executions over 100 different
nodes. The code has then been deployed over 5 clusters
of Grid’5000: Lyon, Orsay, Sophia, Bordeaux, and Tou-
louse. The code does not reference any external library
which simplifies greatly the installation process at every
site.

Getting 100 nodes over 5 clusters of Grid’5000 is usu-
ally not a problem and the elapsed time for simulation is
reduced from 400 hours down to 4 hours. There is an
obvious benefit: the possibility of solving larger prob-
lems. But a major benefit compared with traditional large
computer infrastructures is that the time between execu-
tion launching (usually through a batch system that may

9



limit the maximal number of processors to a lower number
and impose a long wait on a specific queue) and result
recovering is drastically reduced, allowing researchers to
carry out more simulations.

6.5 The Flow-Shop Challenge on Grid’5000

The Flow-Shop problem consists roughly in finding a
schedule of a set of jobs on a set of machines that mini-
mizes the total execution time called the makespan. The
jobs must be scheduled in the same order on all machines,
and each machine cannot be simultaneously assigned to
two jobs. The complexity of the problem is very impor-
tant for large size instances in terms of potential solutions
(i.e. schedules). Even with a modern workstation the res-
olution based on an exhaustive enumeration of all possi-
ble combinations would take several years. Therefore,
the challenge is to reduce the number of explored solu-
tions using efficient algorithms in order to solve the prob-

lem in a reasonable time. Nevertheless, even if these
algorithms allow significant reduction in the size of the
search space the complexity remains high, and the prob-
lem could not be efficiently solved without computa-
tional grids.

To solve the problem, a new grid exact method based
on the Branch-and-Bound (B&B) algorithm has been pro-
posed by Melab (2005). The method is based on a large
scale dispatcher–worker cycle stealing approach. The dis-
patcher controls the exploration of the search tree gener-
ated by the distributed B&B algorithm. It maintains the
best solution found so far and a pool of work units and
ensures their dynamic allocation to the different workers
joining the computational grid. Each work unit represents
a set of nodes (or solutions) to be or being explored, and
is designated by a small descriptor. Each worker explores
its assigned tree nodes using the B&B algorithm and
sends back a solution to the dispatcher if it is better than
the best known solution so far. To deal with the load bal-

Fig. 6 Large DIET deployment on Grid’5000.

10



ancing issue, as soon as its local pool of nodes to be
explored is empty each worker requests from the dis-
patcher a work unit. The dispatcher selects a work unit
being executed and splits it in two parts. The second part,
which is probably not yet explored, is sent to the worker
asking for work.

Another issue which is dealt with in the proposed grid
exact method is the fault tolerance. This issue arises on a
computational grid because of failures of resources (proc-
essors, networks, etc.) or their dynamic availability. Within
the Grid’5000 context, the dynamic availability is a result
of the reservation policy of the grid. Indeed, for long-run-
ning applications, a series of reservations is required to
resume their execution. The end of each reservation is put
in the same category as a failure of the corresponding
resources. In the proposed method, a checkpointing-based
approach is proposed to deal with the fault-tolerance
issue. Each worker periodically requests the dispatcher to
update the descriptor of its associated work unit with its
current state. The descriptor is based on a special coding
of the search tree which allows minimizing of the mem-
ory space required by the checkpointing mechanism and
the communications involved by the dynamic work distri-
bution.

The proposed method has been implemented using the
XtremWeb middleware (Mezmaz, Melab, and Talbi 2006)
and RPCs. The second implementation is used to solve
the Taillard’s Flow-Shop problem instance Ta0561 of
scheduling 50 jobs on 20 machines. A near-optimal solu-
tion has been found in (Ruiz and Stutzle 2004). However,
as it is CPU time consuming such instance has never
been optimally solved. The proposed method in Melab
(2005) allowed not only an improvement in the best
known solution (Ruiz and Stutzle 2004) for the problem
instance but also proved the optimality of the provided
solution. Indeed, once the supposed optimal solution is
found it has to be compared with the remaining solutions
being visited to prove that it is really the best.

The experiments were performed on a computational
grid including, simultaneously, processors from Grid’5000
and different educational networks of Université de Lille1
(Polytech’Lille, IEEA, IUT “A”). The number of proces-
sors averaged approximately 500, and peaked at 1245
machines during one night. The Grid’5000 sites involved
in the computation are Bordeaux, Lille, Orsay, Rennes,
Sophia-Antipolis and Toulouse. The optimal solution was
found with a total wall-clock time of 7 weeks. The exper-
iment was performed a second time starting from the best
known near-optimal solution minus 1. The optimal solu-
tion was found within 25 days and 46 minutes. The reso-
lution would take 22 years 185 days and 16 hours on a
single machine. During the resolution, an average of 328
processors were used and peaked at 1195 processors. The
total number of explored nodes was 6,5874e + 12, and a

small number of them (0. 39%) were explored twice
(redundant work). Moreover, 129 958 work allocation
operations and 4 094 176 checkpointing opeartions have
been performed. Such statistics show that the dynamic
load-balancing and checkpointing mechanisms have been
heavily requested and performed well. Furthermore, the
parallel efficiency is measured as the ratio between the
agregated execution time of the workers and the total time
of their availability. The parallel efficiency observed in
this experience is 97%, so the load balancing approach is
very efficient. Finally, the average CPU time consumed
by the dispatcher is 1.7%. The approach scales up to
1195 processors without any problem.

7 Conclusion

Grid’5000 belongs to a novel category of research tools
for Grid research: a large scale distributed platform that
can be easily controlled, reconfigured, and monitored. We
have presented the motivation behind design and archi-
tecture of this platform. The main difference between
Grid’5000 and previous real-life experimental platforms
is its degree of reconfigurability, allowing researchers to
deploy and install the exact software environment they
need for each experiment. This capability raises a secu-
rity difficulty, solved in Grid’5000 by establishing a virtual
domain spanning over several sites, rigorously controlling
the communications at the domain boundaries and relax-
ing restrictions for intra-domain communications. We have
described some configuration examples, illustrating the
variety of experiments that can benefit from Grid’5000.
We also presented the performance of the reconfiguration
system which provides a “boot-to-boot” time of less than
10 minutes on the full platform.

Ongoing work focuses on several areas: 1) ease soft-
ware image construction for the users; 2) provide automatic
validation of software images; 3) support and coordinate
experiments; and 4) tune and validate network perform-
ance.

For more information about the Grid’5000 project,
please contact the corresponding author, Franck Cappello
(fci@lri.fr), who is responsible for this project.

Acknowledgments

We would like to thank the French Ministry of research
and the ACI Grid and ACI Data Mass incentives, especially
Thierry Priol (Director of the ACI GRID) and Brigitte
Plateau (Head of the Scientific Committee of the ACI
Grid), and Dany Vandromme (Director of RENATER)
for their support. We also thank INRIA, CNRS, regional
councils of Aquitaine, Bretagne, Ile de France and Pro-
vence Alpe Côte d’Azur, Alpes Maritimes General Council
and the following Universities: University of Paris Sud,

11



Orsay, University Joseph Fourier, Grenoble, University
of Nice-Sophia Antipolis, University of Rennes 1, Insti-
tut National Polytechnique de Toulouse/INSA/FERIA/
Universite Paul Sabatier, Toulouse, University Bordeaux 1,
University Lille 1/GENOPOLE, Ecole Normale Super-
ieure de Lyon. We also thank MYRICOM.

Author Biographies

Raphaël Bolze is a Ph.D. student at Ecole Normale
Superieure de Lyon. He received his Masters in computer
science in 2003 from the Institut de Recherche en Infor-
matiques de Nantes and also a Masters degree in engi-
neering from l’Ecole Polytechniques de l’Universite de
Nantes. His research interests focus on workflow sched-
uling over grid environment.

Franck Cappello holds a Research Director position at
INRIA and leads the Grand-Large project at INRIA. He
has initiated the XtremWeb (Desktop Grid) and MPICH-V
(Fault tolerant MPI) projects. He is currently the director
of the Grid’5000 project, designing, building and running
a large scale Grid experimental platform. He has authored
more than 60 papers in the domains of high performance
programming, desktop grids, grids and fault tolerant
MPI. He has contributed to more than 30 Program Com-
mittees. He is editorial board member of the International
Journal on GRID Computing and steering committee mem-
ber of IEEE HPDC and IEEE/ACM CCGRID. He is the
general chair of IEEE HPDC’2006.

Eddy Caron is an assistant professor at Ecole Normale
Superieure de Lyon and holds a position with the LIP lab-
oratory (ENS Lyon, France). He is a member of GRAAL
project and technical manager for the DIET software pack-
age. He received his Ph.D. in computer science from Uni-
versity de Picardie Jules Verne in 2000. His research
interests include parallel libraries for scientific comput-
ing on parallel distributed memory machines, problem
solving environments, and grid computing.

Michel J. Daydé received his Ph.D. from Institut National
Polytechnique de Toulouse (France) in 1986 in computer
science. From 1987 to 1995, he was a postdoctorate fel-
low then visiting a Senior Scientist in the Parallel Algo-
rithms Group at CERFACS. From 1988, he has been
Professor at Ecole Nationale Superieure d’Electrotech-
nique, d’Electronique, d’Informatique, d’Hydraulique et
des Télécommunications (ENSEEIHT) at Institut National
Polytechnique de Toulouse. Since 1996, he has been
Research Director in the Groupe Algorithmes Paralleles
et Optimisation at Institut de Recherche en Informatique de
Toulouse (IRIT). He is Head of the ENSEEIHT Site of
IRIT and Vice-Head of IRIT. His current research interests

are in grid computing, parallel computing and computa-
tional kernels in linear algebra and large scale nonlinear
optimization. He is the coordinator of the GRID-TLSE
Project and scientific coordinator of the Toulouse/Midi-
Pyrenees Site of GRID’5000.

Frédéric Desprez is a director of research at INRIA and
holds a position at LIP laboratory (ENS Lyon, France).
He received is Ph.D. in computer science from the Insti-
tut National Polytechnique de Grenoble in 1994 and his
M.S. in computer science from the ENS Lyon in 1990.
His research interests include parallel libraries for scien-
tific computing on parallel distributed memory machines,
problem solving environments, and grid computing.

Emmanuel Jeannot is currently full-time researcher at
INRIA (Institut National de Recherche en Informatique et
en Automatique) and is doing its research at the LORIA lab-
oratory. From September 1999 to September 2005 he was
associate professor at the Université Henry Poincare,
Nancy 1. He got his Ph.D. and Master degree of computer
science (respectively in 1996 and 1999) both from Ecole
Normale Superieure de Lyon. His main research interests
are scheduling for heterogeneous environments and grids,
data redistribution, grid computing software, adaptive
online compression and programming models. He is cur-
rently visiting the ICL Laboratory of the University of
Tennessee.

Yvon Jégou is a full time INRIA reasercher in the PARIS
project of INRIA-Rennes (IRISA). His research activities
are centered on architecture, operating systems and com-
pilation techniques for parallel and distributed computing.
His current work is focused on the development of a DSM
for the implementation of runtime systems on large clusters
and for the management of data repositories on the Grid.
In the recent past, he participated to the IST POP European
project on the implementation of an OpenMP system for
clusters using distributed shared memories (DSM). He is
currently involved in the XtreemOS European project. The
objective of XtreemOS is the development of a Grid oper-
ating system with native support for virtual organizations.
He is the leader of the Grid’5000 team at INRIA-Rennes.

Stephane Lanteri is a researcher at INRIA Sophia
Antipolis in a scientific computing team. His current
activities are concerned with the design of unstructured
mesh based numerical methods for the discretization of
PDE systems modeling wave propagation phenomena,
domain decomposition and multilevel algorithms and
high performance parallel and distributed computing. He
is the scientic coordinator of the Grid5000@Sophia
project which defines the contributions of INRIA Sophia
Antipolis to the Grid’5000 project.

12



Julien Leduc is the contractor CNRS Research Engi-
neer, a member of Grid’5000 technical committee and
participated in the design of the Grid’5000 grid services
architecture. He is the technical manager of the reconfig-
uration feature of Grid’5000: Kadeploy designer and
main developer. Previously, he worked on the Clic clus-
tering distribution, and system administration of several
clusters in Grenoble.

Nordine Melab received his Master’s, Ph.D. and HDR
degrees in computer science, from the Laboratoire
d’Informatique Fondamentale de Lille (LIFL, Universite
de Lille1). He is an Associate Professor at Polytech’Lille
and a member of the OPAC team at LIFL. He is involved
in the DOLPHIN project of INRIA Futurs. He is particu-
larly a member of the Steering Committee of the Grid’5000
French Nation-Wide project. His major research interests
include parallel and grid computing, combinatorial opti-
mization algorithms and applications and software frame-
works.

Dr. Pascale Vicat-Blanc Primet, graduated in Compu-
ter Science, is senior researcher (Directrice de Recherche)
at INRIA. Her research interests include Distributed and
Real-Time Systems, High Performance Grid and Cluster
Networking, Active Networks, Internet protocols (TCP/
IP), Network Quality of Service. She is leading the RESO
team, labelled RESO project of the Institut National de la
Recherche en Informatique et Automatique (INRIA) at
LIP laboratory in LYON (France). Since 2000, she has
been very active in the international and national Grid
community. Co-chair of the DataTransport Research Group
in the Global Grid Forum, she has co-edited several Grid
Networking and Transport protocol GGF documents. She
is general co-chair of the International GRIDNETS con-
ference and PFLDNET workshop, member of interna-
tional conferences steering or program committees and
reviewer for international conference and journal in Grids
and Networking. She has published her work in more than
60 papers in Grid and Networking journals or confer-
ences. She is member of the steering committee of the
French ACI MD DataGRID Explorer (GdX) project, of the
ACI Grid Grid5000 project, ANR IGTMD and EU Strep
EC-GIN project.

Raymond Namyst received his Ph.D. in computer sci-
ence from Lille in 1997. He held the position of assistant
professor in the Computer Science Departement of the
Ecole Normale Superieure of Lyon (1997–2002). In 2002,
he joined the Computer Science Laboratory of Bordeaux
(LaBRI) where he holds a Professor position. He is the
head of the Runtime INRIA research project, devoted to
the design of high performance runtime systems for paral-
lel architectures. His main research interests are in parallel

computing, thread scheduling on multiprocessor architec-
tures, communications over high speed networks and com-
munications within Grids. He has played a major role in
the development of the PM2 software suite. He has written
numerous papers about the design of efficient runtime sys-
tems. He also serves as the chair of the Computer Science
Teaching Department of the University of Bordeaux.

Pascale Vicat-Blanc Primet received a Ph.D. degree in
computer science from INSA Lyon, France in 1988. Based
at École Normale Supérieure de Lyon (ENS-Lyon), she is
currently “directrice de recherche” at INRIA and leads the
RESO team-project. This team is specialized in commu-
nication protocols and software optimization for high-
speed networks. Pascale’s research interests include high-
performance Grid and cluster networking, active networks,
TCP, QoS, bandwidth sharing and security. She was a co-
chair of the GGF Data Transport Research Group. She is
member of the Steering Committee the Gridnets and Pfld-
net conferences. Member of the GRID’5000 project steer-
ing committee, she is co-charing its Lyon’s site. She has
published about hundred papers in distributed computing
and networking journals and conferences.

Benjamin Quetier is a Ph.D. student of Franck Cappello
(INRIA) and works in the Grand-Large project and in the
European project CoreGrid. He is also involved in the
Grid’5000 project working on virtualization. The goal of his
thesis is to build a large scale emulator platform (more
than 100 K nodes) over Grid’5000. The first part of his the-
sis was a comparison of the diverse virtualization tools
such as Xen or VMware. He works on the comparison of
applications on a real live platform and on a emulated one.

Olivier Richard is an associate professor at the ID-
IMAG laboratory. He graduated from Paris XI University
with a Ph.D. in computer science in 1999. His researh
interests are focused on system architecure for high per-
formance computing and large distributed system (cluster,
Grid and P2P). His is co-leader of OAR and Kadeploy
software projects.

El-Ghazali Talbi received his Master’s and Ph.D.
degrees in computer science, both from the Institut
National Polytechnique de Grenoble. He is presently Pro-
fessor in computer science at Polytech’Lille (Universite
de Lille1), and researcher in Laboratoire d’Informatique
Fondamentale de Lille. He is the leader of OPAC team at
LIFL, the DOLPHIN project at INRIA Futurs and the
platform of bioinformatics of Lille (Genopole de Lille).
He took part to several CEC Esprit and national research
projects. His current research interests are mainly parallel
and grid computing, combinatorial optimization algo-
rithms and applications and software frameworks.

13



Iréa Touche took part in the project e-toile, which was
the first major French high performance data transfer grid
project, when she studied to obtain her engineering
degree in applied mathematics and scientific calcula-
tions. She was in charge of a part of the cluster’s configu-
ration of the CEA (Commissariat à l’energie atomique)
and also had to deploy a parallel application of molecular
dynamics called CHARMM. After that, she worked for 6
months at IRIT (Institut de Recherche en Informatique de
Toulouse), on the Grid’5000 project. She had to “gridify”
four applications used by different laboratories of INP
Toulouse (Institut National Polytechnique). To do this
she studied the application’s features, and deployed them
on one or more clusters of the grid. For the multi-para-
metric applications, she used several sites in order to be
able to easily carry out a great number of executions. For
the parallel ones, she has made scalability tests. She is
currently working at the LGC (Laboratoire de Génie
Chimique), where she helps researchers to optimize their
scientific codes.

Note

1 http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ordon-
nancement.dir/ordonnancement.html

References

Augerat, P., Martin, C., and Stein, B. 2002. Scalable monitoring
and configuration tools for grids and clusters. Proceed-
ings of the 10th Euromicro Workshop on Parallel, Dis-
tributed and Network-based Processing. IEEE Computer
Society.

Bolze, R., Caron, E., and Desprez, F. 2006. A monitoring and
visualization tool and its application for a network ena-
bled server platform. In LNCS, editor, Parallel and Dis-
tributed Computing Workshop of ICCSA 2006, 8–11 May,
Glasgow, UK.

Caron, E. and Desprez, F. 2006. DIET: A scalable toolbox to
build network enabled servers on the Grid. International
Journal of High Performance Computing Applications,
20(2):335–352.

Casanova, H., Legrand, A., and Marchal, L. 2003. Scheduling
distributed applications: the simgrid simulation frame-
work. Proceedings of the Third IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid’03),
Tokyo, Japan.

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.,
Wawrzoniak, M., and Bowman, M. 2003. PlanetLab: An
overlay testbed for broad-coverage services. ACM SIG-
COMM Computer Communication Review, 33(3):3–12.

Daydé, M., Giraud, L., Hernandez, M., L’Excellent, J.-Y., Pantel,
M., and Puglisi, C. 2004. An overview of the grid-tlse
project. Proceedings of 6th International Meeting VECPAR
04, June, Valencia, Spain.

Dumitrescu, C. and Foster, I. 2005. Gangsim: A simulator for
grid scheduling studies. Proceedings of the IEEE Interna-
tional Symposium on Cluster Computing and the Grid
(CCGrid’05), May, Cardiff, UK.

Georgiou, Y., Leduc, J., Videau, B., Peyrard, J., and Richard,
O. 2006. A tool for environment deployment in clusters
and light grids. Second Workshop on System Management
Tools for Large-Scale Parallel Systems (SMTPS’06), April,
Rhodes Island, Greece.

Georgiou, Y., Richard, O., Neyron, P., Huard, G., and Martin,
C. 2005. A batch scheduler with high level components.
Proceedings of CCGRID’2005, May, Cardiff, UK. IEEE
Computer Society.

Liu, X., Xia, H., and Chien, A. 2004. Validating and scaling the
MicroGrid: A scientific instrument for grid dynamics. The
Journal of Grid Computing 2(2):141–161.

Melab, N. 2005. Contributions a la resolution de problemes
d’optimisation combinatoire sur grilles de calcul. Ph.D.
thesis, November, LIFL, USTL.

Mezmaz, M., Melab, N., and Talbi, E.-G. 2006. A grid hybrid
exact approach for solving multi-objective problems. Pro-
ceedings of the 9

th
 IEEE/ACM International Workshop on

Nature Inspired Distributed Computing (NIDISC’06 – in
conjunction with IPDPS’2006), Rhodes Island, Greece.

Ponish, A., Azzaro-Pantel, C., Domenech, S., and Pibouleau, L.
2005. About the relevance of mathematical programming
and stochastic optimisation methods: application to the
optimal batch plant design problems. ESCAPE 15, May
29–June 1.

Ruiz, R. and Stutzle, T. 2004. A simple and effective iterative
greedy algorithm for the flowshop scheduling problem.
Technical Report, European Journal of Operational Research,
in print.

Seymour, K., Lee, C., Desprez, F., Nakada, H., and Tanaka, Y.
2004. The end-user and middleware APIs for GridRPC.
Workshop on Grid Application Programming Interfaces,
in conjunction with GGF12, September, Brussels, Bel-
gium.

Takefusa, A., Matsuoka, S., Aida, K., Nakada, H., and
Nagashima, U. 1999. Overview of a performance evaluation
system for global computing scheduling algorithms. HPDC
‘99: Proceedings of the The Eighth IEEE International
Symposium on High Performance Distributed Computing,
Washington, DC, USA. IEEE Computer Society.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S.,
Newbold, M., Hibler, M., Barb, C., and Joglekar, A. 2002.
An integrated experimental environment for distributed
systems and networks. OSDI02 Proceedings of the Fifth
Symposium on Operating Systems Design and Implemen-
tation, pp. 255–270, December, Boston, MA.

14


