Adaptive Virtual Partitioning for OLAP Query Processing in a Database Cluster

Abstract : OLAP queries are typically heavy-weight and ad-hoc thus requiring high storage capacity and processing power. In this paper, we address this problem using a database cluster which we see as a cost-effective alternative to a tightly-coupled multiprocessor. We propose a solution to efficient OLAP query processing using a simple data parallel processing technique called adaptive virtual partitioning which dynamically tunes partition sizes, without requiring any knowledge about the database and the DBMS. To validate our solution, we implemented a Java prototype on a 32 node cluster system and ran experiments with typical queries of the TPC-H benchmark. The results show that our solution yields linear, and sometimes superlinear, speedup. In many cases, it outperforms traditional virtual partitioning by factors superior to 10.
Type de document :
Communication dans un congrès
Sérgio Lifschitz. SBBD 2004, Oct 2004, Brasilia, Brazil. pp.92-105, 2004
Liste complète des métadonnées

https://hal.inria.fr/hal-00684957
Contributeur : Ist Rennes <>
Soumis le : mardi 3 avril 2012 - 15:44:29
Dernière modification le : mercredi 11 avril 2018 - 02:01:24

Identifiants

  • HAL Id : hal-00684957, version 1

Citation

Alexandre A. B. Lima, Marta Mattoso, Patrick Valduriez. Adaptive Virtual Partitioning for OLAP Query Processing in a Database Cluster. Sérgio Lifschitz. SBBD 2004, Oct 2004, Brasilia, Brazil. pp.92-105, 2004. 〈hal-00684957〉

Partager

Métriques

Consultations de la notice

167