N. Abolhassani, R. Patel, and M. Moallem, Needle insertion into soft tissue: A survey, Medical Engineering & Physics, vol.29, issue.4, p.413, 2007.
DOI : 10.1016/j.medengphy.2006.07.003

M. Bucki, C. Lobos, and Y. Payan, Framework for a low-cost intra-operative imageguided neuronavigator including brain shift compensation, In: IEEE Engineering in Medicine and Biology Society, pp.872-875, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170005

O. Clatz, H. Delingette, I. F. Talos, A. J. Golby, R. Kikinis et al., Robust nonrigid registration to capture brain shift from intraoperative MRI, IEEE Transactions on Medical Imaging, vol.24, issue.11, pp.1417-1427, 2005.
DOI : 10.1109/TMI.2005.856734

URL : https://hal.archives-ouvertes.fr/inria-00615963

C. Duriez, C. Guébert, M. Marchal, S. Cotin, and L. Grisoni, Interactive Simulation of Flexible Needle Insertions Based on Constraint Models, MICCAI 2009, pp.291-299, 2009.
DOI : 10.1007/978-3-642-04271-3_36

URL : https://hal.archives-ouvertes.fr/inria-00540334

Y. H. Kim, H. J. Kim, C. Kim, D. G. Kim, B. S. Jeon et al., Comparison of electrode location between immediate postoperative day and 6??months after bilateral subthalamic nucleus deep brain stimulation, Acta Neurochirurgica, vol.99, issue.12, pp.2037-2045, 2010.
DOI : 10.1007/s00701-010-0771-x

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee et al., Magnetic resonance elastography of the brain, NeuroImage, vol.39, issue.1, pp.231-237, 2008.
DOI : 10.1016/j.neuroimage.2007.08.030

K. E. Lunn, K. D. Paulsen, D. R. Lynch, D. W. Roberts, F. E. Kennedy et al., Assimilating intraoperative data with brain shift modeling using the adjoint equations, Medical Image Analysis, vol.9, issue.3, pp.281-293, 2005.
DOI : 10.1016/j.media.2004.12.003

C. Lurig, P. Hastreiter, C. Nimsky, and T. Ertl, Analysis and Visualization of the Brain Shift Phenomenon in Neurosurgery, TCVG Symposium on Visualization (VisSym), pp.285-290, 1999.
DOI : 10.1007/978-3-7091-6803-5_28

M. Miga, K. Paulsen, P. Hoopes, K. Jr, F. Hartov et al., In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery, IEEE Transactions on Biomedical Engineering, vol.47, issue.2, pp.266-273, 2000.
DOI : 10.1109/10.821778

K. Miller, A. Wittek, and G. Joldes, Biomechanics of the brain for computerintegrated surgery, 2002.

Y. Miyagi, F. Shima, and T. Sasaki, Brain shift: an error factor during implantation of deep brain stimulation electrodes, Journal of Neurosurgery, vol.107, issue.5, pp.989-997, 2007.
DOI : 10.3171/JNS-07/11/0989

P. V. Munckhof, M. F. Contarino, L. J. Bour, J. D. Speelman, R. M. Bie et al., Postoperative Curving and Upward Displacement of Deep Brain Stimulation Electrodes Caused by Brain Shift, Neurosurgery, vol.67, issue.1, pp.49-54, 2010.
DOI : 10.1227/01.NEU.0000370597.44524.6D

A. Wittek, K. Miller, R. Kikinis, and S. K. Warfield, Patient-specific model of brain deformation: Application to medical image registration, Journal of Biomechanics, vol.40, issue.4, pp.919-929, 2007.
DOI : 10.1016/j.jbiomech.2006.02.021

C. Zhang, M. Wang, and Z. Song, A brain-deformation framework based on a linear elastic model and evaluation using clinical data, Transactions on Biomedical Engineering, vol.58, issue.1, pp.1-9, 2011.