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Abstract— The modeling and control of a class of thrust-
propelled aerial vehicles subjected to lift and drag aerodynamic
forces is addressed. Assuming a rotational symmetry of the
vehicle's envelope about an axis and the alignment of the thrust
force with this axis, one shows that the resultant of aerodynamic
forces can be decomposed as the sum of a term in the direction
of the air velocity and a term in the direction of the thrust force.
Conditions allowing for the derivation of a family of models of
aerodynamic forces for which the �rst term does not depend on
the vehicle's orientation are pointed out. When such a model
applies, pre-compensation of the latter term with the thrust
input allows one to recast the control problem into the simpler
case of a spherical vehicle subjected to drag only for which
nonlinear feedback controllers endowed with strong stability
and convergence properties have been reported in prior studies.
Beside the adaptation of these control results, the paper extends
a previous work by the authors in two directions. First, the 3D
case is addressed whereas only motions in a single vertical plane
was considered. Secondly, the family of models of aerodynamic
forces for which the aforementioned transformation holds is
enlarged.

I. I NTRODUCTION

Feedback control of aerial vehicles in order to achieve
some degree of autonomy remains an active research domain
after decades of studies on the subject. The complexity of
aerodynamic effects and the diversity of �ying vehicles partly
account for this continued interest. Lately, the emergenceof
small vehicles for robotic applications (helicopters, quad-
rotors, etc) has also renewed the interest of the control
community for these systems. Most aerial vehicles belong
either to the class of �xed-wing vehicles, or to that of
rotary-wing vehicles. The �rst class is mainly composed
of airplanes. In this case, weight is compensated for by
lift forces acting essentially on the wings, and propulsion
is used to counteract drag forces associated with large
air velocities. The second class contains several types of
systems, like helicopters, ducted fans, quad-rotors, etc.In
this case, lift forces are usually not preponderant and the
thrust force, produced by one or several propellers, has
also to compensate for the vehicle's weight. These vehicles
are usually referred to as Vertical Take-Off and Landing
vehicles (VTOLs) because they can perform stationary �ight
(hovering). On the other hand, energy consumption is high
due to small lift-to-drag ratios. By contrast, airplanes cannot
(usually) perform stationary �ight, but they are much more
ef�cient energetically than VTOLs in cruising mode.

Control design techniques for airplanes and VTOLs have
developed along different directions and suffer from spe-
ci�c limitations. Feedback control of airplanes explicitly
takes into account lift forces via linearized models at low
angles of attack. Based on these models, stabilization is
usually achieved through linear control techniques [1]. As
a consequence, the obtained stability is local and dif�cult
to quantify. Linear techniques are used for hovering VTOLs
too, but several nonlinear feedback methods have also been
proposed in the last decade to enlarge the provable domain of
stability [2] [3] [4] [5]. These methods, however, are basedon
simpli�ed dynamic models that neglect aerodynamic forces.
For this reason, they are not best suited to the control of aerial
vehicles moving fast or subjected to strong wind variations.
Another drawback of the independent development of control
methods for airplanes and VTOLs is the lack of tools for
�ying vehicles that belong to both classes. These are usually
referred to asconvertiblebecause they can perform stationary
�ight and also bene�t from lift properties at high airspeed via
optimized aerodynamic pro�les. The renewed interest in such
vehicles and their control re�ects in the growing number of
studies devoted to them in recent years [6] [7] [8] [9], even
though the literature in this domain is not much developed
yet. One of the motivations for elaborating more versatile
control solutions is that the automatic monitoring of the
delicate transitions between stationary �ight and cruising
modes, in relation to the strong variations of drag and lift
forces during these transitions, remains a challenge to these
days. A �rst step in this direction consists in taking into
account drag forces that do not depend on the vehicle's
orientation [10], as in the case of spherical bodies.

The present paper essentially aims at extending [10] by
taking lift forces into account and extending to the 3D case
a previous contribution [11] concerning vehicles moving in
the vertical plane (2D case) which shows how, for a particular
class of models of lift and drag aerodynamic forces acting
on a wing, it is possible to bring the control problem back to
the simpler one of controlling a spherical body subjected to
a drag component solely. One can then apply the nonlinear
control schemes proposed in [10] for which quasi global
stability and convergence results are established. The results
here reported thus constitute a contribution to setting the
principles of a general nonlinear control framework that
applies to many aerial vehicles evolving in a large range



of operational and environmental conditions.
The paper is organized as follows. Assumptions about the

shape of the �ying body and the means of actuation that
are used to control its motion, complemented with notation
and recalls of classical dynamics equations, are presented
in Section II. The core of the paper's original technical
results concerns the modeling of aerodynamic forces acting
on bisymmetric bodies and the characterization of a subset of
models which simplify the control design. These results are
reported in Section III. In order to illustrate the usefulness
of these results at the control design level with an example,
Section IV gives the adapted version of a velocity control
scheme proposed in [10]. The concluding Section V offers
complementary remarks and points out research perspectives.

II. BACKGROUND

A. Body's shape and symmetry assumptions

Shape symmetries of aerial vehicles –as well as of marine
and ground vehicles– are not coincidental. Simpli�cation and
cost reduction of the manufacturing process, despite their
importance, are clearly not the main incentives accounting
for the ubiquitous use of symmetric shapes. In this respect,
Nature was �rst to give the example with most of the
animals populating the Earth. On the basis of this obser-
vation, scienti�c minds could �gure out numerous practical
advantages resulting from symmetry properties. However, for
�ying purposes, not all symmetries are equally interesting.
For instance, the sphere which represents the simplest most
perfect symmetric 3D-shape is not best suited for energy-
ef�cient long-distance �ights because it does not allow for
the creation of “magical” lift forces which counteract the
effects of gravity, in the same way –and almost as well– as
wheel-ground contact reaction forces for terrestrial vehicles,
and buoyancy for marine and underwater vehicles. We here
consider the next simplest kind of symmetries, associated
with ovoid and annular shapes, in order to �gure out aerody-
namic properties induced by them and their practical interest.
The present study thus focuses on vehicles that can be
modeled in the �rst approximation by a single, symmetric
body immersed in a �uid which exerts motion reaction forces
on it, and whose body surfaceS is characterized by the
existence of an orthonormal body frameB = f G;~{;~|;~kg
such that

Assumption 1 Any pointP 2 S transformed by the compo-
sition of two rotations of angles� and � about the axesG~k
and G~j , i.e. by the operator de�ned by

g� (�) = ( rot G~k (� ) � rot G~j (� ))( �);

also belongs toS, i.e.

g� (P) 2 S;

where rot O~v (� )(P) stands for the rotation about the axis
O~v, by the angle� , of the pointP.

Examples of “bisymmetric” ovoid and annular bodies satis-
fying this assumption are represented in Figure 1.
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Fig. 1. Bisymmetric bodies satisfying Assumption 1.

Note that Assumption 1 implies thatG is the body's geo-
metric center.

B. Means of actuation

To cover a large number of actuation possibilities asso-
ciated with man-madeunderactuatedaerial vehicles, and
work out general principles applicable to many of them, one
must get free of actuation speci�cities and concentrate on
operational common denominators. This leads us to assume,
as in [10], that the vehicle's means of actuation consist of
a thrust force~T along a body-�xed direction, and a torque
~� G which allows one to modify the body's instantaneous
angular velocity~! at will. In practice, this torque is produced
in various ways, typically with secondary propellers (VTOL
vehicles), rudders or �aps (airplanes), control moment gyros
(spacecrafts), etc. The latter assumption implicitly implies
that the torque calculation and the ways of producing this
torque can theoretically be decoupled from high-level control
objectives. The corresponding requirement is that “almost”
any desired angular velocity can physically be obtained
“almost” instantaneously. Under these assumptions, the con-
trol of the vehicle relies upon the determination of four
input variables, namely the thrust intensity and the three
components of~! . The following complementary assumption
about the thrust force direction is made

Assumption 2 The thrust force~T is parallel to the axis of
symmetryG~k, i.e. ~T = � T~k with T denoting the thrust force
intensity.

The minus sign in front of the equality's right-hand side
member is motivated by a sign convention, also used in [10].

C. Notation

� The i th component of a vectorx is denoted asx i .
� For the sake of conciseness,(x1~{+ x2~| + x3

~k) is written
as(~{;~|;~k)x.

� S(�) is the skew-symmetric matrix-valued operator as-
sociated with the cross product inR3, i.e. such thatS(x)y =
x � y, 8(x; y) 2 R3 � R3.

� f e1; e2; e3g is the canonical basis inR3.



Some of the physical variables and entities used thereafter
are either denoted or de�ned as follows.

� m is the mass of the vehicle, assumed to be constant for
the sake of simplicity.

� I = f O;~{0;~|0;~k0g is a �xed inertial frame with respect
to (w.r.t.) which the vehicle's absolute pose is measured.

� The body's linear velocity is denoted by~v = d
dt

~OG =
(~{0;~|0;~k0) _x = (~{;~|;~k)v.

� The linear acceleration vector is~a = d
dt ~v.

� The body's angular velocity is~! = (~{;~|;~k)! .
� The vehicle's orientation w.r.t. the inertial frame is

represented by the rotation matrixR. The column vectors
of R are the vectors of coordinates of~{;~|;~k expressed in the
basis ofI .

� The wind's velocity vector~vw is assumed to be the
same at all points in a domain surrounding the vehicle, and
its components are de�ned by~vw = (~{;~|;~k)vw . Theairspeed
~va = (~{;~|;~k)va = (~{0;~|0;~k0) _xa is de�ned as the difference
between the velocity ofG and~vw . Thus,va = v � vw .

D. Vehicle's dynamics

The external forces acting on the body are composed
of the weight vectorm~g and the sum of aerodynamic
forces denoted by~Fa . In view of Assumption 2, applying
the fundamental theorem of mechanics yields the following
equations of motion:

m~a = m~g + ~Fa � T~k; (1)
_R = RS(! ); (2)

with T and! the system's control inputs.

III. M ODELING OF AERODYNAMIC FORCES

A. Static models of lift and drag forces

The motion equation (1) points out the role of the aero-
dynamic force~Fa in obtaining the body's linear acceleration
vector~a. It shows, for instance, that to move with a constant
linear velocity the controlled thrust vectorT~k must be equal
to m~g+ ~Fa . It is understandable that the achievement of this
equality, via the control of the vehicle, in turn involves the
knowledge of ~Fa , with its components either calculated or
estimated on line from a model of this force and from other
physical variables accessible to measurement. In [10], it is
shown that the knowledge of this force at every time-instant
allows for the design of globally stabilizing feedback con-
trollers, provided that it does not depend upon the vehicle's
orientation. When this latter assumption is not satis�ed, as
in the case where the vehicle is subjected to strong lift forces
that depend on the vehicle's relative orientation w.r.t theair
velocity direction, the proposed control design is invalidated.
This also means that the capacity of calculating this force at
every time-instant –already a quite demanding requirement–
is not suf�cient to design a control law capable of performing
equally well in (almost) all situations. Knowing how this
force changes when the vehicle's orientation varies is needed,
but is still not suf�cient. An original outcome of the present
study is precisely to point out the existence of a generic

set of aerodynamic models which allow for the design of
nonlinear feedback control laws for which strong stability
and convergence results can be demonstrated. Of course,
the underlying assumptions are that these models re�ect the
physical reality suf�ciently well and that the corresponding
aerodynamic forces can be either measured or estimated on
line.

Now, working out a functional model of aerodynamic
forces from celebratedNavier� Stokes nonlinear partial dif-
ferential equationsgoverning the interactions between a solid
body and the surrounding �uid is beyond the authors domain
of expertise, all the more so that spatial integration of these
equations over the shape of an object, even as simple and
symmetric as an ovoid body, does not yield closed-form
expressions. Notwithstanding the delicate and complex issues
associated with turbulent �ows –a side effect of which is
the well known stall phenomenon– for which no general
complete theory exists to our knowledge. We thus propose
to take here a different route by combining a well-accepted
general expression of the intensity of aerodynamic forces
with geometric considerations based on the body's symmetry
properties. To be more precise, let~FD and ~FL denote the
drag and lift components of~Fa , i.e.

~Fa := ~FL + ~FD ; (3)

with, by de�nition, ~FL orthogonal to~va and ~FD parallel to
~va . Consider also a (any) pair of angles(�; � ) characterizing
the orientation of~va with respect to the body frame. The
Buckingham� � theorem[12, p. 34] asserts that the intensity
of the static aerodynamic force varies like the square of the
air speedjva j multiplied by a dimensionless functionC(�)
depending on theReynolds numberRe

1, the Mach number
M, and(�; � ), i.e.

j ~Fa j = ka jva j2C(Re; M; �; � ); (4a)

ka :=
� �
2

; (4b)

with � the free streamair density, and� an area germane
to the given body shape. Then, further assuming that the
direction of ~Fa does not (or little) depend(s) upon the
airspeedjva j and that this force does not (or little) depend(s)
upon the angular velocity~! , one shows that this theorem in
turn implies the existence of two dimensionless functions
CD (�) and CL (�), and of a unit vector-valued function~r(�)
characterizing the direction of the lift force w.r.t the body
frame, such that

~FL = ka jva jCL (Re; M; �; � )~r(�; � ) � ~va ; (5a)
~FD = � ka jva jCD (Re; M; �; � )~va ; (5b)

~r(�; � ) � ~va = 0 ; (5c)

In the specialized literatureCD (�) (2 R+ ) andCL (�) (2 R)
are called theaerodynamic characteristicsof the body, and
also thedrag coef�cientand lift coef�cient respectively.

1Re gives a measure of the ratio of inertial forces to viscous forces.








