D. Blei, A. Ng, and M. Jordan, Latent Dirichlet allocation, Journal of Machine Learning Research, vol.3, pp.993-1022, 2003.

K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, The devil is in the details: an evaluation of recent feature encoding methods, Procedings of the British Machine Vision Conference 2011, 2011.
DOI : 10.5244/C.25.76

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, ECCV Int. Workshop on Stat. Learning in Computer Vision, 2004.

M. Everingham, L. Van-gool, C. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2007.
DOI : 10.1007/s11263-009-0275-4

T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis, Machine Learning, pp.177-196, 2001.

T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers, NIPS, 1999.

H. Jégou, M. Douze, and C. Schmid, On the burstiness of visual elements, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206609

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez et al., Aggregating Local Image Descriptors into Compact Codes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.9, 2012.
DOI : 10.1109/TPAMI.2011.235

M. Jordan, Z. Ghahramani, T. Jaakola, and L. Saul, An Introduction to Variational Methods for Graphical Models, Machine Learning, pp.183-233, 1999.
DOI : 10.1007/978-94-011-5014-9_5

J. Krapac, J. Verbeek, and F. Jurie, Modeling spatial layout with Fisher vectors for image categorization [11] D. Larlus and F. Jurie. Latent mixture vocabularies for object categorization and segmentation, ICCV, pp.523-534, 2009.

S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.68

URL : https://hal.archives-ouvertes.fr/inria-00548585

R. Madsen, D. Kauchak, and C. Elkan, Modeling word burstiness using the Dirichlet distribution, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102420

A. Perina, M. Cristani, U. Castellani, V. Murino, and N. Jojic, Free energy score space, NIPS, 2009.

F. Perronnin and C. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383266

F. Perronnin, J. Sánchez, and Y. Liu, Large-scale image categorization with explicit data embedding, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539914

F. Perronnin, J. Sánchez, and T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification, ECCV, 2010.
DOI : 10.1007/978-3-642-15561-1_11

URL : https://hal.archives-ouvertes.fr/inria-00548630

P. Quelhas, F. Monay, J. Odobez, D. Gatica-perez, T. Tuytelaars et al., Modeling scenes with local descriptors and latent aspects, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.883-890, 2005.
DOI : 10.1109/ICCV.2005.152

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238663

A. Vedaldi and A. Zisserman, Efficient additive kernels via explicit feature maps, CVPR, 2010.

J. Winn, A. Criminisi, and T. Minka, Object categorization by learned universal visual dictionary, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.171

J. Zhang, M. Marsza?ek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study, International Journal of Computer Vision, vol.36, issue.1, pp.213-238, 2007.
DOI : 10.1007/s11263-006-9794-4

URL : https://hal.archives-ouvertes.fr/inria-00548574