G. T. , -. Diaz-manriquez, and W. Gomez-flores, On the selection of surrogate models in evolutionary optimization algorithms, Proc. CEC'2011, pp.2143-2150, 2011.

A. Auger and N. Hansen, A Restart CMA Evolution Strategy With Increasing Population Size, 2005 IEEE Congress on Evolutionary Computation, pp.1769-1776, 2005.
DOI : 10.1109/CEC.2005.1554902

Z. Bouzarkouna, A. Auger, and D. Ding, Investigating the Local-Meta-Model CMA-ES for Large Population Sizes, Proc. EvoNUM'10, pp.402-411, 2010.
DOI : 10.1007/978-3-642-12239-2_42

URL : https://hal.archives-ouvertes.fr/hal-00450238

M. T. Emmerich, K. C. Giannakoglou, and B. Naujoks, Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels, IEEE Transactions on Evolutionary Computation, vol.10, issue.4, pp.421-439, 2006.
DOI : 10.1109/TEVC.2005.859463

S. García, D. Molina, M. Lozano, and F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms??? behaviour: a??case study on??the??CEC???2005 Special Session on??Real Parameter Optimization, Journal of Heuristics, vol.48, issue.1, pp.617-644, 2009.
DOI : 10.1007/s10732-008-9080-4

L. Graning, Y. Jin, and B. Sendhoff, Efficient evolutionary optimization using individual-based evolution control and neural networks: A comparative study, Proc. ESANN'2005, pp.27-29, 2005.

N. Hansen, References to CMA-ES applications, 2009.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Po?ík, Comparing results of 31 algorithms from the BBOB-2009, GECCO Workshop Proc. ACM, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00545727

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

N. Hansen and R. Ros, Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed, Proceedings of the 12th annual conference comp on Genetic and evolutionary computation, GECCO '10, pp.1673-1680, 2010.
DOI : 10.1145/1830761.1830788

URL : https://hal.archives-ouvertes.fr/hal-00545728

F. Hoffmann and S. Holemann, Controlled Model Assisted Evolution Strategy with Adaptive Preselection, 2006 International Symposium on Evolving Fuzzy Systems, pp.182-187, 2006.
DOI : 10.1109/ISEFS.2006.251155

H. Ingimundardottir and T. Runarsson, Sampling strategies in ordinal regression for surrogate assisted evolutionary optimization, 2011 11th International Conference on Intelligent Systems Design and Applications, p.page To appear, 2011.
DOI : 10.1109/ISDA.2011.6121815

G. A. Jastrebski and D. V. Arnold, Improving Evolution Strategies through Active Covariance Matrix Adaptation, 2006 IEEE International Conference on Evolutionary Computation, pp.2814-2821, 2006.
DOI : 10.1109/CEC.2006.1688662

R. Jin, W. Chen, and T. W. Simpson, Comparative studies of metamodeling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization Quality measures for approximate models in evolutionary computation, GECCO Workshop Proc, pp.1-13, 2000.

Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft Computing, vol.9, issue.1, pp.3-12, 2005.
DOI : 10.1007/s00500-003-0328-5

T. Joachims, A support vector method for multivariate performance measures, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.377-384, 2005.
DOI : 10.1145/1102351.1102399

S. Kern, N. Hansen, and P. Koumoutsakos, Local Meta-models for Optimization Using Evolution Strategies, PPSN IX, pp.939-948, 2006.
DOI : 10.1007/11844297_95

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Kramer, Covariance matrix self-adaptation and kernel regression -perspectives of evolutionary optimization in kernel machines, Fundam. Inf, vol.98, pp.87-106, 2010.

D. Lim, Y. Ong, Y. Jin, and B. Sendhoff, A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation, Proceedings of the 9th annual conference on Genetic and evolutionary computation , GECCO '07, pp.1288-1295, 2007.
DOI : 10.1145/1276958.1277203

I. Loshchilov, M. Schoenauer, and M. Sebag, Comparison-Based Optimizers Need Comparison-Based Surrogates, Proc. PPSN XI, pp.364-373, 2010.
DOI : 10.1007/978-3-642-15844-5_37

URL : https://hal.archives-ouvertes.fr/inria-00493921

I. Loshchilov, M. Schoenauer, and M. Sebag, Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed, Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, GECCO Companion '12, 2012.
DOI : 10.1145/2330784.2330811

URL : https://hal.archives-ouvertes.fr/hal-00690444

I. Loshchilov, M. Schoenauer, and M. Sebag, Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed, Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, GECCO Companion '12, 2012.
DOI : 10.1145/2330784.2330822

URL : https://hal.archives-ouvertes.fr/hal-00690543

T. P. Runarsson, Ordinal Regression in Evolutionary Computation, PPSN IX, pp.1048-1057, 2006.
DOI : 10.1007/11844297_106

D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, vol.24, issue.111, pp.647-656, 1970.
DOI : 10.1090/S0025-5718-1970-0274029-X

J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

L. Shi and K. Rasheed, ASAGA, Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO '08, pp.1049-1056, 2008.
DOI : 10.1145/1389095.1389289

Y. Tenne and S. W. Armfield, A Versatile Surrogate-Assisted Memetic Algorithm for Optimization of Computationally Expensive Functions and its Engineering Applications, Success in Evolutionary Computation, pp.43-72, 2008.
DOI : 10.1007/978-3-540-76286-7_3

H. Ulmer, F. Streichert, and A. Zell, Evolution strategies assisted by gaussian processes with improved pre-selection criterion, Proc. CEC'2003, pp.692-699, 2003.

H. Ulmer, F. Streichert, and A. Zell, Evolution strategies with controlled model assistance, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), pp.1569-1576, 2004.
DOI : 10.1109/CEC.2004.1331083