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Abstract. In k-anycasting, a sensor wants to report event information
to any k sinks in the network. This is important to gain in reliability
and efficiency in wireless sensor and actor networks. In this paper, we
describe KanGuRou, the first position-based energy efficient k-anycast
routing which guarantees the packet delivery to k sinks as long as the
connected component that contains s also contains sufficient number of
sinks. A node s running KanGuRou first computes a tree including k
sinks among the M available ones, with weight as low as possible. If this
tree has m ≥ 1 edges originated at node s, s duplicates the message
m times and runs m times KanGuRou over a subset of defined sinks.
Simulation results show that KanGuRou allows up to 62% of energy
saving compared to plain anycasting.

1 Introduction

Wireless sensor networks have been receiving a lot of attention in recent years
due to their potential applications in various areas such as monitoring and data
gathering. Sensor measurements from the environment may be sent to a base
station (sink) in order to be analyzed. Other sensors may serve as routers on a
path established to deliver the report. In large sensor networks, there may exist
a bottleneck (around sink) if a single sink collects reports from all sensors. Sce-
narios with multiple sinks are then being considered, where each sensor reports
to at least one sink, usually the nearest one. In wireless multi-sink sensor net-
works, anycasting is performed when any of sinks may receive the report from
sensors, and meet application demands. However, the cost of anycasting may
depend on the distance between the receiving sinks and the reporting sensor.
It is therefore desirable that selected algorithm reaches one of sinks close to
the event. For reliability, load-balancing and security purposes, it is then useful
to ensure that at least k sinks receive the messages (where the overall number
of sinks is greater than k) whatever the k sinks. To date, there is no so much
work in the literature. Most of works are adaptation of wired solutions [9] and
are thus centralized. Others use flooding [10] and not suitable for high dynamic
networks (such as wireless sensor networks). A distributed k-anycast routing pro-
tocol based on mobile agents is proposed in [11] but requires a regular update
of routing tables which also have to maintain paths towards every sink.

⋆⋆ This work was partially supported by CPER Nord-Pas-de-Calais/FEDER Campus
Intelligence Ambiante and the ANR BinThatThinks project.



In this paper, we introduce KanGuRou (k-ANycast GUaranteed delivery
ROUting protocol), a position-based, energy-efficient localized k-anycast
routing protocol that guarantees delivery (therefore loop-less), is memory-

less, and scalable. Unlike [11], it does not maintain any routing table and
does not need to add any information neither on nodes nor in the message,
which makes it scalable regardless of the number of sinks/nodes. It inspires from
energy-efficient anycast EEGDA algorithm [5] and the splitting techniques of
MSTEAM [4], proposing a new tree construction to ensure reaching k sinks.
At each step, the current node s computes a spanning tree over k sinks with
minimal cost. A message replication occurs when the tree spanning s and the
set of sinks has multiple edges (later called branches) originated at the current
node. Since there may be more sinks than the k to be reached, all of them are not
spanned by the tree. The number of sinks k′ spanned by each branch determines
the number of sinks to be reached by each message. All sinks (not only the ones
spanned by the tree) are distributed over every edge. The next hop is chosen in
a cost-over-progress (COP) fashion, i.e. to the neighbor v which minimizes the
ratio between the cost to reach v and the progress provided by v. The cost from
s to v is the cost of the energy-weighted shortest path (ESP). The progress is
computed as the difference between the weight of the trees computed by s and
v resp. If s has no neighbor with positive progress, node s applies a EEGDA-
face like routing, which is a face-based recovery mode. We prove that KanGuRou
guarantees delivery to exactly k sinks. We present two variants which differ in the
way the tree is computed. KanGuRou is evaluated through extensive simulations
and results show that both variants of KanGuRou are energy efficient. Results
show that KanGuRou allows up to 62% of energy saving and that every variant
performs better regarding the percentage of sinks to reach.

The remaining of the paper is organized as follows. Section 2 gives an overview
of the literature about k-anycasting and present works on which KanGuRou
is based. Section 3 introduces our notations. Section 4 presents KanGuRou.
Section 5 presents simulation results. Finally Section 6 concludes the paper.

2 Related works

k-Anycast was first introduced in [9] for wired networks. Propositions in wireless
networks firstly appeared in [8] proposing centralized solutions and thus does not
really meet wireless networks requirements. [10, 2] presents a reactive approach
(flooding) and two advanced proactive approaches in which sinks have previously
been gathered into components of at most k members and these components
are then reached during the routing. To the best of our knowledge, the only
distributed k-Anycast routing protocol is based on mobile agents and proposed
in [11]. The protocol forms multiple components and each component has at
least k members. Each component can be treated as a virtual server, so k-anycast
service is distributed to each component. In this protocol, each routing node only
needs to exchange routing information with its neighbors, so the protocol saves
much communication cost and adapts to high dynamic networks. Nevertheless,



although a first step toward, this algorithm needs to maintain routing tables at
each node with as many entries as sinks and is not scalable.

In this paper, we introduce KanGuRou which is a position-based k-anycasting
protocol. KanGuRou is an extension of the anycasting protocol proposed in [5]
to the k anycasting. In [5], authors describe EEGPA the first localized anycast-
ing algorithms that guarantee delivery for connected multi-sink sensor networks
based on a GFG approach. Let S(x) be the closest actor/sink to sensor x, and
|xS(x)| be distance between them. In greedy phase, a node s forwards the packet
to its neighbor v that minimizes the ratio of cost of sending packet to v through
an ESP over the reduction in distance (|sS(s)| − |vS(v)|) to the closest sink.
If none of neighbors reduces that distance then recovery mode is invoked. It is
done by face traversal where edges are replaced by paths optimizing given cost.

KanGuRou also inspires from the multicast routing MSTEAM proposed
in [4]. MSTEAM is a localized geographic multicast scheme based on the con-
struction of local minimum spanning trees (MSTs), that requires information
only on 1-hop neighbors. A message replication occurs when the MST spanning
the current node and the set of destinations has multiple edges originated at the
current node. Destinations spanned by these edges are grouped together, and for
each of these subsets the best neighbor is selected as the next hop. MSTEAM
has been proved to be loop-free and to achieve delivery of the multicast message
as long as a path to the destinations exists.

3 Model and notations

Network. We model the network as a graph G = (V,E) where V is the set of
sensor nodes and uv ∈ E iff there exists a wireless link between u and v ∈ V . We
suppose that nodes are equipped with a location service hardware such a GPS
and are able to tune their range between 0 and R. We note |uv| the Euclidean
distance between nodes u and v. We note N(u) the set of physical neighbors
of node u, i.e. the set of nodes in communication range of node u (N(u) =
{v |uv ∈ E}) and V (G) the set V of vertices in G. S = {si}i=0,1,..M is the set
of sinks, with M the number of sinks. Every node is aware of every sink and
of its position. We note as CTS(s) the closest node in S to node s (CTS(s) =
{v | |sv| = minw∈S |sw|}). For a graph G = (V,E) and a set A ⊆ V , we denote
by G|A the subgraph of G which contains only nodes of A: G|A = (A,E ∩A2).

Tree. Let T = (V ′, E′) be a tree and a ∈ V ′ a vertex of T . st(T, a) is the subtree
of T with root a. T is an MST if its weight noted ||T || is minimal. The weight of
the tree denotes the sum of the weight over all tree edges ( ||T || =

∑
uv∈E′ |uv|).

In an Euclidean MST, the weight of an edge is equal to its Euclidean length.
A tree T = (V ′, E′) ⊂ G is a k-MST if |V ′| = k and that ||T || is the tree with
minimum weight over all trees of k vertices from G.



Energy. We assume that every node is able to adapt its transmission range. We
use the energy model defined in [7], i.e. the energy spent to send a message from
nodes u to v is such that cost(|uv|) = |uv|α + c if |uv| 6= 0. where c is signal
processing overhead; α is a real constant (> 1) for signal attenuation. From
this energy cost, we introduce the cost of the energy-weighted shortest path
(costESP (s, d, t)) from nodes s to d when aiming at target t. We compute the
energy-weighted shortest path (ESP) only over nodes that are in the forwarding
direction of the final target to avoid either creating routing loops or embedding
the path in the message. Therefore, the shortest path computed from node s to
node d is relative to the final target t. Let x0x1...xixi+1..xn, be the node IDs on
the ESP from s = x0 to d = xn. We define the ESP cost as

costESP (s, d, t) =

n−1∑

i=0

cost(|xixi+1|) (1)

4 Contribution

4.1 General Idea

In this section, we present the main idea of KanGuRou which goal is to reach
any k sinks among all available sinks S. Nevertheless, given a source node s,
the k closest sinks to s in Euclidean distance are not necessarily the k closest
sinks in number of hops. Therefore, the routing messages in KanGuRou may
change target sinks along the routing path. For instance, on Fig. 1, 5 closest
sinks of s are S1, S2, S5, S6 and S7. But S1 is not reachable directly and the
path to S1 will meet S4 which may be reached instead. In addition, the source
cannot determine the k sinks in advance and send k messages, one toward each
sink because (i) several messages may follow the same path by sections which is
useless and costly and (ii) since targets may change along the path, this cannot
ensure that several messages will not reach the same sink.

KanGuRou (Algo. 1) proceeds as follows. Fig. 1 illustrates it.
(1). Node s holding the message first checks whether it is a sink. If so, it removes
itself from the set of available sinks and decrements the number of sinks k to
reach. If k = 0, the algorithm stops. (Line 2).
(2). Node s computes a tree T (s) by running Algo. 3 (k-MST(s,S,k)) or Algo. 4
(k-Prim(s,S,k))) detailed later in Section 4.4, depending of the variant of Kan-
GuRou (Line 7). T (s) contains node s and exactly k sinks of S. If there are several
edges/branches originated at s, a message duplication occurs. On Fig. 1, T (s)
appear in red and contains sinks S1, S3, S5, S6 and S7. There are two branches
originated at node s: one toward S1 and one toward S5.
(3). s distributes the remaining sinks (Line 8), i.e. sinks that are not in T (s)
(Sinks S2, S4 and S8 on Fig. 1) over every branch. Thus, for every successor a of
s in T (s) (a ∈ succT (s)), a subset Sa ⊂ S of the sinks is assigned to a as detailed
in Section 4.5. On Fig. 1, branch of S1 is assigned with Sinks S1, S3 and S4 while
Sinks S2, S5, S6, S7 and S8 are associated to branch of S5.



(4). At this step, node s knows: (i) its successors a ∈ succT (s) in T (s) (Sinks S1

and S5 on Fig. 1), (ii) the number of sinks ka to reach per successor a, i.e. the
number of sinks in the subtree of a st(T, a) (2 in branch of S1 and 3 in branch of
S5 on Fig. 1), (iii) the set of available sinks to reach per branch, i.e. Sa defined
at the previous step. Node s then sends as many packets as the number of its
successors in T (s). (Loop line 9) Thus, for each branch of T (s), i.e. ∀a ∈ succT (s),
s selects a next hop based on a Greedy-Face-Greedy approach as follows. For
every a, s computes the weight of the ka-MST for each of its neighbors u ∈ N(s)
over Sa targets ||k-MST(u, Sa, ka)||. On Fig. 1, s will compute 3-MST over Sinks
S2, S5, S6, S7 and S8 to find the next hop for branch S5 and 2-MST over Sinks
S1, S3 and S4 for branch S1. If there exists no neighbor u for which the weight of
tree over Sa ||k-MST(u, Sa, ka)|| is smaller than ||sT (T, a)||+ |sa| (weight of the
branch of T (s) dedicated to a), node s switches to recovery mode (line 16) till
reaching a node with positive progress towards a. If so, next hop v for branch
toward a is determined through the greedy mode in a COP fashion (Line 18).
Message is sent to node v with parameters ka and Sa which will run KanGuRou
again (Line 19) and so on till ka sinks have been reached in this branch. As shown
in [5], this ensures the packet delivery as soon as the network is connected.

Algorithm 1 KanGuRou(s, k, S) – Run at node s to reach k targets in S.

1: if s ∈ S then

2: k ← k − 1; S ← S \ {s}
3: if k = 0 then

4: exit {All sinks of this branch have been reached}
5: end if

6: end if

7: T (s)← k-MST(s, S, k) or k-Prim(s, S, k) {k-MST of S ∪ {s} rooted in s}
8: T ′(s)← AllocateMST(s, S, T (s)) {Allocate remaining targets to T (s)}
9: for all a ∈ succT (s)(s) do
10: Sa ← V (st(T ′, a)) {Nodes in sub-tree of T ′ rooted in a}
11: ka ← |T ∩ Sa| {Number of targets to be reached in Sa.}
12: v ← CTSa

(s)
13: W ← ||sT (T, a)||+ |sa|
14: A← {v ∈ N(s) | ||k-MST(v, Sa, ka)|| < W}
15: if A = ∅ then
16: RECOVERY(s, ka, Sa,W )
17: else

18: v ← u ∈ A which minimizes costESP (s,u,a)
W−||k-MST(u,Sa,ka)||

19: KanGuRou(v, ka, Sa)
20: end if

21: end for

To sum up, let assume that node s on Fig. 1 runs KanGuRou toward k = 5
sinks. First, s computes a 5-MST, T (s) (red tree). T (s) has two branches, so s

duplicates the message. First message is sent toward branch of S1 and has to
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Fig. 1. Sinks appear in red. Red links repre-
sent the 5-MST rooted in s, blue links the 2-MST
rooted in a over S1, S3 and S4, green links the
3-MST rooted in q over S2, S5, S6, S7 and S8. Ar-
rows show the message path.
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Fig. 2. Illustration of MST and k-MST
for k = 4. If root is node d, the op-
timal 4-MST (in blue) includes edges
da, ae, af, ag while edge ad will not be
included in the MST (in red). So, k-MST
is not always included in the MST.

reach 2 sinks among S1, S3 and S4. s computes the COP and selects node a. To
reach node a, message is sent to node f since path sfa is less energy consuming
than following the direct edge sa. Node a runs KanGuRou and its tree has two
branches. So node a duplicates again the message. First copy has to reach one
sink among S1 and S3 while second copy has to reach S4. S4 is reached via
path aeS4 in a greedy way while other copy is sent along path bdoS3. Second
message sent by node s has to reach 3 sinks among S2, S5, S6, S7 and S8. Greedy
algorithm chooses node q. Tree computed on node q has 2 branches originated
at q, so q duplicates the message. First copy is sent to node g which forwards
it to Sink S7. Second copy is sent to S5. S5 is a sink but the message still has
to reach another sink so S5 forwards it to its neighbor i which directly forwards
the message to S6. At last, 5 sinks have been reached: S3, S4, S5, S6 and S7.

4.2 The greedy mode

Greedy mode is similar to the one used in [5]. When node s runs greedy al-
gorithm toward Sink a, it computes the subtree sT (T (s), a) of T (s) rooted in
a. The weight W of the subtree issued from s toward a is thus the weight of
||sT (T (s), a)|| plus the weight of the edge sa to reach it: W = ||sT (T (s), a)|| +
|sa|. Then, to select the next hop, node s performs a COP approach in which
(i) the cost considered is the cost of the energy weighted shorted path (Eq. 1)
from node u to its neighbor v,(ii) the progress is the reduction of the weight
of trees W − ||k-MST(u, Sa, ka)||. Only neighbors providing a positive progress
are considered. If no such node exists, the greedy approach fails and s switches
to recovery mode. If there exist neighbors u such that W > ||k-MST(u, Sa, ka)||,

node u which minimizes costESP (s,v,a)
W−||k-MST(u,Sa,ka)||

is selected. Note that when com-

puting k-MST(u, Sa, ka), all potential sinks are considered, not only the ones in
sT (T (s), a). For instance, on Fig. 1, 2-MST computed by node a (blue tree) over
S1, S3 and S4 includes S1 and S4 (while the one rooted in s includes S1 and S3).



Algorithm 2 RECOVERY(u,k,S,W) - Run at node u.

1: (V ′, E′)←CDS(V,E) ∪ S ∪ {u} {Extract a CDS graph from G}
2: (V ′, E′′)←GG(V ′, E′) {Build the Gabriel Graph of G′}
3: u′ ← u, T ← k-MST(u′, S, k)
4: while ||k −MST (v, k, S|| > W do

5: v ← FACE(u′, T ) {Compute the next node on the proper face}
6: while u′ 6= v do

7: u′ ←ESP(u′, v, CTT (u
′)) {Compute the ESP from u′ to v}

8: end while

9: end while

10: KanGuRou(v, k, S)

4.3 The recovery mode

Recovery mode is detailed in Algo. 2. A node u enters the recovery mode while
trying to reach k targets among the sinks in S if it has no neighbor which k-MST
has a smaller weight than its own weight W toward the considered branch. u
runs RECOVERY till reaching a sink or a node v for which ||k-MST(v, k, S)|| is
smaller than W (Line 2 in Algo. 2)1.

To determine what neighbor to reach, it applies an EtE-like Face routing [3].
EtE-like Face routing differs from the traditional Face [1] routing in the way
that it does not run over the planar of the whole graph but on the planar of a
connected dominated set (CDS) graph only (Lines 2-2). This allows considering
longer edges. Face algorithm is applied to determine next hop v to reach over
the faces on the CDS (Line 2). v is then reached by following an ESP (Line 2).

4.4 Computing the k-MST

Note that computing an exact k-MST is NP-complete. Also note that a k-MST
is not necessarily included in the MST as example plotted on Fig. 2 shows. Thus,
KanGuRou proposes to use two different tree constructions, both of them being
an approximation of the k-MST algorithm. As we will see later, the choice of
the variant used in the tree construction will depend on the number of sinks
M available in the network and the number k of sinks that need to receive the
information. It is important to highlight that this tree is computed on the com-
plete graph of sinks ς = (S,Eς) with Eς = {uv |u, v ∈ S2}. This is independent
from the underlying topology.

First variant: The first variant (later called KanGuRou) applies Algo. 3 and
builds a tree with exactly k + 1 vertices (k sinks and the source) in an iterative
way. It starts with a tree which only contains the root (Line 3), node s on Fig. 1.
It then has to choose exactly k sinks in S to add in T . To do so, at each step, it
computes the shortest path from any vertex to the tree in exactly i hops, for all

1 Unlike in anycasting, recovery in k-anycasting may reach a sink since the distance
considered is not between a node and the closest sink but to the closest k sinks.



Algorithm 3 k-MST(u, S, k) – Return a k-MST of S ∪ {u} rooted in u.

1: T ← ({u}, ∅) {initialize the tree with root u}
2: A← S {set of nodes to be considered.}
3: while k > 0 do

4: for all v ∈ A do

5: w ← x ∈ T which minimizes |xv|
6: P (v, 1)← w {Path from v to T in 1 hop with minimum cost.}
7: l(v, 1)← |vw| {Weight of the path from v to T in 1 hop with minimum cost.}
8: end for

9: for i = 2 to k do

10: for all v ∈ A do

11: y ← x ∈ T which minimizes |vx|
12: ∀w ∈ A z ← x ∈ T which minimizes |wx|
13: Select w ∈ A such that |wz| < |vy| which minimizes (l(w, i− 1) + |vw|)/i
14: p(v, i)← p(w, i− 1).w {Path from v to T in i hops with minimum cost.}
15: l(v, i)← l(w, i− 1) + |vw|{Weight of p(v, i).}
16: end for

17: end for

18: select v ∈ A and j ∈ [1 . . . k] which minimizes l(v, l)/j
19: while p(v, j) 6= ∅ do
20: (w, x)← first edge in p(v, j) {w is supposed to be in T while x is not in T}
21: T ← T ∪ ({x}, {(w, x)}); A← A \ {x}; k ← k − 1
22: p(v, j)← p(v, j) \ {(w, x)}
23: end while

24: end while

25: Return T.

i from 1 to k − i for all vertices. On Fig. 1, for i = 1, s computes the distance
from itself to every sink. For i = 2, s considers 2-hop paths from itself to every
sink and keeps the shorter one as sS1S3 to reach S3. To reduce the complexity of
computing a path from a node u to T , it only considers nodes closer than u to T .
On Fig. 1, node s will not compute any 2-hop path from s to S2 since S2 is the
closest sink. Weight of every path is then normalized by the progress it provides,
i.e. the number of sinks on the path (Line 3) and the path with the lowest weight
is then added to the tree. And so on till the final tree includes k sinks. In this
way, note that S2 is not included in path since step 1, path sS5S7 (weight 2) is

chosen ( |sS5|+|S5S7|
2 is smaller than all other path ratios as |sS1|+|S1S3|

2 or sS2

1 ).

Then at step 2, path sS1S3 is added ( |sS1|+|S1S3|
2 <

|sS1|+|S1S3|+|S3S6|
3 , etc) and

at last, path S5S6 is added.

Second variant: Original Prim algorithm [6] consists in adding iteratively to
the current tree (initialized with the root node) the edge with minimum weight
which has exactly one extremity vertex in the tree, and so on till every vertex
has been added to the tree. KanGuRou-kPrim (Algo. 4) performs similarly but
stops when the tree includes and exactly k sinks.



Algorithm 4 k-Prim(u, S, k) – Return a k-MST of S ∪ {u} rooted in u.

1: T ← ({u}, ∅) {initialize the tree with root u}
2: A← S {set of nodes to be considered.}
3: while k > 0 do

4: w ← x ∈ A which minimizes |xCTT (x)|
5: T ← T ∪ ({w}, {(w,CTT (w))})
6: A← A \ {w}; k ← k − 1
7: end while

8: Return T.

To illustrate the difference between both variants, let us consider Fig. 2 and
assume a tree construction rooted in node d with k = 4. Algo. 4 adds iteratively
the edge (and corresponding nodes) with the lowest weight, i.e. nodes c, b, a and
e (in the order). Resulting tree has a weight of 22. Algo. 3 does not consider edges

one by one but multi-hop paths. It thus adds nodes a and e at once ( |da|+|ae|
2 is

the best ratio), then nodes f and g. Resulting tree has a weight of 12.

4.5 Distributing sinks over branches

Once the k-tree rooted in current node has been computed, the set of sinks has
to be distributed over each branch. The number of sinks to be reached by branch
is given by the number of sinks actually part of the branch. If s is the node in
charge of the message, it computes its k-MST T (s). If ka is the number of sinks
to be reached in the branch of T (s) rooted in a, we have

∑
a∈succT (s)

ka = k.

The set of potential sinks to reach Sa is sent with the message over each branch
a. Sa includes the ka sinks included in the tree but also part of ’free’ ones.
Sa sinks have to be selected carefully in order to ensure that exactly k sinks
will receive the message. They are such that: (i)

⋃
a∈succT (s)

Sa = S since every

sink is candidate and (ii) Sa ∪ Sb = ∅ ∀ a, b ∈ succT (s) in order to avoid that a
message sent on 2 different branches reaches the same sink in which case, the
overall number of sinks receiving the message will be less than k.

In KanGuRou, each sink is assigned to the closest branch regardless of the
size of the branches. However, we are aware that this solution is not necessarily
the most adequate one since most of remaining sinks may be assigned to the
same branch which might be the smallest one. Alternative solutions might be:

– Sinks may be distributed evenly between both branches, based on distance.
– Sinks may be distributed proportionally to the number of sinks to reach per

branch.

However, setting in advance the number of sinks to assign to each branch will
lead to some other issues. Indeed, issue will appear when sinks are at equal
distance of several branches and when a sink p is closer to Branch A, but that
Branch A has already been assigned enough sinks, all closer than p. We leave to
further work a deeper study on this point.



4.6 Packet delivery to exactly k sinks guaranteed

We show that KanGuRou delivers a message to exactly k sinks as long as the
underlying network is connected. Because of page restriction, we only give here
the sketch of the proof2.

Theorem 1. KanGuRou guarantees the packet delivery to exactly k sinks as
long as the network is connected and that the number of sinks in the connected
component including s is greater or equal to k.

Proof. We apply a mathematical induction.
Initial step. Theorem 1 is true for k = 1.
When k = 1, the 1-MST computed by s running KanGuRou comes to finding
CTS(s), i.e. the closest sink to s. KanGuRou comes to EEGDA [5], been proven
to guarantee packet delivery as long as the underlying network is connected.
Induction step. Assuming that Theorem 1 is true for k = i−1, 1 < i, we have
to prove that Theorem 1 is true for k = i.
When node s runs KanGuRou, it may either duplicate and forward the message
or just forward it once. When s splits the message, s runs several times Kan-
GuRou for k < i. If s forwards, itt forwards until finding a sink that will then
run KanGuRou for k = i− 1 or to a node that split the message and then runs
several time KanGuRou for k < i, for which Theorem 1 is assumed to be true.

5 Simulation results

In this section, we evaluate the performances of KanGuRou under the WSNet3

simulator with an IEEE 802.15.4 MAC layer. As there is no comparable algo-
rithm in the literature since KanGuRou is the first position-based algorithm from
the literature, we compare the two variants KanGuRou and KanGuRou-kPrim
to running k times the plain EEGDA anycast routing protocol [5] to measure the
gain provided by KanGuRou. We deploy N nodes (from 35 to 115) at random
in a square of 100m×100m, every node can adapt its range between 0 and 30m.

Fig. 3 shows the number of times the message is split/duplicated for each
algorithm. Obviously, the number of splits performed by EEGDA is equal to 1
whatever the parameters since EEGDA performs independent anycast routings.
For both versions of KanGuRou, it is worth noting that when k increases for
a given number of available sinks M and of nodes N , the number of splits
also increases. This is expected since algorithms need to reach more sinks and
respective trees are bigger and thus the message is more likely to be duplicated to
reach sinks. Also, for a fixed k, the number of splits increases when the number
of nodes (and thus of available sinks) increases. This is due to the fact that
more choices are given to the algorithm and thus more ramifications appear
(Fig. 3(a)). We can also note (Fig. 3(b)) that the number of duplications is
not really impacted by the overall number of available sinks M in the network

2 Complete proof is available at researchers.lille.inria.fr/̃mitton/kangourou.html.
3 WSNet: http://wsnet.gforge.inria.fr/
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Fig. 3. Number of splits for each algorithm. M = number of sinks.

(number of splits for a given k). At last, we can observe that the number of
duplications increases when M increases (in proportion of N) more quickly for
KanGuRou than for KanGuRou-kPrim. Yet, for a low value of M , KanGuRou-
kPrim produces more duplications than KanGuRou while for high values of M ,
KanGuRou duplicates more often messages.

First, the number of sinks M is set to be 10% of the total deployed nodes
N . Fig.4 shows the energy consumption (computed based on Eq. 1) and the
path length in terms of N and k (k varies from 1 to M). Note that for k = 1,
results are the same for all three algorithms since KanGuRou comes to EEGDA.
Simulation results show clearly that KanGuRou, KanGuRou-kPrim result in
significant gains on the energy consumption (up to 62.51% (44.33% in average)
and up to 74.22% (53.84% in average) respectively) and path length (up to
62.17% (49.07% in average) and up to 56.61% (21.90% in average) respectively)
compared to the traditional algorithm EEGDA. An amelioration was indeed ex-
pected since in KanGuRou, part of the path is mutualized. Nevertheless, the gain
remains important. Globally, we can see that behavior of every algorithm is sim-
ilar whatever the parameters. Regarding the energy consumption, results show
that KanGuRou-kPrim consumes less energy compared to KanGuRou when k is
important, and KanGuRou performs better for low k. This is due to the fact that
when k increases (for a constant M), k-Prim algorithm gets closer and closer to
the optimal k-MST construction. This is also linked to the number of message
duplications illustrated by Fig. 3. A high number of splits implies shorter paths.

Figure 5 gives a closer look at the energy consumption and the path length
in terms of k when the total deployed nodes N is a constant (N = 75) and M

is set to be 8 sinks. We can see KanGuRou-kPrim performs better regarding
energy consumption when k is greater than 3, and KanGuRou always has a gain
of the path length compared to the other two algorithms in this case.

In the second scenario (Fig. 6), we fix the number of the total deployed
nodes N to 75 and evaluate the performances of the three algorithms (EEGDA,
KanGuRou, KanGuRou-kPrim) regarding the overall number of sinks M in the
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Fig. 5. Algorithms performance in terms of k over M = 8 sinks among N = 75 nodes.

network. Obviously, when k increases for a given number of available sinksM , the
path and the energy consumption increase since there are more sinks to reach.
Similarly, when the number of sinks to reach k is fixed and that the number
of available sinks M increases, the path and the energy consumption decrease
since algorithms have more choice among sinks and can join closer ones. An
important feature is that results show that KanGuRou-kPrim performs better
than KanGuRou for high values of M and k. Once again, this is linked to the
number of path splitting and that the greater k, the closer to the optimal k-MST,
k-Prim algorithm is.

To sum up, the simulation results of different scenarios clearly show that
(i) KanGuRou variants result in a significant gain of energy consumption and
path length compared to the traditional algorithm EEGDA, (ii) depending of
the percentage of sinks to be reached, one variant of KanGuRou performs better
than the other one. When k is small (when k ≤ 30% ×M), KanGuRou always
consumes less energy than KanGuRou-kPrim, (iii) when k is important (when
k > 30% ∗ M), KanGuRou-kPrim brings a significant gain compared to Kan-
GuRou especially when M is important. This is highlighted by Fig. 7 which has
a closer look at this feature. Figure clearly shows that up to a given number of
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available sinks, KanGuRou-kPrim performs better than KanGuRou (M = 23 on
figure).
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6 Conclusion and Future Works

In this paper, we have introduced KanGuRou, the very first position-based k-
anycast routing protocol which is energy efficient and guarantees the packet
delivery. Two variants are proposed for the construction of the tree. KanGuRou
performs well when the number of sinks to reach is lower than 30% of the avail-
able sinks in the network while KanGuRou-kPrim performs better for higher
values of k. In future work, we intend to claim theoretically how far KanGuRou
is from the optimal centralized algorithm and provide some complexity analysis.
We also intend evaluate the properties of KanGuRou more deeply (robustness
toward mobility, wireless instability, etc).
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