
HAL Id: hal-00687042
https://inria.hal.science/hal-00687042

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Community-Driven Language Development
Javier Cánovas, Jordi Cabot

To cite this version:
Javier Cánovas, Jordi Cabot. Community-Driven Language Development. International Workshop
on Modelling in Software Engineering, Jun 2012, Zurich, Switzerland. �hal-00687042�

https://inria.hal.science/hal-00687042
https://hal.archives-ouvertes.fr


Community-Driven Language Development

Javier Luis Cánovas Izquierdo, Jordi Cabot

AtlanMod, École des Mines de Nantes – INRIA – LINA

Nantes, France

{javier.canovas,jordi.cabot}@inria.fr

Abstract—Software development processes are becoming
more collaborative, trying to integrate end-users as much
as possible. The idea is to advance towards a community-
driven process where all actors (both technical and non-
technical) work together to ensure that the system-to-be will
satisfy all expectations. This seems specially appropriate in the
field of Domain-Specific Languages (DSLs) typically designed
to facilitate the development of software for a particular
domain. DSLs offer constructs closer to the vocabulary of
the domain which simplifies the adoption of the DSL by end-
users. Interestingly enough, the development of DSLs is not a
collaborative process itself. In this sense, the goal of this paper
is to propose a collaborative infrastructure for the development
of DSLs where end-users have a direct and active participation
in the evolution of the language. This infrastructure is based
on Collaboro, a DSL to represent change proposals, possible
solutions and comments arisen during the development and
evolution of a language.

I. INTRODUCTION

Software development involves the collaboration of many

types of participants, including to some extent the future

users of the software. While some effort has been put

into studying how to make the process more efficient by

analyzing the way developers collaborate with each other

(e.g., Global Software Development [1]), the role of the

users has been mostly neglected. Users are mainly involved

during the requirement elicitation and testing phases, and

have little to none participation in the actual development

phases. This usually leads to software that does not satisfy

the customer needs. As a response to such problem, software

development processes are increasingly becoming more col-

laborative, trying to engage users in all development phases

[2], [3], [4], [5].

Promoting collaboration is especially appropriate when

developing Domain-Specific Languages (DSLs). DSLs offer

constructs closer to the vocabulary of the domain. Therefore,

DSLs help to face the problem of building software for

a particular domain mainly due to their ability to specify

easily the aim or intention of the application [6]. When using

DSLs, users do not need to learn new technical concepts and

can just express their needs using the same concepts existing

in their domain. Many approaches and recommendations to

develop DSLs have been presented [7], [8], [9], most of them

focused on defining either the steps to follow in the creation

of a new DSLs or the tips to take into account. However,

according to these works and in a similar way as what

happens in software development processes, current DSL

development processes are usually centered on developers

rather than the users. It turns out that even if a DSL is a

language specific for a domain, domain experts have very

limited participation in its creation.

To improve this situation, we propose to make the devel-

opment process for DSLs more community-aware, meaning

that the process is aware of all the stakeholders involved (i.e.,

technical and domain expert users). In general, it is well-

known that communication, coordination and collaboration

(i.e., social activity) between community members is a good

sign to create high quality software [3]. Our aim is to

turn the DSL development process into a more democratic

process that includes at every phase the suggestions of the

user community for which the DSL is created. For this

purpose, it is important to make easier the collaboration

between developers and users, trying to overcome the in-

volved technical issues to facilitate users to participate into

the language development process. In a similar way to how

many FOSS products are developed (e.g., [10] describes

the collaborative process for developing Apache based on

a mail-based voting system, whereas [11] describes the

assignment of development tasks in the Mozilla project), in

our DSL development process, community members have

the chance to discuss about language changes and decide

which ones should be incorporated, thus improving the

effectiveness of the process and the quality of the DSL.

A key element in the process is the ability to track the

changes and the discussions behind them, providing a clear

traceability among the elements of different versions of the

DSL so that it can be easily justified why some concepts

were created or deleted during the DSL evolution.

Our solution is based on a new DSL to represent the

collaborations which arise among the members of a language

community. This DSL, called Collaboro, allows representing

change proposals, solutions and comments discussed during

the development and evolution of a language.

Collaboro is implemented as an Eclipse-based tool that

can be used by all kinds of users willing to have an active

role in the evolution of their DSL. The tool includes a simple

decision engine to transform these discussions into actual

decisions based on the community agreement. This engine



is extensible to allow for more complex decision procedures

when only partial agreements are reached.

The paper is organized as follows. Section II firstly defines

the concept of community and presents how to make current

language development processes community-aware. Section

III describes our approach and it is then contrasted with

existing related work in Section IV. Section V ends the paper

and presents future work.

II. TOWARDS A COMMUNITY-DRIVEN DEVELOPMENT

PROCESS FOR DSLS

In this section we will show how we propose to transform

traditional language development processes into community-

aware ones. We call community to the group of users of

the DSL, where by users we mean both the (1) technical

level users (i.e., the language developers) and (2) domain

expert users (i.e., the end-users of the language). These

categories may be overlapping, especially when the DSL

is a technical DSL (e.g., if the DSL is aimed to write

configuration files then the domain experts may be also

technical-savy enough to create the language themselves).

In any case, the collaboration needs in both cases are the

same.

The specification of a DSL involves three main compo-

nents [12]: abstract syntax, concrete syntax, and semantics.

The abstract syntax defines both the language concepts and

their relationships, and also includes the rules constraining

the models that can be created. The concrete syntax defines

a notation (textual, graphical or hybrid) for the abstract

syntax, and a translational approach is normally used to

provide semantics. As a first approach, we will focus on

the community-driven language development of the abstract

syntax of a language, which is usually expressed by a

metamodel.

According to [7], a DSL is built following a development

process composed of five phases, namely: decision, analysis,

design, implemementation and deployment. The decision

phase allows identifying the need of creating a DSL for a

particular domain. In the analysis phase, the problem domain

is analyzed and domain knowledge is gathered. In the design

and implementation phases the new language is created,

which is finally released in the deployment phase.

In a traditional language development process, domain

experts participate in the first two phases but then they do

not see how their input has been interpreted until the deploy-

ment phase. The validation process is therefore performed

at the very end of the development process, when bugs

and other problems derived from misunderstandings during

the first phases can be identified. This situation usually

forces to restart the development process to fix the detected

problems, thus increasing the cost and effort to create the

language. Figure 1a shows the phases in which end-users

can participate in a traditional process and illustrates how a

Decision

Analysis

Design

Implementation

Deployment

Development
phases

Traditional
process

Community-driven
process

User agreement

(a) (b)

Figure 1. End-user agreement in (a) a traditional language development
process, where a restart may be required due to misunderstandings, and in
(b) a community-driven process, where each development phase is agreed
by the community, thus involving a possible restart in the same phase.

disagreement in the last phase involves restarting again the

process.

However, when the language development process is made

community-aware, both developers and end-users collabo-

rate in all the development phases, particularly, the design

and implementation phases which were ignored before. This

new commnunity-driven orientation avoids waiting until

the end of the process to perform the validation. Each

development phase is therefore validated as it is performed

so that all parties are ensured that what is being developed

will satisfy their expectations (see Figure 1b).

To make this development process feasible, we need to

provide adequate tool support for the proposals and discus-

sions around the language development. In the following

we show the difference in both approaches by means of an

example and illustrate the kind of collaboration information

we need to record to enable our new community-driven

process. Next section will present our approach for providing

such collaborative infrastructure.

Our running example is based on the development of a

DSL for production systems (Figure 2). This example DSL is

aimed at chief production officers that need to plan the best

organization for the production lines for their factory. To this

purpose, the DSL offers as constructs concepts like operator,

machine, piece, etc., thus allowing the representation of

specific product manufacturing settings.

Once the community agrees on the need of creating this

DSL in the decision phase, the design phase begins with

the abstract syntax definition. Figure 2a shows a tentative

version of the abstract syntax metamodel of the language.



(a)

(b)

Operator Machineoperates
0..10..1

output
0..*0..*

input
0..*0..*

Conveyor
capacity : int

Assembler Packer

Piecein
0..*1..1Part

assembler packer

Figure 2. (a) First version of Production System metamodel. (b) Example
of a Production System model using a possible graphical syntax.

The DSL allows representing the parts (Part metaclass)

which a system production is composed of, namely, ma-

chines (Machine metaclass) and conveyors (Conveyor

metaclass). A system can be composed of two types of

machines: assemblers (Assembler metaclass) and packers

(Packer metaclass). A machine is connected to others by

means of conveyors (Conveyor metaclass) and the prod-

ucts are represented as pieces (Piece metaclass). Moreover,

a machine is controlled by a human operator (Operator

metaclass). Finally, the capacity (Capacity attribute) of a

conveyor indicates the number of products that it can carry.

Next, in a traditional language development process, de-

velopers would define the concrete syntax (see an example

graphical syntax for the DSL in Figure 2b) as well as the

corresponding tooling (e.g., a model editor for the DSL).

Only at the end, end-users have the chance to review

the DLS and detect possible errors. For instance, imagine

that end-users want to be able to specify the maintenance

condition of each conveyor (e.g., good, fine, rusty, etc). Since

this is not covered by the metamodel, the abstract syntax

has to be updated but this triggers a change on the concrete

syntax and the tooling as well.

Instead, in a community-driven process, this missing fea-

ture can be detected just after the abstract syntax is provided

and, more importantly, end-users not only can propose

a change request to incorporate it but also can propose

solutions, give their opinion on the solutions presented by the

language designers and eventually decide altogether which

one to select. Even if end-users may be not technical, the fact

that they are discussing about developing a DSL facilitates

they can take part in the discussion since the vocabulary they

need to employ is the same they use in their daily activities.

An example of such collaboration scenario for this new

condition feature could be the following:

(a) End-User 1 realizes that the current version of the

language does not allow specifying the condition of

conveyors. In the community, the condition is usually

measured according to some values considered de facto:

superb, good, fine and old. Thereby, end-user 1 proposes

(a)

(b)

Operator Machineoperates
0..10..1

output
0..*0..*

input
0..*0..*

Conveyor
capacity : int
condition : String

Assembler Packer

Piecein
0..*1..1Part

Operator Machineoperates
0..10..1

output
0..*0..*

input
0..*0..*

Conveyor
capacity : int
condition : Condition

SUPERB
GOOD

Condition
<<enum>>

FINE
OLD

Assembler Packer

Piecein
0..*1..1Part

Figure 3. (a) First solution proposal for supporting conveyor condition in
the Production System metamodel. (b) Final solution proposal.

to change the abstract syntax metamodel to support such

feature.

(b) The change proposal is accepted by the community (i.e.,

after discussion, it is considered a valuable addition to

the language).

(c) Developer 1 implements a solution adding to the

Conveyor metaclass an string-based attribute called

condition (Figure 3a shows the solution developed).

(d) Developer 2 argues about the correctness of the solution

and comments that the type of the condition attribute

should be enumerated and its possible values should

be the ones used by the community to describe the

condition of a conveyor.

(e) The community discusses and finally agrees with what

the developer 2 commented.

(f) Developer 1 changes the solution, thus creating the

abstract syntax metamodel shown in Figure 3b, which

incorporates the comment.

Once the community has reached an agreement for the

change proposal and solution, they are incorporated into

the abstract syntax of the language, creating a new version

of the language. Moreover, the proposal and solutions are

recorded, thus keeping a track of every change performed

in the language. Therefore, at any moment, we can query

this traceability information to discover the rationale behind

the metamodel elements of the language.

Only when there are no more change requests for the

abstract syntax, developers start with the definition of the

concrete syntax. A collaboration process to improve also the

notation of the DSL could follow a similar procedure to the

one described herein for the abstract syntax but a complete

support for this is out of the scope of this paper.



Proposal
accepted : boolean

Solution Comment
included : boolean

sols
Version

id : String

proposals

Collaboration
id : String
rationale : String

User
id : String

proposedBy

MetaInfo

Priority
value : int

TagBased Tag
value : String

ModelChange referredElement

target

Add Update Delete

Vote
agreement : boolean

votedBy

selected

comment

metaInfo

0..* 0..*
1..1

1..1

1..1

votes
0..*

comments 0..* 1..1

1..1
changes0..*

EModelElement
<<from ECore package>>

1..1

1..1

0..*
tags

source1..1

0..*

1..1 1..1

1..1
1..1

1..1

1..1

1..1

1..1

1..10..*

0..*

1..1

collaborations

votes

1..1

Figure 4. The Collaboro metamodel.

III. Collaboro: A DSL TO REPRESENT COMMUNITY

COLLABORATIONS

Our proposal for a community-driven language develop-

ment process is built on top of Collaboro, a new DSL that

enables the explicit representation of the collaborations that

take place during the language development process. These

collaborations, expressed as Collaboro models, are then used

to decide (and track) the changes to be applied to the DSL

under development/evolution.

The abstract syntax for Collaboro is shown in Figure

4, whose development was performed collaboratively in

the research team. The metamodel stores both static (e.g.,

change proposals) and dynamic (e.g., voting) aspects of the

collaboration.

A. Static part

Language evolution results in different versions

(Version metaclass) of the language1. Evolution

is the consequence of collaborations (Collaboration

metaclass). Collaboro supports three types of collaborations:

change proposals (Proposal metaclass), solutions

proposals (Solution metaclass) and comments

(Comment metaclass), which are linked to the parent

collaboration they are expanding on. A collaboration is

proposed by a user (proposedBy reference) and includes

an explanation (rationale attribute).

The accepted solutions for a set of change proposals

are integrated into a new version of the language. The

changes to perform are part of the solution proposal. Each

solution involves a set of add/update/delete changes on

the abstract syntax of the DSL (ModelChange metaclass

and subtype metaclasses). ModelChange links the col-

laboration infrastructure with the DSL under discussion. In

particular, ModelChange has a reference to the container

element affected by the change (referredElement ref-

erence) and the element to change (target reference).

1We plan to support the concept of branch in future versions.

Thereby, in the case of Add and Delete metaclasses,

referredElement refers to the element to which we

want to add/delete a “child” element whereas target refers

to the actual element to be added/deleted. In the case of

the Update metaclass, referredElement refers to the

element which contains the element to be updated (e.g., a

metaclass) whereas target refers to the new version of the

element being updated (i.e., a new version for an attribute).

The additional source attribute indicates the element to be

updated (i.e., the attribute which is being updated).

B. Dynamic part

Additional metaclasses keep track of the decision process.

Collaboration elements are voted by the community, thus

allowing to reach agreements. The vote for a collabora-

tion (Vote metaclass) represents if the user (votedBy

reference) agrees or not with it (agreement attribute).

Thereby, a vote is added to a Collaboro definition when

the community member exercises the right to vote.

When an user votes against a collaboration, he/she should

include a comment arguing his/her decision (comment

reference of Vote metaclass). The community can then also

vote the comment itself. The refinement of the collaboration

will eventually be made by the proponent of the voted

proposal/solution, who decides to take the comment into

account (the included attribute of Comment metaclass

records this fact) according to its voting information.

Proposals can be accepted or not, meaning that the

community agrees that the requested change is necessary

(accepted attribute). For each proposal we can have many

possible solutions but in the end one of them will be selected

(selected reference of the Proposal metaclass).

Part of this data (like the accepted and selected

properties) is automatically filled by the decision engine in

charge of analyzing and resolving the collaboration, which

we will present in the next section.



p : Proposal
accepted = false

: Vote
agreement = true

votes

: Vote
agreement = true

LHS
p : Proposal

accepted = true

: Vote
agreement = true

votes

: Vote
agreement = true

RHS

ProposalAgreement

SolutionAgreement

RHS

p : Proposal t : Solution
decision

NAC

s : Solution

: Vote
agreement = true

sols

decision

: Vote
agreement = true

votes

LHS

s : Solution

: Vote
agreement = true

sols

: Vote
agreement = true

votes

: Vote
agreement = falsevotes

s : Solution

p : Proposal
accepted = false

: Vote
agreement = falsevotes

NAC

p : Proposal
accepted = true

p : Proposal
accepted = true

Figure 5. Rules applied in the decision engine using graph-based model
transformation notation.

C. Decision engine

The abstract syntax provides the schema to store all

the information regarding the collaboration process. The

decisions (i.e., approval of change proposals and selection

of solutions) coming out of such collaborations can be made

by a community manager or could be done automatically by

a decision engine following a predefined resolution strategy

(e.g., unanimous agreement, majority agreement, etc).

As an example, Collaboro implements now a simple

strategy based on a total agreement among the members,

i.e., the decision engine integrated in our tool applies the

following decision rules (expressed as graph transformation

rules [13] in Figure 5): i) a proposal is accepted if there are

only positive votes, that is, all users agree with the requested

change (see rule ProposalAgreement), and similarly, ii)

a solution is accepted if all votes are positive (see rule

SolutionAgreement).

D. Example

To illustrate the language, we will show how Collaboro

can be used to support the collaboration scenario described

in Section II.

Figure 6 shows the Collaboro model corresponding to this

collaboration. The figure is divided in several parts according

to the collaboration steps described in Section II. For the

sake of clarity, the references to User metaclass instances

have been represented as attributes and the rationale

attribute is not shown.

Figure 6a shows the Collaboro model just after end-user

1 requests to support the definition of a condition status for

conveyors. It includes a new proposal instance whose id

attribute is p1. The rationale of the proposal is To better

assess the condition of the system, we need to be able to

specify the condition of the conveyors, usually classified as

superb, good, fine and old. The proposal meta-information

specifies that such proposal is High priority and has the tag

extension.

Once the proposal has been created, the community can

vote for/against it as well as add comments and solutions.

In this case, the proposal is voted positively by the rest of

the users and therefore accepted (see the Vote instances

referred by the proposal in Figure 6b). Then, a new solution

is proposed by developer 1 (see the Solution instance

in Figure 6c), which involves enriching the Conveyor

metaclass with a string-based attribute.

However, this solution is not accepted by all the com-

munity members: when voting such solution, developer 2

does not agree and explains his disagreement with the

comment This type of information is usually represented by

enumerates, particularly when the values are known (see

Figure 6d). Since the comment is accepted (see Figure 6e),

developer 1 decides to update the solution to incorporate the

community recommendations (see Figure 6f). It is important

to note that the elements describing the model changes in

Figures 6c and 6f are mutually exclusive (i.e., 6f is an

evolution of 6c once the community agrees that the comment

from developer 2 must be taken into account). Moreover, the

attribute included of the Comment element in Figure 6d

will be activated as a consequence of the solution update.

Once everybody agrees on the improved solution, it is se-

lected as the final solution for the proposal (the decision

reference is initialized with the Solution instance). Now

the development team can modify the DSL knowing that the

community needs the language to be changed and agrees

on how the change must be done. Moreover, the rationale

of the change will be tracked by the Collaboro model,

which will allow community members to know why both the

Conveyor metaclass was changed and the Condition

enumerate was added.

E. Implementation

Collaboro is available as an Eclipse plugin2. Current

version works with the EMF framework and therefore allows

the community-driven development of Ecore models. The

tool provides a set of views and editors seamlessly integrated

in Eclipse, thus facilitating community members to create

proposals, solutions and comments from within the same en-

vironment they use when using the DSL. These views/editors

2http://code.google.com/a/eclipselabs.org/p/collaboro/



(c)

(f)

: Version
id = "1.1"

: Proposal
id = "p1"
accepted = true
proposedBy = "end-user 1"

: Solution
id = "s1"
proposedBy = "developer 1"

: Priority
value = "High"

: TagBased

: Tag
value = "extension"

: Vote
agreement = true
votedBy = "developer 1"

: Vote
agreement = true
votedBy = "developer 2"

: Vote
agreement = true
votedBy = "end-user 1"

: Vote
agreement = false
votedBy = "developer 2"

sols

selected

proposals

changes

votes metaInfo
votes

: Comment
proposedBy = "developer 2"

comment

: Vote
agreement = true
votedBy = "end-user 1"

: Vote
agreement = true
votedBy = "developer 1"

votes

included = false
(b)

: Add

: EAttribute
name = "condition"
type = "EString"

referredElement

target

Conveyor
capacity : int

: Add

: EAttribute
name = "condition"
type = "Condition"

referredElement

target

: Add : EEnum
name = "Condition"

target

Conveyor
capacity : int

(a)

(d) XOR

(e)

Figure 6. The collaborations arisen in the production system example represented by Collaboro.

can be considered as a kind of concrete syntax of Collaboro

since through them members can manage Collaboro models.

Figure 7a includes a snapshot of the environment showing

the last step of the collaboration described previously. As

mentioned above, the tool also includes a decision engine

to infer community agreements from the voting information

on proposals and solutions.

Figure 7b summarizes the collaboration process. Firstly,

community members use the provided Eclipse views/editors

to define and discuss about language changes (see step 1). A

Collaboro model is kept synchronized with the views/editors

as the collaboration is running. Afterwards, the decision

engine analyzes the current Collaboro model and derives

a new Collaboro model containing the proposals/solutions

agreed by the community (see step 2), which automatically

updates the individual views (see step 3). So far, our tool

does not actually perform the agreed changes on the target

DSL. This is still responsibility of the language designers.

In the future, we plan to integrate our tool with model

versioning tools to automate this step as well.

IV. RELATED WORK

Promoting collaboration is currently being taken into

account by methods (e.g., user-centered methods such as

agile-based ones) and development projects, especially in

the context of FOSS communities [10], [11]. [14] introduces

the concept of community-driven development in the devel-

opment of a software product. However, they are not aimed

to enable community collaborations in DSL development

processes. Other works [3], [1], [4] comment on making

more participative some model-based phases of the devel-

opment process, but they do not present the collaboration as

a process of discussion and argumentation in a community

as ours does nor they provide an actual infrastructure to

enable the collaboration.

Regarding specific subsets of our proposal, the model-

based definition of metamodel changes is also a topic

of interest for model versioning tools such as [15], [16].

Collaboro has been inspired by these tools to express the so-

lutions (i.e., changes to be made) for the proposals. However,

Collaboro offers a more expressive discussion environment,

such as giving support to the discussion phase and storing

the rationale behind each change.

Online modeling collaboration tools [17], [18] allow de-

velopers to discuss changes in a synchronous way. Instead,

Collaboro enables offline collaborations and a more formal

representation of the collaborations (e.g., voting system,

explicit argumentation and rationale, traceability).

The incorporation of rationale to community members

collaborations is related to requirements negotiation, argu-

mentation and justification approaches such as [19]. These

approaches allows applying decision algorithms to argu-

ments in order to infer a justification. Collaboro could be

extended to integrate and apply such algorithms.

V. CONCLUSION AND FUTURE WORK

In this paper we present Collaboro, an approach to enable

the participation of the user community in the development

of a DSL. Collaboro allows representing language change

requests and solution proposals (as well as comments to

both). Collaboro is available as an Eclipse plugin.

As further work, we would like to apply Collaboro not

only to support the collaborative development of the lan-

guage abstract syntax but also that of its concrete notation.

We also plan to advance towards a “change by example”



Figure 7. (a) Snapshot of the Collaboro Eclipse plugin. (b) Collaboro process.

approach where end-users can suggest changes by provid-

ing example models (possibly inconsistent with the current

DSL version) of how they would like to represent certain

scenarios. Finally, we will work on extending the decision

engine to support more complex resolution algorithms. To

this aim, we plan to study works based on ontologies [20]

and folksonomies [21], [22] for the automatic inference of

relevant knowledge for the resolution.

REFERENCES

[1] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino,
“Collaboration tools for global software engineering,” IEEE
Software, vol. 27, no. 2, pp. 52–55, 2010.

[2] G. Booch and A. W. Brown, “Collaborative development
environments,” Advances in Computers, vol. 59, pp. 1–27,
2003.

[3] T. Hildenbrand, F. Rothlauf, M. Geisser, A. Heinzl, and
T. Kude, “Approaches to collaborative software development,”
in Conf. on Complex, Intelligent and Software Intensive
Systems, 2008, pp. 523–528.

[4] J. Whitehead, “Collaboration in software engineering: A
roadmap,” in Future of Software Engineering, 2007, pp. 214–
225.

[5] Agile Manifesto. http://agilemanifesto.org/.

[6] K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Systems, vol. 45, no. 3, pp.
621–645, 2006.

[7] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domain-specific languages,” ACM Comput. Surv.,
vol. 37, pp. 316–344, 2005.

[8] S. Kelly and R. Pohjonen, “Worst practices for domain-
specific modeling,” IEEE Software, vol. 26, no. 4, pp. 22
–29, 2009.

[9] M. Völter, “MD*/DSL best practices.”

[10] R. T. Fielding, “Shared leadership in the apache project,”
Commun. ACM, vol. 42, pp. 42–43, 1999.

[11] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, pp. 309–
346, 2002.

[12] A. Kleppe, Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Addison
Wesley, 2008.

[13] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals
of Algebraic Graph Transformation. Springer, 2006.

[14] J. Hess, S. Offenberg, and V. Pipek, “Community driven
development as participation?: involving user communities in
a software design process,” in Participatory Design, 2008, pp.
31–40.

[15] AMOR Repository. http://www.modelversioning.org/.

[16] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey
on model versioning approaches.” Web Information Systems,
vol. 5, no. 3, pp. 271–304, 2009.

[17] P. Brosch, M. Seidl, K. Wieland, M. Wimmer, and P. Langer,
“We can work it out: Collaborative conflict resolution in
model versioning,” in Conf. on Computer-Supported Coop-
erative Work, 2009, pp. 207–214.

[18] J. Gallardo, C. Bravo, and M. A. Redondo, “A model-
driven development method for collaborative modeling tools,”
Network and Computer Applications, 2011.

[19] I. Jureta, S. Faulkner, and P.-Y. Schobbens, “Clear justifi-
cation of modeling decisions for goal-oriented requirements
engineering,” Requirements Engineering, vol. 13, pp. 87–115,
2008.

[20] C. Lange, U. Bojars, T. Groza, J. Breslin, and S. Handschuh,
“Expressing argumentative discussions in social media sites,”
in Workshop on Social Data on the Web, 2008.

[21] S. Angeletou, M. Sabou, L. Specia, and E. Motta, “Bridging
the gap between folksonomies and the semantic web: An
experience report,” in European Conf. on Semantic Web, 2007,
p. 93.

[22] S. Purao, V. Storey, V. Sugumaran, J. Conesa, J. Minguillón,
and J. Casas, “Repurposing social tagging data for extraction
of domain-level concepts,” in Natural Language Processing
and Information Systems, ser. LNCS, vol. 6716, 2011, pp.
185–192.


