
HAL Id: hal-00687310
https://inria.hal.science/hal-00687310v2

Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Regular Model Checking for Lattice-Based
Automata

Thomas Genet, Tristan Le Gall, Axel Legay, Valérie Murat

To cite this version:
Thomas Genet, Tristan Le Gall, Axel Legay, Valérie Murat. Tree Regular Model Checking for Lattice-
Based Automata. [Technical Report] RT-0424, INRIA. 2012, pp.33. �hal-00687310v2�

https://inria.hal.science/hal-00687310v2
https://hal.archives-ouvertes.fr


appor t  




     t e ch n i qu e


IS
S

N
0

2
4

9
-0

8
0

3
IS

R
N

IN
R

IA
/R

T
--

4
2

4
--

F
R

+
E

N
G

Thèmes SYM et NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Tree Regular Model Checking for

Lattice-Based Automata

Thomas Genet — Tristan Le Gall — Axel Legay — Valérie Murat

N° 424

March 2013





Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Tree Regular Model Checking for

Lattice-Based Automata

Thomas Genet⋆ , Tristan Le Gall⋆⋆ , Axel Legay⋆ , Valérie Murat⋆

Thèmes SYM et NUM — Systèmes symboliques et Systèmes numériques
Projet ??

Rapport technique n° 424 — March 2013 — 36 pages

Abstract: Tree Regular Model Checking (TRMC) is the name of a family of techniques for
analyzing infinite-state systems in which states are represented by terms, and sets of states
by Tree Automata (TA). The central problem in TRMC is to decide whether a set of bad
states is reachable. The problem of computing a TA representing (an over-approximation
of) the set of reachable states is undecidable, but efficient solutions based on completion
or iteration of tree transducers exist. Unfortunately, the TRMC framework is unable to
efficiently capture both the complex structure of a system and of some of its features. As
an example, for JAVA programs, the structure of a term is mainly exploited to capture
the structure of a state of the system. On the counter part, integers of the java programs
have to be encoded with Peano numbers, which means that any algebraic operation is
potentially represented by thousands of applications of rewriting rules. In this paper, we
propose Lattice Tree Automata (LTAs), an extended version of tree automata whose leaves
are equipped with lattices. LTAs allow us to represent possibly infinite sets of interpreted
terms. Such terms are capable to represent complex domains and related operations in an
efficient manner. We also extend classical Boolean operations to LTAs. Finally, as a major
contribution, we introduce a new completion-based algorithm for computing the possibly
infinite set of reachable interpreted terms in a finite amount of time.

Key-words: verification of infinite state systems, tree automata, abstract interpretation,
lattice automata, completion, regular tree model checking
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Model Checking régulier pour

automate d’arbres à treillis

Résumé : Le model checking régulier sur termes (TRMC) est une famille de techniques per-
mettant d’analyser les systèmes à espace d’états infini dans lequel les états sont représentés
par des termes, et les ensembles de termes par des automates d’arbres. Le problème prin-
cipal du TRMC est de savoir si un ensemble d’états erreur est accessible ou non. Le calcul
d’un automate d’arbres représentant (une sur-approximation de) l’ensemble des états ac-
cessibles est un problème indécidable. Mais des solutions efficaces basées sur la complétion
ou l’itération de transducteurs d’arbres existent. Malheureusement, les techniques actuelles
liées au TRMC ne permettent pas de capturer efficacement à la fois la structure complexe
d’un système et certaines de ces caractéristiques. Si on prend par exemple les programmes
Java, la structure d’un terme est principalement exploitée pour modéliser la structure d’un
état du système. En contrepartie, les entiers présents dans le programmes Java doivent être
encodés par des entiers de Peano, donc chaque opération algébrique est potentiellement
modélisée par une centaine d’applications de règles de réécriture. Dans ce rapport, nous pro-
posons des automates d’arbres à treillis (LTAs), une version étendue des automates d’arbres
dont les feuilles sont équipés avec des éléments d’un treillis. Les LTAs nous permettent
de représenter des ensembles possiblement infinis de termes pouvant être interprétés. Ces
termes "interprétables" permettent de représenter efficacement des domaines complexes et
leurs opérations associées. Nous étendons également les opérations booléennes classiques aux
LTAs. Enfin, en tant que contribution principale, nous définissons un nouvel algorithme de
complétion permettant de calculer l’ensemble possiblement infini des termes interprétables
accessibles en un temps fini.

Mots-clés : vérification de systèmes à espace d’états infini, automate d’arbres, interpréta-
tion abstraite, treillis, complétion, model checking régulier
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1 Introduction

Infinite-state models are often used to avoid potentially artificial assumptions on data struc-
tures and architectures, e.g. an artificial bound on the size of a stack or on the value of an
integer variable. At the heart of most of the techniques that have been proposed for explor-
ing infinite state spaces, is a symbolic representation that can finitely represent infinite sets
of states.

In early work on the subject, this representation was domain specific, for example lin-
ear constraints for sets of real vectors [33]. For several years now, the idea that a generic
automata-based representation for sets of states could be used in many settings has gained
ground starting with finite-word automata [14,15,29,2], and then moving to the more general
setting of Tree Regular Model Checking (TRMC) [1,17,3]. In TRMC, states are represented
by trees, set of states by tree automata, and behavior of the system by rewriting rules or
tree transducers. Contrary to specific approaches, TRMC is generic and expressive enough to
describe a broad class of communication protocols [3], various C programs [16] with complex
data structures, multi-threaded programs, and even cryptographic protocols [26,6]. Any Tree
Regular Model Checking approach is equipped with an acceleration algorithm to compute
possibly infinite sets of states in a finite amount of time. Among such algorithms, one finds
completion by equational abstraction [27] that computes successive automata obtained by
application of the rewriting rules, and merge intermediary states according to an equivalence
relation to enforce the termination of the process.

In [11], the authors proposed an exact translation of the semantic of the Java Virtual
Machine to tree automata and rewriting rules. This translation permits to analyze Java
programs with classical Tree Regular Model checkers. One of the major difficulties of this
encoding is to capture and handle the two-side infinite dimension that can arise in Java
programs. Indeed, in such models, infinite behaviors may be due to unbounded calls to
method and object creation, or simply because the program is manipulating unbounded
data such as integer variables. While multiple infinite behaviors can be over-approximated
with completion and equational abstraction [27], their combinations may require the use
of artificially large-size structures. As an example in [11], the structure of a configuration
is represented in a very concise manner as the structure of terms is mainly designed to
efficiently capture program counters, stacks, .... On the other hand, integers and their related
operations have to be encoded in Peano arithmetic, which has an exponential impact on the
size of automata representing sets of states as well as on the computation process. As an
example, the addition of x to y requires the application of x rewriting rules.

A solution to the above problem would be to follow the solution of Kaplan [28], and
represent integers in bases greater or equal to 2, and the operations between them in the
alphabet of the term directly. In such a case, the term could be interpreted and returns
directly the result of the operation without applying any rewriting rule. The study of new
Tree Regular Model Checking approaches for such interpreted terms is the main objective
of this paper. Our first contribution is the definition of Lattice Tree Automata (LTA), a new
class of tree automata that is capable of representing possibly infinite sets of interpreted
terms. Roughly speaking, LTA are classical Tree Automata whose leaves may be equipped

RT n° 424



4 Thomas Genet , Tristan Le Gall , Axel Legay , Valérie Murat

with lattice elements to abstract possibly infinite sets of values. Nodes of LTA can either
be defined on an uninterpreted alphabet, or represent lattice operations, which will allow
us to interpret possibly infinite sets of terms in a finite amount of time. We also propose
a study of all the classical automata-based operations for LTA. The model of LTA is not
closed under determinization. In such case, the best that can be done is to propose an
over-approximation of the resulting automaton through abstract interpretation. As a third
contribution, we propose a new acceleration algorithm to compute the set of reachable states
of systems whose states are encoded with interpreted terms and sets of states with LTA.
Our algorithm extends the classical completion approach by considering conditional term
rewriting systems for lattices. We show that dealing with such conditions requires to merge
existing completion algorithm with a solver for abstract domains. We also propose a new
type of equational abstraction for lattices, which allows us to enforce termination in a finite
amount of time. Finally, we show that our algorithm is correct in the sense that it computes
an over-approximation of the set of reachable states. This latter property is only guaranteed
providing that each completion step is followed by an evaluation operation. This operation,
which relies on a widening operator, adds terms that may be lost during the completion
step. Finally, we briefly describe how our solution can drastically improve the encoding of
Java programs in a TRMC environment.

Related Work This work is inspired by [24], where the authors proposed to use finite-
word lattice automata to solve the Regular Model Checking problem. Our major differences
are that (1) we work with trees, (2) we propose a more general acceleration algorithm,
and (3) we do consider operations on lattices while they only consider to label traces with
lattices without permitting to combine them. Some Regular Model Checking approaches
can be found in [4,14,5,18]. However, none of them can capture the two infinite-dimensions
of complex systems in an efficient manner. Other models, like modal automata [9] or data
trees [23,25], consider infinite alphabets, but do not exploit the lattice structure as in our
work. Lattice (-valued) automata [30], whose transitions are labelled by lattice elements,
map words over a finite alphabet to a lattice value. Similar automata may define fuzzy tree
languages [21]. Other verification of particular classes of properties of Java programs with
interpreted terms can be found in [32].

2 Background

Rewriting Systems and Tree Automata. Let F be a finite set of functional symbols, where
each symbol is associated with an arity, and let X be a countable set of variables. T (F ,X )
denotes the set of terms and T (F) denotes the set of ground terms (terms without variables).
The set of variables of a term t is denoted by Var(t). The set of functional symbols of arity n
is denoted by Fn. A position p for a term t is a word over N. The empty sequence ε denotes
the top-most position. We denote by Pos(t) the set of positions of a term t. If p ∈ Pos(t),
then t|p denotes the subterm of t at position p and t[s]p denotes the term obtained by
replacement of the subterm t|p at position p by the term s.

INRIA
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A Term Rewriting System (TRS) R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ),
and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear if each variable of l occurs only once
in l. A TRS R is left-linear if every rewrite rule l → r of R is left-linear.

We now define Tree Automata (TA for short) that are used to recognize possibly infinite
sets of terms. Let Q be a finite set of symbols of arity 0, called states, such that Q∩F = ∅.
The set of configurations is denoted by T (F ∪Q). A transition is a rewrite rule c → q, where
c is a configuration and q is a state. A transition is normalized when c = f(q1, . . . , qn), f ∈ F
is of arity n, and q1, . . . , qn ∈ Q. A bottom-up nondeterministic finite tree automaton (tree
automaton for short) over the alphabet F is a tuple A = 〈Q,F ,QF , ∆〉, where QF ⊆ Q is
the set of final states, ∆ is a set of normalized transitions.

The transitive and reflexive rewriting relation on T (F ∪Q) induced by ∆ is denoted by
→∗

A. The tree language recognized by A in a state q is L(A, q) = {t ∈ T (F) | t →∗
A q}. We

define L(A) =
⋃

q∈QF
L(A, q).

Lattices, atomic lattices, Galois connections. A partially ordered set (Λ,⊑) is a lattice if
it admits a smallest element ⊥ and a greatest element ⊤, and if any finite set of elements
X ⊆ Λ admits a greatest lower bound (glb) ⊓X and a least upper bound (lub) ⊔X . A lattice
is complete if the glb and lub operators are defined for all possibly infinite subsets of Λ. An
element x of a lattice (Λ,⊑) is an atom if it is minimal, i.e. ⊥ < x ∧ ∀y ∈ Λ : ⊥ < y ⊑ x ⇒
y = x. The set of atoms of Λ is denoted by Atoms(Λ). A lattice (Λ,⊑) is atomic if all element
x ∈ Λ where x 6= ⊥ is the least upper bound of atoms, i.e. x = ⊔{a|a ∈ Atoms(Λ)∧ a ⊑ x}.

Considered two lattices (C,⊑C) (the concrete domain) and (A,⊑A) (the abstract do-
main). We say that there is a Galois connection between the two lattices if there are two
monotonic functions α : C → A and γ : A → C such that : ∀x ∈ C, y ∈ A, α(x) ⊑A y if and
only if x ⊑C γ(y). As an example, sets of integers (2Z,⊆) can be abstracted by the atomic
lattice (Λ,⊑) of intervals, whose bounds belong to Z ∪ {−∞,+∞} and whose atoms are of
the form [x, x], for each x ∈ Z. Any operation op defined on a concrete domain C can be
lifted to an operation op# on the corresponding abstract domain A, thanks to the Galois
connection.

3 Lattice Tree Automata

In this section, we first explain how to add elements of a concrete domain into terms, which
has been defined in [28], and how to derive an abstract domain from a concrete one. Then
we propose a new type of tree automata recognizing terms with elements of a lattice and
study its properties.

3.1 Interpreted Symbols and Evaluation

In what follows, elements of a concrete and possibly infinite domain D will be represented
by a set of interpreted symbols F•. The set of symbols is now denoted by F = F◦ ∪ F•,
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where F◦ is the set of passive (uninterpreted) symbols. The set of interpreted symbols F•

is composed of elements of D (i.e D ⊆ F•) whose arity is 0, and is also composed of some
predefined operations f : Dn → D, where f ∈ Fn. For example, if D = Z, then F• can be
Z ∪ {+,−, ∗}. Passive symbols can be seen as usual non-interpreted functional operators,
and interpreted symbols stand for built-in operations on the domain D.

The set T (F•) of terms built on F• can be evaluated by using an eval function eval :
T (F•) → D. The purpose of eval is to simplify a term using the built-in operations of the do-
main D. The eval function naturaly extends to T (F) in the following way: eval(f(t1, . . . , tn)) =
f(eval(t1), . . . , eval(tn)) if f ∈ F◦ or ∃i = 1 . . . n : ti 6∈ T (F•). Otherwise, f(t1, . . . , tn) ∈
T (F•) and the evaluation returns an element of D.

We can define tree automata to recognize sets of interpreted terms. For example, the set
{f(1), f(2), f(3), f(4), f(5), f(6)} is recognized by a tree automaton with the transitions :
1 → q, 2 → q, 3 → q, 4 → q, 5 → q, 6 → q, f(q) → qf . This encoding is inefficient, and we
would prefer to have special transitions to handle sets of integers. So we can define a tree
automata with only two transitions : {1, . . . , 6} → q, f(q) → qf .

Our main idea is to generalize this encoding and to define tree automata with some
transitions to recognize elements of a lattice (sets of integers are elements of the lattice 2Z).
By considering tree automata with a generic lattice, we can also improve the efficiency of
the approach. General sets of integers are indeed hard to handle, and we often only need an
over-approximation of the set of reachable states. That is why we prefer to label the leaves
of the tree by elements of an abstract lattice (Λ,⊑) such as the lattice of intervals. Moreover,
we assume that this abstract lattice is atomic (cf. Section 2).

To each built-in operation op ∈ OP defined on D, we define the corresponding operation
op# ∈ OP# defined on Λ. Since we have that F• = D ∪ OP , the set of abstract symbol
is F#

• = Λ ∪ OP# ∪ {⊔,⊓}. The arity of ⊔ and ⊓ is 2 and the arity of op# is the
same as the one of op. For example, let I be the set of intervals with bounds belonging to
Z ∪ {−∞,+∞}. The set F• = Z ∪ {+,−} can be abstracted by F#

• = I ∪ {+#,−#,⊔,⊓}.
Terms containing some operators extended to the abstract domain have to be evaluated,
like explained in section 3.2 for the concrete domain. If there is a Galois connection between
the concrete domain and the abstract one, eval# : T (F#

• ) 7→ Λ is the best approximation
of eval w.r.t. this Galois connection.

Example 1 (eval# function). There is a Galois connection between (2Z,⊆) and the lattice
of intervals (I,⊑). eval# is defined by:

– eval#(i) = i for any interval i, so eval#(⊥) = ∅ and eval#(⊤) = Z,

– For any f ∈ {+#,−#,⊔,⊓} eval#(f(i1, i2)) is defined, given eval#(i1) = [a, b] and
eval#(i2) = [c, d], by:

• eval#([a, b]⊔[c, d]) = [min(a, c),max(b, d)], eval#([a, b]⊓[c, d]) = [max(a, c),min(b, d)]
if max(a, c) ≤ min(b, d), else eval#([a, b] ⊓ [c, d]) = ⊥,

• eval#([a, b] +# [c, d]) = [a+ c, b+ d], eval#([a, b]−# [c, d]) = [a− d, b− c].

INRIA



TRMC for Lattice-Based Automata 7

3.2 The Lattice Tree Automata Model

Lattice tree automata are extended tree automata recognizing terms defined on F◦ ∪ F#
• .

Definition 1 (lattice tree automaton). A bottom-up non-deterministic finite tree au-

tomaton with lattice (lattice tree automaton for short, LTA) is a tuple A = 〈F = F◦ ∪ F#
• ,

Q,QF , ∆〉, where F is a set of passive and interpreted symbols, Q a set of states and QF a
set of final states, QF ⊆ Q, and ∆ is a set of normalized transitions.

The set of lambda transitions is defined by ∆Λ = {λ → q | λ → q ∈ ∆ ∧ λ 6= ⊥ ∧ λ ∈ Λ}.
The set of ground transitions is the set of other transitions of the automaton, and is formally
defined by ∆G = {f(q1, . . . , qn) → q | f(q1, . . . , qn) → q ∈ ∆ ∧ q, q1, . . . , qn ∈ Q}.

We extend the partial ordering ⊑ (on Λ) on T (F):

Definition 2. Given s, t ∈ T (F), s ⊑ t iff :

1. s ⊑ t (if both s and t belong to Λ),
2. eval(s) ⊑ eval(t) (if both s and t belong to T (F•)),
3. s = t (if both s and t belong to F0

◦ ), or
4. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f ∈ Fn

◦ and s1 ⊑ t1 ∧ . . . ∧ sn ⊑ tn.

Example 2. f(g(a, [1, 5]) ⊑ f(g(a, [0, 8]), and h([0, 4] +# [2, 6]) ⊑ h([1, 3] +# [1, 9]).

In what follows we will omit # when it is clear from the context. We now define the
transition relation and recognized language induced by an LTA. The difference with TA is
that a term t is recognized by an LTA if eval(t) can be reduced in the LTA.

Definition 3 (t1 →A t2 for lattice tree automata). Let t1, t2 ∈ T (F ∪Q).
t1 →A t2 iff, for any position p ∈ Pos(t1) :

– if t1|p ∈ T (F•), there is a transition λ → q ∈ A such that eval(t1|p) ⊑ λ and t2 = t1[q]p
– if t1|p = a where a ∈ F◦, there is a transition a → q ∈ A such that t2 = t1[q]p.
– if t1|p = f(s1, . . . , sn) where f ∈ Fn and s1, . . . sn ∈ T (F ∪ Q), ∃s′i ∈ T (F ∪ Q) such

that si →A s′i and t2 = t1[f(s1, . . . , si−1, s
′
i, si+1, . . . , sn)]p.

→∗
A is the reflexive transitive closure of →A. There is a run from t1 to t2 if t1 →∗

A t2.
The set T (F ,Atoms(Λ)) denotes the set of ground terms built over (F \Λ)∪Atoms(Λ).

Tree automata with lattice recognize a tree language over T (F ,Atoms(Λ)).

Definition 4 (Recognized language). The tree language recognized by A in a state q
is L(A, q) = {t ∈ T (F ,Atoms(Λ)) | ∃ t′ such that t ⊑ t′ and t′ →∗

A q}. The language
recognized by A is L(A) =

⋃

q∈Qf
L(A, q).

Example 3 (Run, recognized language). Let A = 〈F = F◦∪F#
• , Q,Qf , ∆〉 be an LTA where

∆ = {[0, 4] → q1, f(q1) → q2} and final state q2. We have: f([1, 4]) →∗ q2 and f([0, 2]) →∗ q2,
and the recognized langage of A is given by L(A, q2) = {f([0, 0]), f([1, 1]), . . . , f([4, 4])}.

RT n° 424



8 Thomas Genet , Tristan Le Gall , Axel Legay , Valérie Murat

There are two reasons why we consider only atomic abstract lattices, and why the lan-
guage of an LTA is defined on terms built with the atoms rather that with any elements
of the lattice. The first one is that we are mostly interested in representing sets of integers.
Since the atoms are the integers, the semantics of a lambda transition is to recognize a set
of integers. The other reason is a technical one : It ensures that when we transform a LTA
according to a partition (in the next subsection), we do not change the recognized language
since the set of atoms are preserved by this transformation.

3.3 Operations on LTA

Most of the algorithms for Boolean operations on LTA are straightforward adaptations of
those defined on TA (see [19]).

LTA are closed by union and intersection, and we shortly explain how these two opera-
tions ∪ and ∩ can be performed on two LTAs A = 〈F ,Q,Qf , ∆〉 and A′ = 〈F ,Q′,Q′

f , ∆
′〉 :

– A ∪A′ = 〈F ,Q ∪Q′,Qf ∪ Q′
f , ∆ ∪∆′〉 assuming that the sets Q and Q′ are disjoint.

– A∩A′ is recognized by the LTA A∩A′ = 〈F ,Q×Q′,Qf ×Q′
f , ∆∩〉 where the transitions

of ∆∩ are defined by the rules:

λ → q ∈ ∆ λ′ → q′ ∈ ∆′ λ ⊓ λ′ 6= ⊥
λ ⊓ λ′ → (q, q′)

and
f(q1, . . . , qn) → q ∈ ∆ f(q′1, . . . , q

′
n) → q′ ∈ ∆′

f((q1, q
′
1), . . . , (qn, q

′
n)) → (q, q′)

TRMC also requires a complement operation and the emptyness test. The complement
automaton is obtained by complementing the set of final states, but this algorithm only
works if the input is a deterministic LTA. To decide if the language described by an LTA
is empty or not, it suffices to observe that an LTA accepts at least one tree if and only if
there is a reachable final state. A reduced automaton is an automaton without inaccessible
state. The language recognized by a reduced automaton is empty if and only if the set of
final states is empty. As a first step we thus have to reduce the LTA, that is to remove the
set of unreachable states.

Let us recall the reduction algorithm:

Reduction Algorithm
input: LTA A = 〈F ,Q,Qf , ∆〉
begin

Marked :=∅
/* Marked is the set of accessible states */
repeat

if ∃a ∈ F0 = F0
◦ ∪ F#0

• such that a → q ∈ ∆

or ∃f ∈ Fn = Fn
◦ ∪ F#n

• such that f(q1, . . . , qn) → q ∈ ∆

INRIA



TRMC for Lattice-Based Automata 9

where q1, . . . , qn ∈ Marked
then Marked := Marked ∪ {q}

until no state can be added to Marked
Qr := Marked
Qrf := Qf ∩Marked
∆r := {f(q1, . . . , qn) → q ∈ ∆|q, q1, . . . , qn ∈ Marked}
output: Reduced LTA Ar = 〈F ,Qr,Qrf , ∆r〉

end

Then, let A be an LTA and Ar = 〈F ,Qr,Qrf , ∆r〉 the corresponding reduced LTA, L(A)
is empty iff Qrf = ∅.

Let A1, A2 be two LTA. We have L(A1) ⊆ L(A2) ⇔ L(A1 ∩ A2) = ∅.

So complementation and inclusion operations require deterministic inputs. However, by
adapting the proof of finite-word lattice automata given in [24], one can show that LTA are
not closed under determinization. In the next section, we propose an algorithm that computes
an over-approximation deterministic automaton for any given LTA. This algorithm, which
extends the one of [24], relies on a partition function that can be refined to make the
overapproximation more precise.

3.4 Determinization

As we shall now see, an LTA A = 〈F ,Q,Qf , ∆〉 is deterministic if there is no transition
f(q1, . . . , qn) → q, f(q1, . . . , qn) → q′ in ∆ such that q 6= q′, where f ∈ Fn, and no transition
λ1 → q, λ2 → q′ such that q 6= q′ and λ1 ⊓ λ2 6= ⊥, where λ1, λ2 ∈ Λ. As an example, if
∆ = {[1, 3] → q1, [2, 5] → q2}, then we have that A is not deterministic.

Determinizing an LTA requires complementation on elements on lattice. Indeed, consider
the LTA A having the following transitions [−3, 2] → q1 and [1, 6] → q2. The deterministic
LTA corresponding to A should have the following transitions: [−3, 1[→ q1, [1, 2] → {q1, q2}
and ]2, 6] → q2. To produce those transitions, we have to compute [−3, 2] ⊓ [1, 6] = [1, 2],
and then [−3, 2] \ [1, 2] and [1, 6] \ [1, 2]. Unfortunately, there are lattices that are not closed
under complementation. As a consequence, determinization of an LTA does not preserve the
recognized language.

The solution proposed in [24] for word automata is to use a finite partition of the lattice
Λ, which commands when two transitions should be merged using the lub operator. The
fusion of transitions may induce an over-approximation controlled by the fineness of the
partition.

Partitioned LTA. Π is a partition of an atomic lattice Λ if Π ⊆ 2Λ and ∀π1, π2 ∈ Π,
π1 ⊓ π2 = ⊥, and ∀a ∈ Atoms(Λ), ∃π ∈ Π : a ⊑ π. As an example, if Λ is the lattice of
intervals, we can have a partition Π = {]−∞, 0[, [0, 0], ]0,+∞[}.
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Definition 5 (Partitioned lattice tree automaton (PLTA)). A PLTA A is an LTA
A = 〈Π,Q,F ,Qf , ∆〉 equipped with a partition Π, such that for all lambda transitions
λ → q ∈ ∆, ∃π ∈ Π such that λ ⊑ π.

A PLTA is merged if λ1 → q, λ2 → q ∈ ∆ ∧ λ1 ⊑ π1 ∧ λ2 ⊑ π2 =⇒ π1 ⊓ π2 = ∅, where
λ1, λ2 ∈ Λ and π1, π2 ∈ Π.

For example, if Π = {] − ∞, 0[, [0, 0], ]0,+∞[}, a PLTA can have the following transition
rules : [−3,−1] → q1, [−5,−2] → q2, [3, 4] → q4. This PLTA is not merged because of the
two lambda transitions [−3,−1] → q1 and [−5,−2] → q2, because [−3,−1] and [−5,−2]
are in the same partition. The merged corresponding one will have the following transition
: [−5,−1] → q1,2, instead of the two transitions mentionned before.

Any LTA A can be turned into a PLTA Ap the following way : Let Π be the partition. For
any lambda transition λ → q ∈ A, if ∃π1, . . . , πn ∈ Π such that λ ⊓ π1 6= ∅, . . . , λ ⊓ πn 6= ∅,
where π1 6= . . . 6= πn, the transition λ → q will be replaced by n transitions λ ⊓ π1 →
q, . . . , λ ⊓ πn → q in Ap.

Example 4. Let A = 〈Q,F ,Qf , ∆〉 be an LTA such that ∆ = {[3, 4] → q1, [−3, 2] →
q2, f(q1, q2) → qf}, and Π = {] − ∞, 0[, [0, 0], ]0,+∞[} be a partition. Then the corre-
sponding PLTA is Ap = 〈Q,F ,Qf , ∆p〉, where ∆p = {[3, 4] → q1, [−3, 0[→ q2, [0, 0] →
q2, ]0, 2] → q2, f(q1, q2) → qf}.

Two lambda transitions λ1 → q, λ2 → q of a PLTA can not be merged if λ1 and λ2

belong to different elements of the partition, whereas they might be merged in the opposite
case.

Proposition 1 (Equivalence between LTA and PLTA). Given an LTA A = 〈Q,F ,Qf , ∆〉
and a partition Π, there exists a PLTA A′ = 〈Π,Q,F ,Qf , ∆

′〉 recognizing the same lan-
guage.

Proof. A′ is obtained from A by replacing each lambda transition λ → q ∈ ∆ by at most
nΠ transitions λi → q where λi = λ ⊓ πi, πi ∈ Π, such that

⊔

λi = λ.

Any PLTA A = 〈Π,Q,F ,Qf , ∆〉 can be transformed into a merged PLTA Am =
〈Π,Q,F ,Qf , ∆m〉 such that L(A) ⊆ L(Am) by merging transitions as follows :
q ∈ Q π ∈ Π λm =

⊔

{λ ⊓ π, λ ∈ Λ|λ → q ∈ ∆}

λm → q ∈ ∆m

Example 5. If A = 〈Π,Q,F ,Qf , ∆〉, where Π =] − ∞, 0[, [0,+∞ and ∆ = {[0, 2] →
q1, [5, 8] → q2, [−3,−2] → q3, [−4,−1] → q4, h(q1, q2, q3, q4) → qf}, the merged automaton
Am = 〈Π,Q,F ,Qf , ∆m〉 corresponding to A has the following transitions: ∆m = {[0, 8] →
q1,2, [−4,−1] → q3,4, h(q1,2, q1,2, q3,4, q3,4) → qf}.

We are now ready to sketch the determinization algorithm. The determinization of a
PLTA, which transforms a PLTA A to a merged Deterministic Partitioned LTA Ad according
to a partition Π, mimics the one on usual TA. The difference is that two λ-transitions
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λ1 → q1 and λ2 → q2 are merged in λ1 ⊓ λ2 → {q1, q2} when λ1 and λ2 are included in
the same element π of the partition Π. Consequently, the resulting automaton recognizes a
larger language : L(A) ⊆ L(Ad).This algorithm produces the best approximation in term of
inclusion of languages.

Determinization Algorithm :
input: PLTA A = 〈Π,Q,F ,Qf , ∆〉
begin

Qd := ∅; ∆d = ∅;
for all π ∈ Π do

Trans(π) := {λ → q ∈ ∆|λ ∈ Λ, λ ⊑ π};
s := {q ∈ Q|λ → q ∈ Trans(π)};
Qd := Qd ∪ {s};
λm :=

⊔

{λ|λ → q ∈ Trans(π)};
∆d := ∆d ∪ {λm → s};

end for
repeat

Let f ∈ Fn, s1, . . . , sn ∈ Qd,
s := {q ∈ Q|∃q1 ∈ s1, . . . , qn ∈ sn, f(q1, . . . , qn) → q ∈ ∆};
Qd := Qd ∪ {s};
∆d := ∆d ∪ {f(s1, . . . , sn) → s};

until no more rule can be added to ∆d

Qdf := {s ∈ Qd|s ∩ Qf 6= ∅}
output merged DPLTA Ad = 〈Π,Qd,F ,Qdf , ∆d〉
end

Example 6. Let ∆ = {[−3,−1] → q1, [−5,−2] → q2, [3, 4] → q3, [−3, 2] → q4, f(q1, q2) →
q5, f(q3, q4) → q6, f(q5, q6) → qf1, f(q5, q6) → qf2}, and Π = {]−∞, 0[, [0, 0], ]0,+∞[}

With the determinization algorithm defined above, we obtain this set of transition for
the deterministic corresponding PLTA : ∆d = {, [−5, 0[→ q1,2,4, ]0, 4] → q3,4, [0, 0] →
q4, f(q1,2,4, q1,2,4) → q5, f(q3,4, q3,4) → q6, f(q3,4, q4) → q6, f(q3,4, q1,2,4) → q6, f(q5, q6) →
qf1,f2}.

Proposition 2. Deterministic PLTA is the best upper-approximation
Let A1 be a PLTA and A2 the PLTA obtained with the determinization algorithm. Then

A2 is a best upper-approximation of A1 as a merged and deterministic PLTA.

1. L(A1) ⊆ L(A2)
2. For any merged and deteministic PLTA A3 based on the same partition as A1, L(A1) ⊆

L(A3) =⇒ L(A2) ⊆ L(A3)

Proof (Proposition 2).
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(1) Base case : for all lambda transitions of A1 λ → q, let π ∈ Π such that λ ⊑ π. Then
Trans(π) = {λ → q ∈ ∆|λ ∈ Λ, λ ⊑ π}. Then there is a transition λ′ → Q in A2 such that
λ′ =

⊔

{λ|λ → q ∈ Trans(π)} and Q = {q|λ → q ∈ Trans(π)}, so q ∈ Q.
induction case : for all non lambda transition of A1 f(q1, . . . , qn) → q, there is the corre-
sponding transition f(Q1, . . . , Qn) → Q such that q ∈ Q. We have q1 ∈ Q1, . . . , qn ∈ Qn

thanks to the induction hypothesis.
So L(A1) ⊆ L(A2).�

(2) A1 = 〈Π,Q1,F ,Qf1 , ∆1〉, A2 = 〈Π,Q2,F ,Qf2 , ∆2〉 and A3 = 〈Π,Q3,F ,Qf3 , ∆3〉

As L(A1) ⊆ L(A2) (1) and L(A1) ⊆ L(A3), let R1 : Q1 ×Q2 and R2 : Q1 ×Q3 be two
simulation relations defining these properties as follows.

Let q1 ∈ Q1 and q2 ∈ Q2, (q1, q2) ∈ R1 iff

– λ1 → q1 ∈ ∆1, λ2 → q2 ∈ ∆2 and λ1 ⊑ λ2, where λ1, λ2 ∈ Λ,
or
f(qi1 , . . . , qin) → q1 ∈ ∆1, f(q′i1 , . . . , q

′
in
) → q2 ∈ ∆2 and ∀j ∈ [1, n], (qij , q

′
ij
) ∈ R1,

where f ∈ Fn

– q1 ∈ Qf1 ⇐⇒ q2 ∈ Qf2

Let q1 ∈ Q1 and q3 ∈ Q3, (q1, q3) ∈ R2 iff

– λ1 → q1 ∈ ∆1, λ3 → q3 ∈ ∆3 and λ1 ⊑ λ3, where λ1, λ3 ∈ Λ,
or
f(qi1 , . . . , qin) → q1 ∈ ∆1, f(q′i1 , . . . , q

′
in
) → q3 ∈ ∆2 and ∀j ∈ [1, n], (qij , q

′
ij
) ∈ R2,

where f ∈ Fn

– q1 ∈ Qf1 ⇐⇒ q3 ∈ Qf3

Let R : Q2 × Q3 be a simulation relation such that (q2, q3) ∈ R iff ∃q1 ∈ Q1.(q1, q2) ∈
R1 ∧ (q1, q3) ∈ R2, where q2 ∈ Q2, q3 ∈ Q3.

Let (q2, q3) ∈ R. This means that :

– λ1 → q1 ∈ ∆1, λ2 → q2 ∈ ∆2, λ3 → q3 ∈ ∆2 and λ1 ⊑ λ2 and λ1 ⊑ λ3, where
λ1, λ2, λ3 ∈ Λ (a)
, or
f(qi1 , . . . , qin) → q1 ∈ ∆1, f(q′i1 , . . . , q

′
in
) → q2 ∈ ∆2, f(q′′i1 , . . . , q

′′
in
) → q3 ∈ ∆3 and

∀j ∈ [1, n], (qij , q
′
ij
) ∈ R1 and (qij , q

′′
ij
) ∈ R2, where f ∈ Fn (b)

– q1 ∈ Qf1 ⇐⇒ q2 ∈ Qf2 and q1 ∈ Qf1 ⇐⇒ q3 ∈ Qf3 (c),

by definition of R1 and R2.

INRIA



TRMC for Lattice-Based Automata 13

(a) Let π ∈ Π be the element of the partition such that λ1 ⊑ π. Then Trans(π) =
{λ → q ∈ ∆|λ ∈ Λ, λ ⊑ π}, i.e the set of all the lambda transitions λ → q in ∆1 such that
λ ⊑ π. Of course λ1 ⊑ Trans(π), because λ1 ⊑ π. Then λ2 is the least upper bound of all
λ ∈ Λ such that λ → q ∈ Trans(π), i.e λ2 =

⊔

{λ|λ → q ∈ Trans(π)}, according to the
determinization algorithm.

As A3 is deterministic and contains A1, then λ3 has to contain at least all the λ ∈ Λ
such that λ → q ∈ ∆1 and λ ⊑ π, or else A3 is not deterministic.

So λ3 ⊒
⊔

{λ|λ → q ∈ Trans(π)}, so λ2 ⊑ λ3.

(b) We can immediately deduce that ∀j ∈ [1, n], (q′ij , q
′′
ij
) ∈ R by the definition of R.

(c) So q2 ∈ Qf2 ⇐⇒ q3 ∈ Qf3

And thanks to these properties deduced on R : Q1 × Q2, we can deduce that L(A2) ⊆
L(A3).

As the least upper bound of two elements of a lattice is the best and unique upper-
approximation, this determinization algorithm returns the best upper-approximation.�

3.5 Minimization

To define the minimization algorithm, we first have to define a Refine recursive algorithm
which refines an equivalence relation P on states, according to the PLTA A.

Refine(P,A)
begin

Let P ′ be a new equivalence relation;
For all (q, q′) ∈ Q such that qPq′ do

IF (∀f ∈ Fn,
∆(f(q1, . . . , qi−1, q, qi+1, . . . , qn))P∆(f(q1, . . . , qi−1, q

′, qi+1, . . . , qn)),
where q1, . . . , qi−1, qi+1, . . . , qn ∈ Q)
AND (∀a ∈ F0

◦ , a → q ⇒ a → q′)
AND (∀λ1, λ2 ∈ Λ, ∃π ∈ Π

such that λ1 → q ⇒ λ2 → q′ and λ1, λ2 ∈ π)
THEN qP ′q
ELSE if P = {Q1, . . . ,Qi, . . . ,Qn} and q, q′ ∈ Qi

then P := {Q1, . . . ,Qi−1,Qi1 ,Qi2 ,Qi+1, . . . ,Qn};
q ∈ Qi1 ; q

′ ∈ Qi2 ;
Refine(P ′);

end
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We are now ready to define the minimization algorithm of a PLTA A.

MinimizationAlgorithm(A)
input: Determinized PLTA A = 〈Π,Q,F ,Qf , ∆〉

An equivalence relation P = {Qf ,Q \ Qf}
output: Minimized and determinized PLTA Am = 〈Π,Qm,F ,Qfm , ∆m〉
begin

Refine(P , A);
Set Qm to the set of equivalence classes of P ;
/* we denote by [q] the equivalence class of state q w.r.t. P */
For all λ-transitions, for all λ1, λ2 ∈ Λ,

if λ1 → q, λ2 → q′ ∈ ∆ and qPq′

then λ1 ⊔ λ2 → [q, q′] ∈ ∆m;
For all other transitions, ∆m := {(f, [q1], . . . , [qn]) → [f(q1, . . . , qn)]};
Qmf

:= {[q]|q ∈ Qf};
end

A normalized PLTA is an LTA that is a merged, deterministic and minimized PLTA.

Proposition 3. Normalized PLTA is the best upper-approximation Let A1 be a PLTA
and A2 the PLTA obtained with the minimization algorithm. Then A2 is a best upper-
approximation of A1 as a normalized PLTA.

1. L(A1) ⊆ L(A2)
2. For any normalized PLTA A3 based on the same partition as A1, L(A1) ⊆ L(A3) =⇒

L(A2) ⊆ L(A3)

Proof :

Let P be the equivalence relation at the end of the minimization algorithm.

(1) Base case : for all lambda transitions of A1 λ → q, there is a transition λ′ → [q] in
A2 such that λ′ =

⊔

{λ|λ → q′ ∈ ∆1 ∧ q′Pq}.
induction case : for all non lambda transitions of A1 f(q1, . . . , qn) → q, there is the corre-
sponding transition f([q1], . . . , [qn]) → [q] (where q ∈ [q], q1 ∈ [q1], . . . , qn ∈ [qn]).
So L(A1) ⊆ L(A2).�

(2) A1 = 〈Π,Q1,F ,Qf1 , ∆1〉, A2 = 〈Π,Q2,F ,Qf2 , ∆2〉 and A3 = 〈Π,Q3,F ,Qf3 , ∆3〉

As L(A1) ⊆ L(A2) (1) and L(A1) ⊆ L(A3), let R1 : Q1 ×Q2 and R2 : Q1 ×Q3 be two
simulation relations defining these properties as follows.

Let q1 ∈ Q1 and q2 ∈ Q2, (q1, q2) ∈ R1 iff
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– λ1 → q1 ∈ ∆1, λ2 → q2 ∈ ∆2 and λ1 ⊑ λ2, where λ1, λ2 ∈ Λ,
or
f(qi1 , . . . , qin) → q1 ∈ ∆1, f(q′i1 , . . . , q

′
in
) → q2 ∈ ∆2 and ∀j ∈ [1, n], (qij , q

′
ij
) ∈ R1,

where f ∈ Fn

– q1 ∈ Qf1 ⇐⇒ q2 ∈ Qf2

Let q1 ∈ Q1 and q3 ∈ Q3, (q1, q3) ∈ R2 iff

– λ1 → q1 ∈ ∆1, λ3 → q3 ∈ ∆3 and λ1 ⊑ λ3, where λ1, λ3 ∈ Λ,
or
f(qi1 , . . . , qin) → q1 ∈ ∆1, f(q′i1 , . . . , q

′
in
) → q3 ∈ ∆2 and ∀j ∈ [1, n], (qij , q

′
ij
) ∈ R2,

where f ∈ Fn

– q1 ∈ Qf1 ⇐⇒ q3 ∈ Qf3

Let R : Q2 × Q3 be a simulation relation such that (q2, q3) ∈ R iff ∃q1 ∈ Q1.(q1, q2) ∈
R1 ∧ (q1, q3) ∈ R2, where q2 ∈ Q2, q3 ∈ Q3.

Let (q2, q3) ∈ R. This means that :

– λ1 → q1 ∈ ∆1, λ2 → q2 ∈ ∆2, λ3 → q3 ∈ ∆2 and λ1 ⊑ λ2 and λ1 ⊑ λ3, where
λ1, λ2, λ3 ∈ Λ (a)
, or
f(qi1 , . . . , qin) → q1 ∈ ∆1, f(q′i1 , . . . , q

′
in
) → q2 ∈ ∆2, f(q′′i1 , . . . , q

′′
in
) → q3 ∈ ∆3 and

∀j ∈ [1, n], (qij , q
′
ij
) ∈ R1 and (qij , q

′′
ij
) ∈ R2, where f ∈ Fn (b)

– q1 ∈ Qf1 ⇐⇒ q2 ∈ Qf2 and q1 ∈ Qf1 ⇐⇒ q3 ∈ Qf3 (c),

by definition of R1 and R2.

(a) We have λ1 → q1 ∈ ∆1, λ2 → q2 ∈ ∆2 and λ1 ⊑ λ2. According to the minization
algorithm, λ2 is the least upper bound of all λ ∈ Λ such that there exists q ∈ Q1 such that
λ → q ∈ ∆1 and q is in the same equivalence classe as q1 (i.e., q ∈ [q1] or qPq1). Formally,
λ2 =

⊔

{λ|λ → q ∈ ∆1 ∧ qPq1}.
As A3 is minimized and contains A1, then λ3 has to contain at least all the λ ∈ Λ such

that λ → q ∈ ∆1 and qPq1, or else A3 is not minimized.

So λ3 ⊒
⊔

{λ|λ → q ∈ ∆1 ∧ qPq1}, so λ2 ⊑ λ3.

(b) We can immediately deduce that ∀j ∈ [1, n], (q′ij , q
′′
ij
) ∈ R by the definition of R.

(c) So q2 ∈ Qf2 ⇐⇒ q3 ∈ Qf3
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And thanks to these properties deduced on R : Q1 × Q2, we can deduce that L(A2) ⊆
L(A3).

As the least upper bound of two elements of a lattice is the best and unique upper-
approximation, this minimization algorithm returns the best upper-approximation.�

3.6 Refinement of the partition

In the previous paragraphs, the partition Π was fixed. The precision of the upper-approximations
made during the determinization algorithm depends on the finess of Π. For example, if Π
is of size 1, all λ-transitions will be merged into one.

Definition 6 (Refinement of a partition).
A partition Π2 refines a partition Π1 if :

∀π2 ∈ Π2, ∃π1 ∈ Π1 : π2 ⊑ π1

Let A1 = 〈Π1,Q,F ,Qf , ∆1〉 be a PLTA. The PLTA A2 = 〈Π2,Q,F ,Qf , ∆2〉 refines
A1 if :

1. Π2 refines Π1

2. the transitions of ∆2 are obtained by : ∀λ → q ∈ ∆1, ∀π2 ∈ Π2, λ ⊓ π2 → q ∈ ∆2

Refining an automaton does not modify immediatly the recognized language, but leads
to a more precise upper-approximation in the determinization, as illustrated herafter.

Example 7. Given Π and ∆ of example 6 and a partition Π2 = {]−∞,−1[, [−1, 0[, [0, 0], ]0,+∞[}
that refines Π, the set of transitions ∆2 of PLTA obtained with Π2 is ∆2 = {[−3,−1[→
q1, [−1,−1] → q1, [−5,−2] → q2, [3, 4] → q3, [−3,−1[→ q4, [−1, 0[→ q4, [0, 0] → q4, ]0, 2] →
q4, f(q1, q2) → q5, f(q3, q4) → q6, f(q5, q6) → qf1, f(q5, q6) → qf2}.

We now obtain this set of transitions for the deterministic corresponding PLTA with
Π2 : ∆2d = {[−5,−1[→ q1,2,4, [−1, 0[→ q1,4, ]0, 4] → q3,4, [0, 0] → q4, f(q1,2,4, q1,2,4) →
q5, f(q1,4, q1,2,4) → q5, f(q3,4, q3,4) → q6, f(q3,4, q4) → q6, f(q3,4, q1,2,4) → q6, f(q3,4, q1,4) →
q6, f(q5, q6) → qf1,f2}.

4 A Completion Algorithm for LTA

We are interested in computing the set of reachable states of an infinite state system. In
general this set is neither representable nor computable. In this paper, we suggest to work
within the Tree Regular Model Checking framework for representing possibly infinite sets of
state. More precisely, we propose to represent configurations by (built-in)terms and set of
configurations (or set of states) by an LTA.
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In addition, we assume that the behavior of the system can be represented by conditional
term rewriting systems (TRS), that are term rewriting systems equipped with conjunction
of conditions used to restrain the applicability of the rule. Our conditional TRS, which
extends the classical definition of [7], rewrites terms defined on the concrete domain. This
makes them independent from the abstract lattice. We first start with the definition of
predicates that allows us to express conditions on TRS.

Definition 7 (Predicates). Let P be the set of predicates over D. For instance if ρ is a
n-ary predicate of P then ρ : Dn 7→ {true, false}. We extend the domain of ρ to T (F ,X )

n

in the following way:

ρ(t1, . . . , tn) =







ρ(u1, . . . , un) if ∀i = 1 . . . n : ti ∈ T (F•)
where ∀i = 1 . . . n : ui = eval(ti)

false if ∃j = 1 . . . n : tj 6∈ T (F•)

Observe that predicates are defined on built-in terms of the concrete domain. If one of the
predicate parameters cannot be evaluated into a built-in term, then the predicate returns
false and the rule is not applied.

Definition 8 (Conditional Term Rewriting System on T (F◦∪F•,X )). In our setting,
a Term Rewriting System (TRS) R is a set of rewrite rules l → r ⇐ c1 ∧ . . .∧ cn, where l ∈
T (F◦,X ), r ∈ T (F◦ ∪ F•,X ), l 6∈ X , Var(l) ⊇ Var(r) and ∀i = 1 . . . n : ci = ρi(t1, . . . , tm)
where ρi is a m-ary predicate of P and ∀j = 1 . . .m : tj ∈ T (F•,X ) ∧ Var(tj) ⊆ Var(l).

Example 8. Using conditional rewriting rules, the factorial can be encoded as follows:

fact(x) → 1 ⇐ x ≥ 0 ∧ x ≤ 1
fact(x) → x ∗ fact(x− 1) ⇐ x ≥ 2

In what follows, we will use different types of substitutions. Let X a set of variables, Q a
set of states, and F a set of symbols, a substitution σ is a function σ : X 7→ Q∪ T (F) that
can be extended to T (F ,X ) in this way; for all t ∈ T (F ,X ), we define tσ as:

1. if t = f(t1, . . . , tn) then tσ = f(t1σ, . . . , tnσ), where t, t1, . . . , tn ∈ T (F ,X ), f ∈ Fn,
2. if t = x ∈ X then tσ = σ(x).

Let F = F◦ ∪F•, the TRS R and the eval function induces a rewriting relation →R on
T (F) in the following way : for all s, t ∈ T (F), we have s →R t if there exist :

1. a rewrite rule l → r ⇐ c1 ∧ . . . ∧ cn ∈ R,
2. a position p ∈ Pos(s), and
3. a substitution σ : X 7→ T (F) such that s|p = lσ, t = eval(s[rσ]p) and ∀i = 1 . . . n :

ciσ = true.

The reflexive transitive closure of →R is denoted by →∗
R.

Let A be an LTA representing the set of initial states, and R be a rewriting system. Our
objective is to compute another LTA representing the set (or an over-approximation of the
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set) R∗(L(A)) = {t|∃t0 ∈ L(A), t0 →∗
R t}. In this paper, we adopt the completion approach

of [27,22], which intends to compute a tree automaton Ak
R such that L(Ak

R) ⊇ R∗(L(A)) for
a left-linear TRS R (see background). The algorithm proceeds by computing the sequence
of automata A0

R,A1
R,A2

R, ... that represents successive applications of R. Computing Ai+1
R

from Ai
R is called a one-step completion. In general the sequence of automata may not

converge in a finite amount of time. To accelerate the convergence, we perform an abstraction
operation which accelerates the computation. Our abstraction relies on merging states that
are considered to be equivalent with respect to a certain equivalence relation defined by a
set of equations. Depending on the objective, equations can either be defined by hand (e.g.
[31]), or automatically generated from a static analysis of the TRS (e.g. [13]). Note that
those approximation can automatically be refined using counterexample guided abstraction
refinement ([12]). We now give details on the above constructions. Then, we show that, in
order to be correct, our procedure has to be combined with an evaluation that may add new
terms to the language of the automaton obtained by completion or equational abstraction.
We shall see that this closure property may add an infinite number of transitions whose
behavior is captured with a new widening operator for LTA.

4.1 Computation of A
i+1

R

In our setting, Ai+1
R is built from Ai

R by using a completion step that relies on finding critical
pairs. Given a substitution σ : X 7→ Q and a rule l → r ⇐ c1 ∧ . . .∧ cn ∈ R, a critical pair is
a pair (rσ′, q) where q ∈ Q and σ′ is the greatest substitution w.r.t ⊑ such that lσ →∗

Ai
R

q,

σ ⊒ σ′ and c1σ
′ ∧ . . . ∧ cnσ

′. Observe that since R, Ai
R, Q are finite, there is only a finite

number of such critical pairs. For each critical pair such that rσ′ 6→∗
Ai

R

q, the algorithm

adds two new transitions rσ′ → q′ and q′ → q to Ai
R, in order to enrich the language of the

previous automaton.
Finding critical pairs for a rewriting rule l → r requires to detect all substitutions

σ : X 7→ Q such that lσ →∗ q, where q is a state of the automaton. In what follows, we
use the standard matching algorithm introduced in [22]. This algorithm Matching(l,A, q),
which is described hereafter, matches a linear term l with a state q in the automaton A.
The solution returned by Matching is a disjunction of possible substitutions σ1 ∨ . . . ∨ σn

so that lσi →
∗
A q.

Let us recall the standard matching algorithm:

(Unfold)
f(s1, . . . , sn)� f(q1, . . . , qn)

s1 � q1 ∧ · · · ∧ sn � qn
(Clash)

f(s1, . . . , sn)� g(q′1, . . . q
′
m)

⊥

(Config)
s� q

s� u1 ∨ · · · ∨ s� uk ∨ ⊥
, ∀ui, s.t. ui → q ∈ ∆, if s /∈ X .

Moreover, after each application of one of these rules, the result is also rewritten into
disjunctive normal form, using:

φ1 ∧ (φ2 ∨ φ3)

(φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

φ1 ∨ ⊥

φ1

φ1 ∧ ⊥

⊥
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However, as our TRS relies on conditions, we have to extend this matching algorithm
in order to guarantee that each substitution σi that is a solution of l → r ⇐ c1 ∧ . . . ∧ cn
satisfies c1 ∧ . . . ∧ cn. For example, given the rule f(x) → f(g(x)) ⇐ x ≥ 3 ∧ x ≤ 7 and
the transitions [2, 8] → q1, f(q1) → q2, we have that the set of substitution returned by the
matching algorithm is {x 7→ [2, 8]}, which is restricted to [3, 7].

Restricting substitutions is done by a solver on abstract domains. Such solver takes as
input the lambda transitions of the automaton and all conditions of the rules, and outputs
a set of substitutions of the form σ′ = {x 7→ λx, y 7→ λy}. Such solvers exist for various
abstract domains (see [20] for illustrations). In the present context, our solver has to satisfy
the following property:

Property 1 (Correction of the solver). Let σ = {x1 7→ q1, . . . , xk 7→ qk} be a substitution
and c = c1 ∧ · · · ∧ cn a conjunction of constraints. We consider σ/c = {xi 7→ qi | ∃1 ≤ j ≤
n, xi ∈ Var(cj)} the restriction of the substitution to the constrained variables. We also
define Sc = {i | ∃1 ≤ j ≤ n, xi ∈ Var(cj)}.

For any tuple 〈λi|i ∈ Sc〉 such that λi →
∗
A qi, SolveΛ(σ/c, 〈λi|i ∈ Sc〉, c) is a substitution

σ′ such that (1) if i 6∈ Sc, σ
′(xi) = qi, and (2) if i ∈ Sc, σ

′(xi) = λ′
i. In addition, if a tuple

of abstract values 〈λ′′
i |i ∈ Sc〉, satisfies (a) ∀i ∈ Sc, λ′′

i ⊑ λi, and (b) ∀1 ≤ j ≤ n, the
substitution σ′′/c = {xi 7→ λ′′

i } satisfies cj , then ∀i ∈ Sc, λ
′′
i ⊑ λ′

i.

Using Prop.1, the global function Solve(σ,A, c1 ∧ · · · ∧ cn) is defined as:

Solve(σ,A, c1 ∧ · · · ∧ cn) =
⋃

λ1→∗
A
q1,...,λk→∗

A
qk

SolveΛ(σ/c, 〈λi|i ∈ Sc〉, c)

The following theorem ensures that Solve(σ,A, c1 ∧ · · · ∧ cn) is an over-approximation of
the solution of the constraints.

Theorem 1. Solve(σ,A, c1 ∧ · · · ∧ cn) is an over-approximation of the solutions of the
constraints.

Proof. By Prop.1, we have that for any tuple 〈λi|i ∈ Sc〉 such that λi →∗
A qi, then

SolveΛ(σ/c, 〈λi|i ∈ Sc〉, c) is a substitution σ′ such that if i ∈ Sc, σ
′(xi) = λ′

i. Let 〈λ′′
i |i ∈ Sc〉

be a tuple such that ∀1 ≤ j ≤ n, we have that the sustitution σ′′/c = {xi 7→ λ′′
i } satisfies

cj . Thanks to Prop.1, we have that ∀i ∈ Sc, λ
′′
i ⊑ λ′

i. Since for all i ∈ Sc, λ
′
i is returned

by the solver, we can deduce that the set of substitutions returned by the solver is an
over-approximations of the solutions of the constraints.

Depending of the abstract domain Λ and on the type of constraints of c, defining a solver
that satisfies the above property may be complex. However, we shall now see that an easy
solution can already be obtained if c is a conjunction of linear constraints and Λ the lattice
of intervals. The algorithm computing SolveΛ(σ, 〈λ1, . . . , λk〉, c1 ∧ · · · ∧ cn) is:

1. P1 is the convex polyhedron defined by the constraints c1 ∧ · · · ∧ cn,
2. P2 is the box defined by the constraints x1 ∈ λ1, . . . xk ∈ λk,
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3. if P1 ⊓ P2 6= ⊥, then we project P1 ⊓ P2 on each dimension (i.e. on each variable xk) to
obtain k new intervals. Otherwise, SolveΛ(σ, 〈λ1, . . . , λk〉, c1 ∧ · · · ∧ cn) = ∅.

Note that this algorithm also works for other abstract lattices such as octogons or convex
polyhedra, but the approximation may be rough. We can however define finer solver thanks
to linear programming.

Definition 9 (Matching solutions of conditional rewrite rules). Let A be a tree
automaton, rl = l → r ⇐ c1 ∧ . . . ∧ cn a rewrite rule and q a state of A. The set of all
possible substitutions for the rewrite rule rl is Ω(A, rl, q) = {σ′ | σ ∈ Matching(l,A, q)∧σ′ ∈
Solve(σ,A, c1 ∧ . . . ∧ cn) ∧ ∄σ′′ : rσ′ ⊑ rσ′′ →A

∗ q}.

Once the set of all possible restricted substitutions σi has been obtained, we have to add
the rules rσi →

∗ q in the automaton. However, the transition rσi → q is not necessarily a
normalized ground transition of the form f(q1, . . . , qn) → q or a lambda transition of the
form λ → q, which means that it has to be normalized first in order to be added to the
LTA. For instance a transition f(g([1, 3]), 4) → q is not normalized: 4 has to be abstracted
and g([1, 3]) has to be replaced by a state recognizing this term. This is the purpose of the
following normalization algorithm.

Definition 10 (Normalization). Let s ∈ T (F ∪Q), q ∈ Q, A = 〈F ,Q,Qf , ∆〉 an LTA,

where F• is the set of concrete interpretable symbols used in the TRS, F#
• the set of abstract

interpretable symbols used in A, F = F#
• ∪F◦, and α : F0

• → F#0

• the abstraction function,
transforming a concrete symbole to an element of the lattice Λ. A new state is a state of Q
not occurring in ∆. Norm(s →∗ q) returns the set of normalized transitions deduced from
s. Norm(s →∗ q) is inductively defined by:

1. if s ∈ F0
• (i.e., in the concrete domain used in rewrite rules), Norm(s →∗ q) = {α(s) →

q}.

2. if s ∈ F0
◦ ∪ F#0

• then Norm(s →∗ q) = {s → q},
3. if s = f(t1, . . . , tn) where f ∈ Fn

◦ ∪ Fn
• , then Norm(s →∗ q) = {f(q′1, . . . , q

′
n) →

q} ∪Norm(t1 → q′1) ∪ . . . ∪Norm(tn → q′n) where for i = 1 . . . n, q′i is either:
– the right-hand side of a transition of ∆ such that ti →

∗
∆ q′i

– or a new state, otherwise.

Observe that the normalization algorithm always terminates.

Example 9. Let q1, q2, q3 be new states, Norm(f(g([1, 3]), 4) → q) = {[1, 3] → q1, [4, 4] →
q2, g(q1) → q3, f(q3, q2) → q}

We conclude by the formal characterization of the one step completion.

Definition 11 (One step completed automaton CR(A)). Let A = 〈F ,Q,Qf , ∆〉 be
a tree automaton, R be a left-linear TRS. We denote by CR(A) the one step completed
automaton CR(A) = 〈F ,Q′,Qf , ∆

′〉 where:
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∆′ = ∆ ∪
⋃

l→r∈R, q∈Q, σ∈Ω(A,l→r,q)

Norm(rσ →∗ q′) ∪ {q′ → q}

where Ω(A, l → r, q) is the set of all possible substitutions defined in Def.9, q′ /∈ Q a new
state and Q′ contains all the states of ∆′.

4.2 Equational Abstraction

As we already said, completion may not terminate. In order to enforce termination of the
process, we suggest to merge states according to a set approximation equations E([31]). An
approximation equation is of the form u = v, where u, v ∈ T (F◦,X ). Let σ : X 7→ Q be
a substitution such that uσ →Ai+1

R

q, vσ →Ai+1

R

q′ and q 6= q′, then we know that there

exists at least two terms s and t such that s →Ai+1

R

q, t →Ai+1

R

q′ and s is equal to t w.r.t.

equational theory defined by E. An over-approximation of Ai+1
R , which we denote Ai+1

R,E ,
can be obtained by merging states q and q′.

Definition 12 (merge). Let A = 〈F ,Q,QF , ∆〉 be an LTA and q1, q2 be two states of A.
We denote by merge(A, q1, q2) the tree automaton where each occurrence of q2 is replaced
by q1.

Equations on interpretable terms. In what follows, we need to extend approximation
equations to built-in terms. Indeed, as illustrated in the following example, approximation
equations defined on T (F◦,X ) are not powerful enough to ensure termination.

Example 10. Let f(x) → f(x+ 1) be a rewrite rule, {[1, 1] → q1, [2, 2] → q2, f(q2) → qf} be
transitions of an LTA, then a first completion step will add f(q2 + 1) →∗ qf , which means
it will add transitions q2 + q1 → q3 and f(q3) → qf after normalization. Since we have
now f(q3) → qf , a second completion step will add, in the same manner, q3 + q1 → q4 and
f(q4) → qf . Then the next completion step will add q4+q1 → q5 and f(q5) → qf . And we can
deduce that the i− th completion step will add transition qi + q1 → qi+1 and f(qi+1) → qf ,
. . . Unfortunately, as classical equations do not work on terms with interpretable symbols,
this infinite behaviour cannot be captured.

We define a new type of equation which works on interpretable terms, that are applied
with conditions. Such equations have the form u = v ⇐ c1 ∧ . . . ∧ cn, where u, v ∈ T (F◦ ∪
F•,X ). We observe that we can almost use the same matching algorithm than for completion.
The first main difference is that we need to match a term t ∈ T (F◦ ∪ F•,X ) built on

interpreted symbols on terms of T (F◦∪F#
• ,X ) recognized by the LTA A. Let α : F• 7→ F#

•

the abstraction function, the solution is to use the same matching algorithm on α(t) and
A, i.e Matching(α(t),A, q). Contrary to the completion case, we do not need to restrict
the substitutions obtained by the matching algorithm with respect to the constraints of the
equation, but simply guarantee that such constraints are satisfiable, i.e., Solve(σ,A, c1 ∧
· · · ∧ cn) 6= ∅.
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Example 11. We consider the same rewrite rule as in Ex. 10 and we apply the completion
and normalization steps. If we use equation x = x + 1 ⇐ x > 3 in Ex. 10, that informally
means that we can merge q4 and q5 since q4+ q1 → q5 and [1, 1] → q1 ∈ ∆, and since q4 and
q5 can respectively recognize the intervals [4, 4] and [5, 5] by transitivity and thus satisfy
the condition "x > 3". We need a new evaluation operator to determine exactly when two
states can satisfy the condition of the equation. This new operator is defined in the next
subsection.

Theorem 2. Let A be an LTA and E a set of equations. We denote by ;!
E the trans-

formation of A by merging equivalent states according to E. The language of the resulting
automaton A′ such that A ;!

E A′ is an over-approximation of the language of A, i.e.,
L(A) ⊆ L(A′).

Proof. Let A and A′ two automata and E be a set of equations such that A ;!
E A′. The

set of transition of A′ is the same as A with states merged according to equivalence classes
determined by E. For all t ∈ T (F ,X ), for all states q of A, let Q = {q1, . . . , q, . . . , qn} an
equivalence class determined by E. We have that t ∈ L(A, q) ⇒ t →∗

A q ⇒ t →∗
A′ Q ⇒ t ∈

L(A′, Q).

4.3 Evaluation and Correctness

In this section, we formally define completion on LTA and its correctness. We first start with
the evaluation of an LTA.

Evaluation of a Lattice Tree Automaton. We observe that any set of concrete terms that
contains the term 1 + 2 should also contains the term 3. While, this canonical property can
be naturally assumed when building the initial set of states, it may eventually be broken
when performing a completion step or by merging states. Indeed, let f(x) → f(x+ 1) be a
rewrite rule and σ : x 7→ q2 a substitution, a completion step applied on {[1, 1] → q1, [2, 3] →
q2, f(q2) → qf} will add the rule f(q3) → q4, q2 + q1 → q3, and q3 → qf . Since the language
recognized by q3 contains the term q2 + q1, it should also contain the term [3, 4]. Evaluation
of this set of transitions will add the transition [3, 4] → q3. This is done by applying the
propag function.

Definition 13 (propag).

propag(∆) =

{

∆ if ∃λ → q ∈ ∆ ∧ eval(f(λ1, . . . , λk)) ⊑ λ
∆ ∪ {eval(f(λ1, . . . , λk)) → q}, otherwise.

∀f ∈ F#k

• : ∀q, q1, . . . , qk ∈ Q : ∀λ1, . . . , λk ∈ Λ : f(q1, . . . , qk) → q ∈ ∆ ∧ {λ1 →∗
∆

q1, . . . , λk →∗
∆ qk} ⊆ ∆.

Example 12. Let ∆ = {[3, 6] → q1, [2, 8] → q2, q1 + q2 → q3, f(q3) → qf}, then propag will
evaluate the term [3, 6]+[2, 8] contained in the transition q1+q2 → q3, and add the transition
[5, 14] → q3 to the automaton.
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Using propag, we can extend the eval function to sets of transitions and to tree automata
in the following way.

Definition 14 (eval on transitions and automata).
Let µX the least fix-point obtained by iterating propag.

– eval(∆) = µX.propag(X) ∪∆ and
– eval(〈F ,Q,Qf , ∆〉) = 〈F ,Q,Qf , eval(∆)〉

Theorem 3. L(A) ⊆ L(eval(A))

Proof. By definition of propag (Def.13), we have that propag(∆) = Delta if ∃λ → q ∈
∆ ∧ eval(λ1 • . . . • λk) ⊑ λ or propag(∆) = ∆ ∪ {eval(λ1 • . . . • λk) → q. In each case,
∆ ⊆ propag(∆).

By definition of eval (Def.14), eval(∆) = µX.propag(X) ∪∆. Since ∆ ⊆ propag(∆), we
have that ∆ ⊆ eval(∆). Then we can deduce that L(A) ⊆ L(eval(A)).

Observe that the fixpoint computation may not terminate. Indeed, consider ∆ = {[3, 6] →
q1, [2, 8] → q2, q1 + q2 → q2}. The first iteration of the fixpoint will evaluate the term
[3, 6] + [2, 8] recognized by q1 + q2 → q2, which adds the transition [5, 14] → q2. Since a
new element is in the state q2, the second iteration will evaluate the term [3, 6] + [5, 14]
recognized by the transition q1+ q2 → q2, and will add the transition [8, 20] → q2. The third
iteration will evaluate the term [3, 6]+[8, 20] to q2 and this pattern will be repeated in further
operations. Since there will always be a new element of the lattice that will be associated
to q2, the computation of the evaluation will not terminate. It is thus necessary to apply a
widening operator ∇Λ : Λ × Λ 7→ Λ to force the computation of propag to terminate. For
example, if we apply such a widening operator on the example above, after 3 iterations of
the propag function, the transitions: [2, 8] → q2, [5, 14] → q2, [8, 20] → q2 could be replaced
by [2,+∞[→ q2.

Definition 15 (Automaton completion for LTA). Let A be a tree automaton, R a TRS
and E a set of equations. At a step i of completion, we denote by Ai

R,E the LTA such that

Ai
R ;!

E Ai
R,E.

– A0
R,E = A,

– Repeat An+1
R,E = A′ with CR(eval(An

R,E)) ;
!
E A′′ and eval(A′′) = A′,

– Until a fixpoint A∗
R,E = Ak

R,E = Ak+1
R,E (with k ∈ N) is joint.

A running example is described in section 5.

Theorem 4 (Completeness). Let R be a left-linear TRS, A be a tree automaton and E
be a set of linear equations. If completion terminates on A∗

R,E then

L(A∗
R,E) ⊇ R∗(L(A))
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Proof. We first show that L(A∗
R,E) ⊇ L(A). By definition, completion only adds transi-

tions to A. Hence, we trivially have L(A1
R) ⊇ L(A). Thanks to Theorem 2, we also know

that A1
R,E , the transformation of A1

R by merging states equivalent w.r.t. E, is such that

L(A1
R,E) ⊇ L(A1

R). Hence, by transitivity of ⊇, we know that L(A1
R,E) ⊇ L(A). This can

be successively applied to A2
R,E ,A

3
R,E ,A

4
R,E , . . . so that L(A∗

R,E) ⊇ L(A). Now, the next
step of the proof consists in showing that for all term s ∈ L(A) if s →∗

R t then t ∈ L(A∗
R,E).

First, note that by definition of application of E final states are preserved, i.e. if q is a final
state in A then if A′ is the automaton where E are applied in A and q has been renamed in
q′, then q′ is a final state of A′. Hence we only have to prove that for all term s ∈ L(A, q)
if s →∗

R t then ∃q′ : t ∈ L(A∗
R,E , q

′). We proceed by induction on the length of →∗
R:

– if length is zero then s →∗
R s and we trivially have that s ∈ L(A∗

R,E , q
′).

– assume now that the property is true for any rewriting derivation of length less or equal
to n, we prove that the property remains valid for a derivation of length less or equal
to n + 1. Assume that we have s →n

R s′ →R t. Using induction hypothesis, we obtain
that s′ ∈ L(A∗

R,E , q
′). It remains to prove that t ∈ L(A∗

R,E , q
′) can be deduced from

s′ →R t. Since s′ →R t, we know that there exist a rewrite rule l → r ⇐ c1 ∧ . . .∧ cm, a
position p and a substitution µ : X 7→ T (F) such that s′ = s′[lµ]p →R eval(s′[rµ]p) = t
and for all j ∈ [1,m], cjµ = true. Since s′ ∈ L(A∗

R,E , q
′), s′[lµ]p →∗

A∗
R,E

q′ and by

definition of the langage of an LTA, we get that there exists s′′ such that s′ ⊑ s′′ and
s′′ →∗

A∗
R,E

q′. We can deduce that s′′[lµ]p →∗
A∗

R,E
q′ and by definition of tree automata

derivation, that there exists a state q′′ such that lµ →∗
A∗

R,E
q′′ and s′′[q′′]p →∗

A∗
R,E

q′.

Let V ar(l) = {x1, . . . , xk}, l = l[x1, . . . , xk] and t1, . . . , tk ∈ T (F) such that µ = {x1 7→
t1, . . . , xk 7→ tk}. Since lµ = l[t1, . . . , tk] →

∗
A∗

R,E
q′′, we know that there exist states

q1, . . . , qk such that ∀i ∈ [1, k], ti →
∗
A∗

R,E
qi and l[q1, . . . , qk] →

∗
A∗

R,E
q′′. Let σ = {x1 7→

q1, . . . , xk 7→ qk}, we thus have that lσ →∗
A∗

R,E
q′′ thanks to left-linearity.

We have that µ = {x1 7→ t1, . . . , xk 7→ tk} and ∀i ∈ [1, k], ti →∗
A∗

R,E
qi. Since for all

j ∈ [1,m], cjµ = true, by definition of predicates, all ti are interpretable terms (or cjµ
would be equal to false). So for all i ∈ [1, k] there exist λi ∈ Λ such that eval(ti) = λi.
Let µ′ be the substitution {x1 7→ λ1, . . . , xk 7→ λk}, then we can deduce that for all
j ∈ [1,m], cjµ

′ = true. Thanks to evaluation step, we can deduce that for all i ∈ [1, k],
if ti →∗

A∗
R,E

qi, then eval(ti) = λi →∗
A∗

R,E
qi. The property on the solver states that

Solve(σ,A, c1 ∧ · · · ∧ cm) =
⋃

λ1→∗
A
q1,...,λk→∗

A
qk

SolveΛ(σ/c, 〈λi|i ∈ Sc〉, c). So we can

deduce that for all j ∈ [1,m] ciσ = true because ciµ
′ = true. Since A∗

R,E is a fixpoint
of completion, from lσ →∗

A∗
R,E

q′′ and the fact that for all j ∈ [1,m], cjσ = true, we can

deduce that rσ →∗
A∗

R,E
q′′. Furthermore, since ∀i ∈ [1, k], ti →

∗
A∗

R,E
qi, then rµ →∗

A∗
R,E

q′′. Since besides of this s′′[q′′]p →∗
A∗

R,E
q′, we have that s′′[rµ]p →∗

A∗
R,E

q′. Since s′ ⊑

s′′, this means by definition that eval(s′) ⊑ eval(s′′). Finally, since s′′[rµ]p →∗
A∗

R,E
q′

and eval(s′) ⊑ eval(s′′), we can deduce that t = eval(s′[rµ]p) →∗
A∗

R,E
q′, hence t ∈

L(A∗
R,E , q

′).

INRIA



TRMC for Lattice-Based Automata 25

Observe that the reverse does not hold as widening in evaluation may introduce over-
approximations.

Remark 1. We have two infinite dimensions, the first one due to the state space, and the
second one due to infinite domain. The infinite behaviour of the system (infinite state space)
is abstracted thanks to the equations, and all the infinite behaviours due to the operations
on elements of the lattice (e.g. x → x + 1) are captured by the widening step included in
the evaluation step. Indeed, if we have lambda transitions added at each completion step
with increasing (or decreasing) elements of the lattice (for example [0, 2] → q, [2, 4] → q,
[4, 6] → q, . . . ), we have to perform a widening (here [0,+∞[) to ensure the terminaison of
the computation. But an infinite increasing (or decreasing) sequence of lambda transitions
is necessarily obtained from a predefined operation of the lattice used in the rewrite rules.
For example, the increasing sequence described above is necessarily obtained from a rewrite
rule of the form u(. . . ,x, . . .) → v(. . . ,x + 2, . . .). If we have the matching x 7→ q1, and the
transition [2, 2] → q2, then it will add the transition q1 + q2 → q3, and since this rewrite
rule leads to an infinite behaviour (always adding 2), we would have an infinite sequence
q3+q2 → q4, q4+q2 → q5, and so on. To solve this problem, it is necessary to use an equation
of the form x = x+ 2. Then, q1 is merged to q3 and we have a transition q1 + q2 → q1 with
an infinite evaluation abstracted thanks to the widening step included in the evaluation
step. To summarize, an infinite sequence of lambda transitions is necessarily obtained from
an operation used in the rewriting system, and since the transitions of an LTA containing
operations have to be evaluated, the infinite behavior is always solved during the evaluation
step. We can observe this on the example described hereafter in 5.

5 A running example

Let Z be the concrete domain, the set of intervals on Z be the lattice, R = {f(x) →
cons(x, f(x + 1)) ⇐ x < 3(A), f(x) → cons(x, f(x + 2)) ⇐ x > 2(B)} be the TRS, A0

the LTA representing the set of initial configurations, with the following set of transitions
: ∆0 = {[1, 2] → q1, f(q1) → q2}, and E = {x = x + 2 ⇐ x > 5} the set of equations. We
decide to use the widening operator after three steps of evaluation.

First step of completion
One step completed automaton: we can apply the rewrite rule (A) with the substitution
x 7→ q1, and so add Norm(cons(q1, f(q1 + 1)) → q′2) and q′2 → q2 to ∆1.

So we have ∆2 = ∆1 ∪ {cons(q1, q3) → q′2, q
′
2 → q2, f(q4) → q3, q1 + q[1,1] → q4, [1, 1] →

q[1,1]}, where q3 and q4 are new states induced by normalisation.
Since there is new transitions, we have to perform the evaluation step : transition q1+q[1,1] →
q4 can be evaluated, so eval(∆2) = ∆2 ∪ {[2, 3] → q4}.
Abstraction by merging states according to equations: we cannot apply the set of equations
yet because there is no state recognizing "x+ 2" such that x > 5.
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Second step of completion
One step completed automaton: we can apply the rewrite rules (A) and (B) with the substi-
tution x 7→ q4, but this will be restricted by the solver. In fact, (A) will be applied on [2, 2]
(condition x < 3), and (B) will be applied on [3, 3]. So Norm(cons([2, 2], f([2, 2]+1)) → q′3)
and q′3 → q3, Norm(cons([3, 3], f([3, 3] + 2)) → q′′3 ) and q′′3 → q3 will be add to eval(∆2).

So we have ∆3 = eval(∆2) ∪ {[2, 2] → q[2,2], cons(q[2,2], q5) → q′3, q
′
3 → q3, f(q6) →

q5, q[2,2] + q[1,1] → q6, [3, 3] → q[3,3], cons(q[3,3], q7) → q′′3 , q
′′
3 → q3, f(q8) → q7, q[3,3] + q[2,2] →

q8}.
Evaluation step: eval(∆2) = ∆2 ∪ {[3, 3] → q6, [5, 5] → q8}.
Abstraction step: we cannot apply the set of equations yet.

Third step of completion
One step completed automaton: we can apply rule (B) with substitution x 7→ q6 : Norm(cons(q6, f(q6+
2)) → q′5) has to be add, but cons([3, 3], f([3, 3]+ 2)) already belongs to the language of the
current automaton, so it does not add any new transitions. We can also apply the rewrite
rule (B) with the substitution x 7→ q8. So Norm(cons(q8, f(q8+2)) → q′7), and q′7 → q7 will
be add to eval(∆3).

So we have ∆3 = eval(∆3) ∪ {cons(q8, q9) → q′7, q
′
7 → q7, f(q10) → q9, q8 + q[2,2] → q10}.

Evaluation step: eval(∆3) = ∆3 ∪ {[7, 7] → q10}.
Abstraction step: As long as q8 + q[2,2] → q10, [5, 5] → q8 and γ([5, 5]) > 4, q8 and q10 are
merged according to the set of equations E.

Fourth step of completion
Let us see the full automaton at this step. We have Merge(eval(∆3), q8, q10)) = {[1, 2] →
q1, f(q1) → q2, cons(q1, q3) → q′2, q

′
2 → q2, f(q4) → q3, q1 + q[1,1] → q4, q[1,1] → [1, 1], [2, 3] →

q4, [2, 2] → q[2,2], cons(q[2,2], q5) → q′3, q
′
3 → q3, f(q6) → q5, q[2,2] + q[1,1] → q6, [3, 3] →

q[3,3], cons(q[3,3], q7) → q′′3 , q
′′
3 → q3, f(q8) → q7, q[3,3] + q[2,2] → q8, [5, 5] → q8, cons(q8, q9) →

q′7, q
′
7 → q7, f(q8) → q9, q8+q[2,2] → q8, [7, 7] → q8}. Since the transitions have been modified

thanks to the equations, we have to perform an evaluation step. We can nottice that evalu-
ation of the transition q8 + q[2,2] → q8 is infinite. In fact, it will add [7, 7] → q8, [9, 9] → q8,
[11, 11] → q8, . . . , and so on. So we have to perform widening, that is to say, replace all the
transitions λ → q8 by [5,+∞[→ q8.
One step completed automaton: Thanks to the widening performed at the previous evalua-
tion step, no more rule has to be add in the current automaton. We have a fixed-point which
is an over-approximation of the set of reachable states, and the completion stops.

6 On Improving the Verification of Java Programs by TRMC

We now show how our formalism can simplify the analysis of Java programs. In [11], the
authors developed a tool called Copster [8], to compile a Java .class file into a Term
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Rewriting System (TRS). The obtained TRS models exactly a subset of the semantics1 of
the Java Virtual Machine (JVM) by rewriting a term representing the state of the JVM [11].
States are of the form IO(st,in,out) where st is a program state, in is an input stream
and out and output stream. A program state is a term of the form state(f,fs,h,k) where
f is the current frame, fs is the stack of calling frames, h a heap and k a static heap. A
frame is a term of the form frame(m,pc,s,l) where m is a fully qualified method name, pc
a program counter, s an operand stack and t an array of local variables. The frame stack
is the call stack of the frame currently being executed: f. For a given progam point pc in
a given method m, Copster builds an xframe term very similar to the original frame term
but with the current instruction explicitly stated, in order to compute intermediate steps.

One of the major difficulties of this encoding is to capture and handle the two-side infinite
dimension that can arise in Java programs. Indeed, in such models, infinite behaviors may
be due to unbounded calls to method and object creation, or simply because the program
is manipulating unbounded data such as integer variables. While multiple infinite behaviors
can be over-approximated with completion (just like anbn can be approximated by a∗b∗), this
may require to manipulate structures of large size. As an example, in [11], it was decided to
encode the structure of configurations in an efficient manner, integer variables being encoded
in Peano arithmetic. Not only that this choice has an impact on the size of the automata used
to encode sets of configurations, but also each classical arithmetic operation may require the
application of several rules.

As an example, let us consider the simple arithmetic operation ”300 + 400”. By using
[11], this operation is represented by xadd(succ300(zero), succ400(zero)), which reduces to 5
rewriting rules detailled hereafter that have to be applied 300 times:
xadd(zero, zero) → result(zero)
xadd(succ(var(a)), pred(var(b))) → xadd(var(a), var(b))
xadd(pred(var(a)), succ(var(b))) → xadd(var(a), var(b))
xadd(succ(var(a)), succ(var(b))) → xadd(succ(succ(var(a))), var(b))
xadd(pred(var(a)), pred(var(b))) → xadd(pred(pred(var(a))), var(b))
xadd(succ(var(a)), zero) → result(succ(var(a)))
xadd(pred(var(a)), zero) → result(pred(var(a)))
xadd(zero, succ(var(b))) → result(succ(var(b)))
xadd(zero, pred(var(b))) → result(pred(var(b)))

This means that if at the program point pc of method m there is a bytecode add then
we switch to a xframe in order to compute the addition, i.e. apply frame(m, pc, s, l) →
xframe(add,m, pc, s, l). To compute the result of the addition of the two first elements of the
stack, we have to apply the rule xframe(add,m, pc, stack(b(stack(a, s))), l) → xframe(xadd(a, b),m, pc, s, l).
Once the result is computed thanks to all the rewrite rules of xadd, we can compute the next
operation of m, i.e. go to the next program point by applying xframe(result(x),m, pc, s, l) →
frame(m,next(pc), stack(x, s), l).

1 essentially basic types, arithmetic, object creation, field manipulation, virtual method invocation,
as well as a subset of the String library.
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The use of LTA can drastically simplify the above operations. Indeed, in our framework,
we can encode natural numbers and operations directly in the alpabet of the automaton.
In such context, the series of application of the rewritting rules is replaced by a one step
evaluation. As an example, the rewrite rule xframe(add,m, pc, stack(b(stack(a, s))), l) →
xframe(xadd(a, b),m, pc, s, l) and rules xadd encoding addition can be replaced by xframe(add,m, pc, stack(b(stack
xframe(result(a+ b),m, pc, s, l). The evaluation step of LTA completion will compute the
result of addition of a+ b and add the resulting term to the language of the automaton.

Other operations such as “if-then-else” can also be drastically simplified by using our for-
malism. Indeed, with Peano numbers the evaluation of the condition of the instruction "if"
requires several rules. As an example, the instruction "if a=b then go to the program

point x" is encoded by the term ifEqint(x, a, b), and the following rules will be applied:
ifEqint(x, zero, zero) → ifXx(valtrue, x)
ifEqint(x, succ(a), pred(b)) → ifXx(valfalse, x)
ifEqint(x, pred(a), succ(b)) → ifXx(valfalse, x)
ifEqint(x, succ(a), succ(b)) → ifEqint(x, a, b)
ifEqint(x, pred(a), pred(b)) → ifEqint(x, a, b)
ifEqint(x, succ(a), zero) → ifXx(valfalse, x)
ifEqint(x, pred(a), zero) → ifXx(valfalse, x)
ifEqint(x, zero, succ(b)) → ifXx(valfalse, x)
ifEqint(x, zero, pred(b)) → ifXx(valfalse, x)

Rules of this type will disappear with LTA because an equality between two elements is
directly evaluated, and so are all the predefined predicates.

In Copster, if at the program point pc of the method m we have an "if" where the
condition is an equality between two elements, we switch to a xframe where the opera-
tion to evaluate is an "if" with a equality condition between the two first elements of the
stack, and which go to a program point x if the condition is true. Then we can apply the rule
xframe(ifACmpEq(x),m, pc, stack(b, stack(a, s)), l) → xframe(ifEqint(x, a, b),m, pc, s, l)
which permits to compute the solution, i.e. calls the ifEqint rules detailed above.

According to the result returned by these rules, we will go at program point x if the
condition is true or else to the next program point. This is modelised by the two following
rules:
xframe(ifXx(valtrue, x),m, pc, s, l) → frame(m,x, s, l)
xframe(ifXx(valfalse, x),m, pc, s, l) → frame(m,next(pc), s, l)

In LTA completion, thanks to the fact that predicates are directly evaluated and that
we have conditional rules, all this rules are replaced by the two following conditional rules:
xframe(ifACmpEq(x),m, pc, stack(b, stack(a, s)), l) → frame(m,x, s, l) ⇐ a = b (if a = b
we go to program point p)
xframe(ifACmpEq(x),m, pc, stack(b, stack(a, s)), l) → frame(m,x, s, l) ⇐ a 6= b (if a 6= b
we go to next program point)
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7 Experiments

We developped a version of Copster [8] that is abble to compile Java .class files either to
TRS or to Conditional TRS with built-ins as defined in Section 4. A precise description of
this translation can be found in [11]. We also developped TimbukLTA a version of Timbuk
handling LTA completion of Section 4.1. Thus, we can prove the same properties on Java
programs using either Timbuk or TimbukLTA and compare the efficiency LTA completion
w.r.t. standard completion.

7.1 An introductory example

To illustrate the use of TimbukLTA, we start by a simple example that is not related to Java
programs but whose specification is small enough to be read. Let filter be the function
filtering out 0 from any list of integers. Here is the corresponding TimbukLTA specification.

Ops filter:1 nil:0 cons:2 Vars F X Y Z U Xs

TRS R1

filter(nil) -> nil

filter(cons(X,Y)) -> cons(X,filter(Y)) if >(X,0)

filter(cons(X,Y)) -> cons(X,filter(Y)) if <(X,0)

filter(cons(X,Y)) -> filter(Y) if =(X,0)

Automaton A0 States qf qln qn Final States qf

Transitions filter(qln)->qf nil->qln cons(qn,qln)->qln [-oo;+oo]->qn

Equations Approx Rules cons(X,Y)=Y

The automaton resulting of completion of A0 by R1 is the following:

States q0 q1 q2 q3 q4 q6 q7 q8 Final States q0 Transitions

[-oo,+oo]->q6 filter(q2)->q4 cons(q7,q0)->q4 cons(q8,q0)->q4 nil->q2

[-oo,+oo]->q3 filter(q2)->q0 cons(q6,q2)->q2 nil->q1

[-oo,-1]->q8 [1,+oo]->q7 cons(q8,q0)->q0 cons(q7,q0)->q0 nil->q0

This automaton recognizes all intermediate computations of filter and its result: lists of
integers in [−∞, 1] or in [1,+∞] which is the expected result. To prove that there are no
0 in lists produced by filter, we could have seached for a pattern, i.e. a term of the form
cons(0,_) and checked that it is not reachable.

7.2 An example without arithmetic : “Threads”

The first example deals with a bounded number of object creations, arithmetic operations
but deals with several threads and their synchronisation.

class T1 extends java.lang.Thread{

private int l;

public T1(int l){this.l=l;}
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public void run(){

while (true){

synchronized(Top.lock){

System.out.println(Top.f);

Top.f=l;

System.out.println(Top.f);

Top.f=0;

}

}

}

}

class Top{

public static Object lock;

public static int f;

public static void main(String[] argv){

int i=1;

lock = new Object();

Top.f=0;

while (i<=2){

T1 t1 = new T1(i++);

t1.start();

}

}

}

From the bytecode of this Java program, Copster produces a TRS of 863 rewrite rules.
The objective of the analysis is to prove that whatever the scheduling of threads, in the
sequence of printed integers, there cannot be two consecutive 0. In other words, we aim
at proving that the critical portion of the code which affects the Top.f shared variable is
really protected by the Java synchronize instructions. Initially Top.f is 0. Each thread
prints Top.f, set Top.f to the integer identifying the thread, prints it and then sets back
Top.f to 0. This is repeated forever. If synchronization fails then several threads may ex-
ecute this critical code at the same time and we are likely to print several consecutive 0
values. Since threads loop for ever, an approximation equation is necessary. On this simple
example, the only term that may grow infinitely is the term representing the output stream.
These terms are of the form outstack(x, outstack(y, . . .)) representing an output stream
whose last printed element is x and y was printed immediately before. Hence, a simple ap-
proximation equation of the form outstack(x, outstack(y, z)) = z is enough for the standard
completion to terminate in 56s after 306 steps. Then, on A306

R,E we can easily check that the
pattern outstack(zero, outstack(zero,_)) is not found, meaning that we have no consecutive
0 printed in the output stream. On the same example, the conditional TRS has 788 rules
and LTA completion with TimbukLTA terminates in 280s after 328 steps of LTA completion.
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We can similarily check on A328
R,E that no pattern of the form outstack(0, outstack(0,_)) is

found proving that synchronization was well performed. Thus LTA completion is abble to
prove the same property. However, we can also remark that, on this example where arith-
metic is not crucial for the analysis, using lattices in completion may reduce its efficiency.
This is no longer the case when arithmetic is crucial for the analysis, as shown in the next
example.

7.3 An example with arithmetic and recursive method calls : “Euclide” ’

The second example only deals with arithmetic and recursive method calls. This example
shows that LTA-completion is more efficient that regular completion as soon as some sub-
terms deal with numbers and arithmetic operations. From the bytecode of this Java program,
Copster produces a CTRS of 793 rewrite rules.

public class ExEuclide {

static int my_div( int a, int b) {//returns a/b

if (a<b)

return 0;

else

return 1+my_div(a-b,b);

}

static int my_mod (int a, int b){

if (a<b)

return a;

else

return my_mod(a-b,b);

}

public static void main (String[] args){

int i,j,k;

for (i=1; i<=5; i++){

j=my_div(10*i,7);

k=my_mod(10*i,7);

System.out.println(k);

}

}

}

On this example, no approximation is needed and we can prove that the output stream
only contains value in the interval [1; 6] which is true for the remainders of the divisions
of the integers 10 to 50 by the integer 7. We can prove the same result with standard and
LTA completion. However, LTA completion only needs 727 steps and 14s where standard
completion needs 2019 steps and 59s.
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7.4 An example with arithmetic and object allocation: “FactoList”

The third example deals with object creations and some arithmetic. This example confirms
that LTA-completion is more efficient that regular completion when arithmetic is concerned.
From the bytecode of this Java program, Copster produces a CTRS of 805 rewrite rules.

class List{

List next;

int val;

public List(int elt, List l){

next =l;

val= elt;

}

public void printList(){

List l=this;

while (l!=null){

System.out.println(l.val);

l=l.next;

}

}

}

public class FactoList {

public static int factorial(int i){

int res=1;

for (int j=2; j<=i; j++){

res=res*j;

}

return res;

}

public static void main(String arg[]){

List ls= null;

int x=0;

while (x>=0) {

try {x=System.in.read();} catch(java.io.IOException e){};

if (x>=0) ls=new List(factorial(x),ls);

}

ls.printList();

}

}
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In this program, integers are read on the input channel and their factorial value is stored
into a singly linked list. In the end, the content of the list is printed using the printList

method. Completion can be used to show, for instance, that no integer lesser than 1 is
printed out on the output channel whatever the integer read on the input channel may be.
This time we need equations to over-approximate the integers, the heap (that may contain
infinitely many objects) and the output channel that can contain infinitely many integers.
This is done using three simple equations. The equation outstack(x, y) = y merges infinite
out stack terms together in a single equivalence class. The equation stack1(_,_,_) =
stack1(_,_,_) merges together all objects of class List (that are stored into terms rooted
by the stack1 symbol in the generated TRS). Finally, the equations succ(succ(x)) = succ(x)
and pred(pred(x)) = pred(x) merge all integers into three distinct equivalence classes, i.e.
0, 1 or more and −1 or less. Using those equations, in 20 seconds and 467 completion
steps, standard completion produces an automaton A467

R,E that does not contain any term
of the form outstack(zero,_) or outstack(pred(_),_) meaning that no integer lesser than
1 has been printed on the output stream. For LTA completion, the necessary equations are
similar to approximate the heap and the output channel. Equations are slightly different
to approximate the integers. Indeed, infinitely increasing integers values are automatically
approximated using the widening described in section 4.3. However, terms built on built-in
symbols may be infinite. Using the previous Java program, the infinite built-in terms that
are likely to be built are of the form +(+(+(_, 1), 1), 1) because of the j++ instruction
and of the form ∗(_, ∗(_, ∗(_,_))) because of the factorial operation. These two kinds of
terms can be approximated using the following equations: +(x, 1) = x and ∗(x, y) = y.
In 40 seconds and 349 completion steps we can obtain a fixpoint by LTA completion. The
same property, i.e. that no integer lesser than 1 is printed, can be proven on A349

R,E . Since
the approximation of integers is strong and simple: only three equivalence classes, standard
completion with peano integers still behave well w.r.t. LTA completion. However, as soon as
more precision is needed on integers (requiring more equivalence classes on peano integers)
then LTA completion outperforms standard completion.

If we restrict the values of the integers on the input stream then we can prove a more pre-
cise property on the values of the integers on the output stream. If we restrict input integers
to values in the interval [2; +∞] (or −1 for the loop to stop), then we can prove that integers
on the output stream are all greater to 1. For this, we also need to refine approximation
equations on integers and approximate integers into 4 different equivalence classes −1 or
less, 0, 1 and 2 or more. This is done by hand but could be automatized using a CEGAR-
completion as in [10]. Then, the property can be proved using standard completion in 21
seconds and 468 completion steps. LTA completion needs 14 seconds and 430 completion
steps. If we restrict the interval of input values to [3; +∞] and prove that output values are
greater to 5 then standard completion needs 953 completion steps and 320 seconds where
LTA completion is more stable and needs 467 completion steps and 15 seconds. With a set
of input values restricted to [4; +∞] then standard completion exhausts memory and had
to be stopped after 1500 completion steps and 2 hours. However, LTA completion answers
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in 32 seconds and 641 completion steps and proves that no integer lesser than 24 are printed
on the output stream.

Standard completion LTA completion
Example # Completion Completion # Completion Completion

Name steps time steps time
Threads 306 56s 328 280s
Euclide 2019 59s 727 14s

FactoList
inputs in [−∞; +∞] 467 20s 349 40s

FactoList
inputs in [2; +∞] 468 21s 430 14s

FactoList
inputs in [3; +∞] 953 320s 467 15s

FactoList
inputs in [4; +∞] >1500 > 7200s 641 32s

This table shows that integration of LTA in completion may reduce its efficiency when
the TRS to verify does not rely on arithmetic. On the opposite, unlike standard completion,
LTA completion scales up when arithmetic is used in the analysis. This is illustrated on
the “FactoList” example. The complete analysis of the TRS encoding the semantics of this
program only deals with a few arithmetic operation. However, even for this limited number
of arithmetic operation, when precision on the numerical values is expected, using lattices
in completion is necessary to succeed.

8 Conclusion and Future work

We have proposed LTA, a new extension of tree automata for tree regular model checking of
infinite-state systems whose configurations can be represented with interpreted terms. One of
our main contributions is the development of a new completion algorithm for such automata.
We also shown that our encoding can drastically improve the verification of TRS relying
on arithmetic. This has been illustrated on the verification of Java programs translated
into conditional TRS using TimbukLTA an implementation of the LTA completion. As LTA
completion is not dedicated to the specific abstract domain of intervals of integers, we would
like to plug several other abstract domains in TimbukLTA such as abstract domains for
strings and reals. This is ongoing work.

References

1. P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model checking. In CAV,
volume 2404 of LNCS. Springer, 2002.

2. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in regular
model checking. In CAV, volume 2725 of LNCS. Springer, 2003.

INRIA



TRMC for Lattice-Based Automata 35

3. P. A. Abdulla, A. Legay, A. Rezine, and J. d’Orso. Simulation-based iteration of tree transduc-
ers. In TACAS, volume 3440 of LNCS. Springer, 2005.

4. Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Parameterized verification of
infinite-state processes with global conditions. In CAV, 2007.

5. Parosh Aziz Abdulla, Noomene Ben Henda, Giorgio Delzanno, Frédéric Haziza, and Ahmed
Rezine. Parameterized tree systems. In FORTE, 2008.

6. Avispa – a tool for Automated Validation of Internet Security Protocols. http://www.

avispa-project.org.
7. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
8. N. Barré, F. Besson, T. Genet, L. Hubert, and L. Le Roux. Copster homepage, 2009. http:

//www.irisa.fr/celtique/genet/copster.
9. S Bauer, U. Fahrenberg, L. Juhl, K.G. Larsen, A. Legay, and C. Thrane. Quantitative refinement

for weighted modal transition systems. In MFCS, volume 6907 of lncs. springer, 2011.
10. Y. Boichut, B. Boyer, T. Genet, and A. Legay. Equational Abstraction Refinement for Certified

Tree Regular Model Checking. In ICFEM’12, volume 7635 of LNCS. Springer, 2012.
11. Y. Boichut, T. Genet, T. Jensen, and L. Leroux. Rewriting Approximations for Fast Prototyping

of Static Analyzers. In RTA, LNCS. Springer Verlag, 2007.
12. Yohan Boichut, Benoît Boyer, Thomas Genet, and Axel Legay. Fast Equational Abstraction

Refinement for Regular Tree Model Checking. Technical report, INRIA, July 2011. http:

//hal.inria.fr/inria-00501487.
13. Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Approximation-based tree reg-

ular model-checking. Nord. J. Comput., 14(3):216–241, 2008.
14. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large (extended abstract).

In CAV, LNCS. Springer, 2003.
15. B. Boigelot, A. Legay, and P. Wolper. Omega-regular model checking. In TACAS, volume 2988

of LNCS. Springer, 2004.
16. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract rmc of complex dynamic

data structures. In SAS, LNCS. Springer, 2006.
17. A. Bouajjani and T. Touili. Extrapolating tree transformations. In CAV, volume 2404 of LNCS.

Springer, 2002.
18. Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomáš Vojnar. Abstract regular

tree model checking. Electron. Notes Theor. Comput. Sci., 149:37–48, February 2006.
19. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications, 2007.
20. Pichardie David. Interprétation abstraite en logique intuitionniste : extraction d’analyseurs Java

certifiés. PhD thesis, Université Rennes 1, 2005. In french.
21. Zoltán Ésik and Guangwu Liu. Fuzzy tree automata. Fuzzy Sets Syst., 158:1450–1460, July

2007.
22. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term Rewriting

Systems. JAR, 33 (3-4):341–383, 2004.
23. Diego Figueira, Luc Segoufin, and Luc Segoufin. Bottom-up automata on data trees and vertical

xpath. In STACS, 2011.
24. Tristan Le Gall and Bertrand Jeannet. Lattice automata: A representation for languages on

infinite alphabets, and some applications to verification. In SAS, 2007.
25. Blaise Genest, Anca Muscholl, Zhilin Wu, and Zhilin Wu. Verifying recursive active documents

with positive data tree rewriting. In FSTTCS, 2010.

RT n° 424

http://www.avispa-project.org
http://www.avispa-project.org
http://www.irisa.fr/celtique/genet/copster
http://www.irisa.fr/celtique/genet/copster
http://hal.inria.fr/inria-00501487
http://hal.inria.fr/inria-00501487


36 Thomas Genet , Tristan Le Gall , Axel Legay , Valérie Murat

26. T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In cade, volume 1831
of lnai. sv, 2000.

27. Th. Genet and V. Rusu. Equational approximations for tree automata completion. Journal of
Symbolic Computation, 45(5):574–597, May 2010.

28. Stéphane Kaplan and Christine Choppy. Abstract rewriting with concrete operations. In RTA,
pages 178–186, 1989.

29. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich
assertional languages. In CAV, LNCS. Springer, 1997.

30. Orna Kupferman and Yoad Lustig. Lattice automata. In VMCAI, 2007.
31. J. Meseguer, M. Palomino, and N. Martï¿½-Oliet. Equational Abstractions. In Proc. 19th CADE

Conf., Miami Beach (Fl., USA), volume 2741 of LNCS, pages 2–16. Springer, 2003.
32. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis of java

bytecode by term rewriting. In RTA, LIPIcs. Dagstuhl, 2010.
33. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In CAV,

volume 1427 of LNCS. Springer-Verlag, 1998.

INRIA



Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803


