
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
79

27
--

FR
+E

N
G

RESEARCH
REPORT
N° 7927
March 2012

Project-Teams Distribcom

A#: a Distributed A*
for Factored Planning
Loïg Jezequel, Eric Fabre

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

A#: a Distributed A*
for Factored Planning

Loïg Jezequel∗, Eric Fabre†

Project-Teams Distribcom

Research Report n° 7927 — March 2012 — 17 pages

Abstract: Factored planning consists in driving a modular or distributed system to a target
state, in an optimal manner, assuming all actions are controllable. Such problems take the form
of path search in a product of graphs. The state space of each component is a graph, in which
one must find a path to the local goal of this component. But when all components are considered
jointly, the problem amounts to finding a path in each of these state graphs, while ensuring their
compatibility on the actions that must be performed jointly by some components of the system.
This paper proposes a solution under the form of a multi-agent version of A*. The proposed
A# assembles several A*, each one performing a biased depth-first search in the graph of each
component, and coordinates their exchanges to quickly find compatible paths to the goal.

Key-words: factored planning, distributed algorithms, paths search, optimization

∗ ENS Cachan Bretagne
† INRIA Rennes Bretagne Atlantique

A#: une version distribuée de A* pour la planification
modulaire

Résumé : Faire de la planification modulaire c’est s’assurer qu’un système distribué atteigne
(de manière optimale) un objectif en utilisant un ensemble d’actions, toutes considérées comme
contrôlables. Résoudre ce type de problèmes revient à chercher un chemin dans un produit de
graphes (chacun représentant l’un des composants du système considéré). Chercher un chemin
local à chaque composant est relativement simple, cependant trouver de tels chemins qui soient
compatibles entre eux (c’est à dire dont les actions partagées soient utilisées dans le même ordre)
est bien plus délicat, notamment lorsque l’on ne souhaite pas calculer directement le produit de
ces composants. Ce rapport de recherche propose une méthode pour résoudre de tels problèmes.
Il s’agit en fait d’utiliser une version multi-agents de l’algorithme A∗, utilisant des informations
venant des composants voisins pour biaiser la recherche de chemin de coût minimum au sein d’un
graphe.

Mots-clés : planification modulaire, algorithmes distribués, recherche de chemins, optimisation

A#: a Distributed A* for Factored Planning 3

1 Introduction

Planning consists in organizing optimally a limited set of actions in order to reach some goal.
Actions generally consume and produce resources, have a cost, and the goal is expressed as a
desired value for some of these resources. From a control perspective, planning can also be
regarded as driving an automaton to a target state, in an optimal manner, when all transitions
are controllable. Each state then represents a tuple of values, one per resource, and transitions
derive from the possible actions. In these terms, the problem amounts to finding a shortest path
in a possibly huge weighted oriented graph, from an initial vertex to a set of possible final ones.
Despite the NP-hardness of the problem, efficient algorithms have been proposed, as variants of
the celebrated A* (pronounce ‘A-star’) [1]. The latter is nothing but a depth-first search, guided
to the goal by some heuristic function, i.e. a lower-bound on the distance to the goal, available
at each node. In practice, this approach performs much better than the worst case bound, that
requires exploring the whole graph, provided heuristics are smartly designed [2, 3, 4].

Distributed planning addresses a similar problem, for a network of automata. This setting
appears when resources are partitioned into N subsets, each one associated to the actions that
modify them. Each such reduced planning problem can be represented as a smaller automaton (or
component), or as a smaller graph, making it more tractable. But some actions simultaneously
modify the resources of several of these N subsets, in other words some components may have
to agree on some shared actions. One can thus view the problem as optimally driving a network
of automata to a target state, each component having private and shared actions. Equivalently,
this amounts to finding a path in a product graph. It was soon recognized that distributed or
factored planning could render manageable some large scale planning problems that can not be
addressed in a centralized manner.

Different approaches to distributed planning have been proposed [5, 6, 7], with the simpler
objective to find a possible plan, not an optimal one. The idea being generally to find a local
plan in some component, and take it as a seed or constraint to look for a compatible local
plan in a neighbouring component, that is a component sharing actions with the first one. And
so on, accross all components, with (possibly numerous) backtracks when impossibilities are
encountered. Alternatively, [8] proposed an approach still based on a message passing strategy,
but handling weighted automata to perfom computations. This solution actually provides all
possible (distributed) plans, and identifies the best one(s). The present paper adopts another
strategy and aims at a true distributed version of A*. The idea is to run modified versions of A* in
parallel, one per component, and to bias the search of each one in order to favor the exploration
of local paths/plans that are likely to be compatible with the ones explored in neighbouring
components. Each such local A* thus has to inform its neighbors of the shared actions that are
likely to lead to a solution, from its perspective. Such communicating parallel versions of A*
suggested the name A# (pronounce ‘A-sharp’).

The paper is organized as follows. The optimal distributed planning is first formalized and il-
lustrated on a running example (Section II). Then a simplified version of the problem is examined,
in order to clarify the mechanism of the proposed approach in the simple case of two components
(Section III). These principles are then generalized, and it is proved that the algorithm converges
and yields the desired result (Section IV).

2 Planning for Distributed Systems

There exist several manners to set up a planning problem. For simplicity, this paper presents
planning as an optimal path search problem in a graph.

RR n° 7927

4 L. Jezequel & E. Fabre

2.1 Planning as path search in a graph
Let G = (V,E) be a (finite) directed graph, with V as set of vertices and E ⊆ V × V as set of
edges. A path in G is a sequence of edges p = e1 . . . en such that, for any 1 ≤ i < n, one has
ei = (vi, vi+1). p is said to be a path from v1 = p− to vn+1 = p+. A labelling of G is a function
λ : E → Λ, where Λ is a finite set of labels, also called actions in the sequel. The labelling extends
to paths p = e1 . . . en by λ(p) = λ(e1) . . . λ(en) ∈ Λ∗. This labeling is deterministic iff for every
pair of edges (v, v′) and (v, v′′), λ(v, v′) = a = λ(v, v′′) entails v′ = v′′. In other words, the effect
of action a at vertex v has a unique outcome. For simplicity, and to match standard planning
problems, this paper considers deterministic labelings. By abuse of notation, we sometimes do
not distinguish p and λ(p). Similarly to labels, a cost function on G is defined as c : E → R+,
and associates costs to edges. It also extends to paths by c(p) =

∑n
i=1 c(ei).

A planning problem is now defined as a decorated graph P = (V,E,Λ, λ, c, i, F) where i ∈ V
is an initial vertex, and F ⊆ V is a set of possible final (or goal) vertices. The objective is to
find a path p such that p− = i, p+ ∈ F and c(p) is minimal among such paths. The word λ(p)
is called the (action) plan.

2.2 The A* solution
A* is a depth-first exploration strategy in P [1]. Therefore it is based on a set of active or open
vertices O ⊆ V , initialized to O = {i}, that forms the (inner) boundary of the explored region
S ⊆ V , progressively expanded to reach F . To each vertex v in O one associates two values:
g(v) and h(v). g(v) is the cost of the shortest path from i to v within the subgraph P|S (P
restricted to S). h(v) is a heuristic function, that is a lower bound on the cost to reach F from
v in P. So h(v) = 0 for v ∈ F . Function h is often required to be consistent, i.e. to satisfy
h(v) ≤ c(v, v′) + h(v′) for any edge (v, v′) ∈ E. The heuristic h is used to guide the search
towards the target F . Its selection depends very much on the nature of the planning problem,
and influences greatly the performance of A* [2, 3, 4].

The algorithm proceeds as follows: it recursively ‘expands’ the most promising vertex in
O, i.e. the vertex v ∈ O with ranking r(v) , g(v) + h(v) ≤ r(v′) for any other v′ ∈ O.
Expansion means that every successor v′ of v in P is examined. Its g value is updated according
to gnew(v′) = min(gold(v′), g(v) + c(v, v′)) (with gold(v′) = +∞ when v′ 6∈ S, i.e. when v′ has
not been visited),. If gnew(v′) < gold(v′), then v′ is (re)activated, i.e. (re)placed into O. The
expanded vertex v is then removed from O, but it remains in the set of visited nodes S. The
algorithm stops when the vertex v chosen for expansion already belongs to F . The best path p
from i to v yields an optimal action plan. Path p can be easily recovered by backtracking from
p+ ∈ F , provided at every expansion step, one stores the predecessor v on the best path to v′.

2.3 Distributed planning
Let P1,P2 be two planning problems, with Pk = (Vk, Ek,Λk, λk, ck, ik, Fk) for k = 1, 2, and such
that Λ1 ∩ Λ2 6= ∅. We define a distributed (or factored) optimal planning problem as a pair1
(P1,P2) of such interacting planning problems. The actions in Λ1 ∩ Λ2 are said to be common
or synchronized actions between the two problems, while those in Λ1 \ Λ2 (resp. Λ2 \ Λ1) are
private to P1 (resp. P2). This setting is extremely natural in practical planning problems: P1

and P2 can represent the state of disjoints subsets of resources, that can be modified jointly by
some actions. As an illustration, imagine P1 as the problem of transporting parts from different

1We limit ourselves to two components for a matter of simplicity, because this is sufficient to expose the
concepts of our approach. But the results of this paper extend to N components, which will be detailed in
forthcoming publications.

Inria

A#: a Distributed A* for Factored Planning 5

warehouses to an assembly plant, and P2 as the problem of optimizing the route of the truck in
charge of this transport. Interactions occur only at loading and unloading.

A distributed planning problem (P1,P2) can be recast into a standard planning problem P
by means of a product operation: P = P1 × P2 (similar to the synchronous product of labeled
automata). This operation is defined as V = V1×V2, i = (i1, i2), F = F1×F2, Λ = Λ1∪Λ2. For
the edges, one has E = Es]Ep,1]Ep,2 where Es denotes synchronized transitions and Ep,k the
private transitions of Pk. They are given by Es = {((v1, v2), (v′1, v

′
2)) : (vk, v′k) ∈ Ek, λ1(v1, v

′
1) =

λ2(v2, v
′
2)}, while private moves of P1 assume P2 remains idle Ep,1 = {(v1, v2), (v′1, v2)) :

(v1, v
′
1) ∈ E1, v2 ∈ V2, λ1(v1, v

′
1) 6∈ Λ2} and symmetrically for Ep,2. Labels follow accordingly:

λ((v1, v2), (v′1, v
′
2)) = λ1(v1, v

′
1) = λ2(v2, v

′
2) for Es, and λ((v1, v2), (v′1, v2)) = λ1(v1, v

′
1) for Ep,1

(sym. for Ep,2). In the same way, costs are additive: c((v1, v2), (v′1, v
′
2)) = c1(v1, v

′
1) + c2(v2, v

′
2)

for Es, and c((v1, v2), (v′1, v2)) = c1(v1, v
′
1) for Ep,1 (sym. for Ep,2).

The resulting product problem P = P1 × P2 may however be very large compared to the
Pk alone (see Figure 1). This is the usual state explosion problem, which is doubled by the
emergence of so-called concurrency diamonds on edges, i.e. the interleaving of private actions of
P1 and P2.

i1

v1

v′1

v′′1a, 0

b, 7

d, 1

i2 v2 v′2
c, 2 d, 3

(i1, i2)

(v1, i2)

(i1, v2)

(v′1, i2)

(v1, v2)

(v′1, v2)

(v′′1 , v′2)
a, 0

b, 7

c, 2

c, 2

c, 2

a, 0

b, 7

d, 4

Figure 1: Two planning problems (left) and their product (right).

Distributed planning aims at avoiding this double explosion of problem P. The idea is to
look for a pair of paths (p1, p2), such that

1. pk defines a valid plan in Pk, not necessarily optimal, for k = 1, 2

2. the two paths p1 and p2 are compatible, i.e. they coincinde on shared actions, which we
translate by πΛ2(λ1(p1)) = πΛ1(λ2(p2)) (see below),

3. the pair (p1, p2) is jointly optimal, i.e. c(p1) + c2(p2) is minimal among pairs of paths
satisfying the two above criteria.

The natural projection πΛ′(w) of a word w ∈ Λ∗ on the subalphabet Λ′ ⊆ Λ is defined by
πΛ′(ε) = ε for the empty word, and by πΛ′(aw) = aπΛ′(w) if a ∈ Λ′, and πΛ′(aw) = πΛ′(w)
otherwise. The compatibility of p1 and p2 thus induces that there exists a global path p for
problem P such that πΛk

(λ(p)) = λk(pk), k = 1, 2. Such a path p corresponds to an interleaving
of the actions in p1 and p2. It is generally not unique: for example in Fig. 1 the distributed
plan (ad, cd) corresponds to two global plans acd and cad where private (concurrent) actions are
interleaved in different manners. This reveals that distributed planning actually aims at building
partially ordered plans, which is a powerful way to turn the explosion due to concurrency into
an advantage: one saves the exploration of meaningless interleavings.

2.4 Coordinated parallel path searches
The approach proposed in this paper consists in associating an agent ϕk to each problem Pk. Each
agent performs an A*-like search in its local graph, and takes into account the constraints and

RR n° 7927

6 L. Jezequel & E. Fabre

costs of the other agent through an appropriate communication mechanism. Communications
are asynchronous and can take place at any time. Nevertheless, it is proved that the algorithm
converges to a distributed optimal plan (p1, p2).

For a matter of clarity, the next section first addresses a simpler problem called compatible
final states (CFS). P1 and P2 have no common actions, so Λ1 ∩ Λ2 = ∅. However, their final
states are ‘colored’ by functions γk : Fk → Γ where Γ is a finite color set. The CFS problem
amounts to finding an optimal distributed plan (p1, p2) where the compatibility condition (2)
above is replaced by a compatibility of their final states: γ1(p+

1) = γ2(p+
2). We shall assume

that there is a unique optimal (common) final color, if ever the CFS problem has a solution.
Otherwise selecting one optimal final color among several becomes an agreement problem, that
can be solved on top of our approach.

The standard distributed planning problem can be reduced to the CFS as follows. First
Λ1 ∩ Λ2 6= ∅ is ignored. Then, instead of assuming that the colors of final states are given
beforehand, one computes them as functions of the current explored paths to reach any vertex
of graph Pk. Specifically, a path pk in Pk with p+

k ∈ Fk will have πΛ1∩Λ2(λk(pk)) as final ‘color.’
Compatibility of final colors thus entails the compatibility of p1, p2 in terms of shared actions.
The main difference with CFS is thus that the color set becomes infinite: Γ = (Λ1 ∩ Λ2)∗.

3 Compatible final states

3.1 Intuition on the approach

Let {k, k̄} = {1, 2}. The agent ϕk attached to problem Pk relies on four functions. Two relate
to the standard shape of a local A*: gk : Vk → R yields the (current) best known cost to reach
any v ∈ Vk and hk : Vk × Γ → R is a set of heuristic functions towards Fk, one per terminal
color. Equivalently, one has a heuristic function towards any Fk ∩ γ−1(c) for c ∈ Γ. Besides,
two other functions inform ϕk on the state of the search in Pk̄, where {k, k̄} = {1, 2}. Namely,
one has Hk̄ : Γ→ R, and Gk̄ : Γ→ R. Hk̄ is a (generally) time varying heuristic that measures
how much color c ∈ Γ is promising at the current point of resolution of problem Pk̄. Similarly,
Gk̄(c) indicates the current best cost for reaching color c in Pk̄. Both values are asynchronously
updated by agent ϕk̄ under the form of messages sent to ϕk.

We now formalize these features and explain how these four functions are used and updated
by each agent, how termination is detected by both of them, and how an optimal distributed
plan solving the CFS is extracted.

3.2 Proposed algorithm

Let us consider first a non-varying distant heuristic Hk̄: Hk̄(c) = hk̄(ik̄, c) for all c ∈ Γ. To the
distant cost function on final colorsGk̄ one associates an oracle Θk̄ : Γ→ {null, optimal, useless},
with the following meaning. Θk̄(c) = optimal means that a best plan towards final vertices of
color c is known in Pk̄, and in that case Gk̄(c) represents the optimal cost to reach color c in Pk̄.
Θk̄(c) = useless means that ϕk̄ can guarantee that for sure no optimal distributed plan (pk, pk̄)
exists which terminates in color c, and null is the remaining default (and initial) value of Θk̄.
This oracle satisfies the following property: for every color c ∈ Γ, there exists a finite time at
which Θk̄(c) jumps from null to either optimal or useless, and keeps this value forever.

Each agent ϕk executes the variant of A* given in Algorithm 1. Vertices can be marked in
three different ways: open, closed, or candidate. A candidate vertex v belongs to Fk, and thus
represents a local plan in Pk that can be proposed to ϕk̄ as a possible local component of a
distributed plan. Initially all vertices v in Vk \ {ik} are closed and satisfy gk(v) = +∞. To

Inria

A#: a Distributed A* for Factored Planning 7

progressively open them and explore graph Pk, one relies on the ranking function Rk defined as
follows. If v ∈ Vk is not candidate

Rk(v) = gk(v) + min
c∈Γ

(hk(v, c) +Hk̄(c))

which integrates the cost of color c for agent ϕk̄, and then optimizes on the possible final color.
For a candidate vertex v, one takes

Rk(v) = gk(v) +Gk̄(γk(v)) if Θk̄(γk(v)) = optimal

= gk(v) +Hk̄(γk(v)) otherwise

which associates to the possible final vertex v the cost of its color γk(v) for agent ϕk̄.
The recursive (local) search then proceeds as follows. At each iteration ϕk selects the most

promising non-closed (i.e. open or candidate) vertex v, i.e. the one that minimizes the ranking
function Rk. According to the nature of v, agent ϕk either a) progresses in the exploration of Pk
using an expansion function (Algorithm 2), this is the case in particular when v is open, or b)
checks whether it can draw some conclusion using the information provided by the other agent
ϕk̄. These conclusions can be (1) that v is the goal vertex reached by a path part of a globally
optimal plan (line 8), (2) that v will never be the goal vertex reached by a path part of a globally
optimal plan (line 13), or (3) nothing for the moment (line 15). The reader familiar with A* may
thus immediately identify its shape within Algorithm 1. The main difference lies in the stopping
condition, due to the necessity to take into account constraints transmitted by the other agent.

Algorithm 1 executed by ϕk
1: mark ik open; gk(ik)← 0; calculate Rk(ik)
2: while there exists non-closed vertices do
3: let v be the non-closed vertex with minimal Rk(v)
4: if v is open then
5: expand(v)
6: else
7: case: Θk̄(γk(v)) = optimal
8: if Rk(v) = gk(v) +Gk̄(γk(v)) then
9: return v and terminate

10: else
11: calculate Rk(v)
12: end if
13: case: Θk̄(γk(v)) = useless
14: mark v closed
15: case: Θk̄(γk(v)) = null
16: if there exists open vertices then
17: let v′ be the open vertex with minimal Rk(v′)
18: expand(v′)
19: end if
20: end if
21: end while

Notice that the call to the expand function at line 18 of Algorithm 1 is not required for
termination nor validity, however it will allow agent ϕk̄ to maintain Gk̄ and Θk̄ using its own
instance of Algorithm 1. Otherwise ϕk̄ should run a standard A∗ algorithm in parallel with
Algorithm 1.

RR n° 7927

8 L. Jezequel & E. Fabre

Algorithm 2 expand function
1: if v ∈ Fk then
2: mark v candidate
3: calculate Rk(v)
4: else
5: mark v closed
6: end if
7: for all v′ such that (v, v′) ∈ Ek do
8: gk(v′)← min(gk(v′), gk(v) + ck((v, v′)))
9: if gk(v′) strictly decreased then

10: mark v′ open
11: pred(v′)← v
12: end if
13: calculate Rk(v′)
14: end for

Theorem 1. In this context, any execution of Algorithm 1 by ϕk on Pk terminates. Moreover,
if the CFS problem (P1,P2) has a solution, the output of Algorithm 1 for agent ϕk is a goal
vertex vk ∈ Fk, reached by a local plan pk. The assembling of p1 and p2 provided by agents ϕ1

and ϕ2 resp. yields an optimal distributed plan (p1, p2) solving (P1,P2).

Theorem 1 is proved in three steps: first termination is proved (Proposition 1), then existence
of an output when a distributed plan exists is proved (Proposition 2), and finally the fact that
the output provides an optimal distributed plan is proved (Proposition 3).

Proposition 1. Algorithm 1 terminates when executed by ϕk on Pk.

Proof. Suppose ϕk executes Algorithm 1 on Pk without terminating. It means that there always
exists a vertex which is either open or candidate (else the while loop would stop). It also means
that the vertex with the smallest Rk value never fulfills the condition of line 8.

Moreover it is not possible to satisfy the condition of line 13 an infinite number of times in a
row. This is because (1) Vk is finite, and thus there exists a finite number of possible candidate,
and (2) when the condition of line 13 is satisfied a candidate becomes closed an no new vertex
becomes candidate.

This implies that the expand function will be called at finite time intervals while there exists
open vertices. Hence, after some time all vertices will be either closed or candidate. This is due
to the facts that (1) each call to expand makes an open vertex become closed or candidate, (2) Vk
is finite, and thus there exists a finite number of possible open vertices, (3) each v marked as open
by expand is such that gk(v) strictly decreased (line 9 of expand) and even, from the structure of
the problems considered, one has that gk(v) strictly decreased of at least some constant c which
is the minimal non zero difference between the costs of any two transitions from Ek, and (4) for
a given v it is not possible that gk(v) < 0 (this is due to the initialization of gk(ik), line 1).

As soon as all vertices are either closed or candidate, no new vertex can become open. This
is because only expand function can open vertices and the conditions to call expand require an
open vertex (lines 16 and 4). Moreover, no new vertices will become candidate, for the same
reason.

By definition of Θk̄, for any color c ∈ Γ there exists a time after which either Θk̄(c) = optimal
or Θk̄(c) = useless. In particular, for any candidate (that is for any non-closed) vertex v, after
some time, Θk̄(γk(v)) = optimal or Θk̄(γk(v)) = useless. Consider the time after which, for

Inria

A#: a Distributed A* for Factored Planning 9

any candidate vertex v, either Θk̄(γk(v)) = optimal or Θk̄(γk(v)) = useless. Consider the
vertex v selected. Two cases are possible: (1) Θk̄(γk(v)) = useless, v is closed, the number
of candidate vertices strictly decreases, (2) Θk̄(γk(v)) = optimal, either algorithm terminate or
Rk(v) is calculated and becomes equal to gk(v) + Gk̄(γk(v)) (and thus if v is selected later the
algorithm will terminate). This proves that, after some time, either all vertices will be closed
(if Θk̄(γk(v)) = useless for all v candidate) or condition of line 8 will be satisfied. Both these
cases are in contradiction with the hypothesis taken that ϕk executes Algorithm 1 on Pk without
terminating. This proves Proposition 1.

Proposition 2. Algorithm 1 outputs some v when executed by ϕk on Pk if and only if there
exists a solution.

Proof. Suppose Algorithm 1 outputs no v when executed by ϕk on Pk. It means it terminated
because all vertices has been marked closed (Proposition 1). Thus all reachable goal vertices have
been marked as candidate, by definition of expand function. Then all candidate vertices have
been marked as closed, meaning that for any v candidate Θk̄(γk(v)) = useless. If there exists a
solution it means that there exists some v ∈ Fk, reachable in Pk, such that Θk̄(γk(v)) = optimal
at some time. This is not compatible with the facts that all reachable goal vertices have been
marked as candidate and that for any v candidate Θk̄(γk(v)) = useless. Hence, if Algorithm 1
outputs no v when executed by ϕk on Pk then there exists no solution. Which proves that if
there exists a solution then Algorithm 1 outputs some v when executed by ϕk on Pk.

Suppose Algorithm 1 outputs some v when executed by ϕk on Pk. It means that v has been
marked candidate at some point. Which, by construction implies that v ∈ Fk and there exists
a path from ik to v in Pk. It also means that Θk̄(γk(v)) = optimal, which, by definition of
Θk̄ implies that there exists a path in Pk̄ from ik̄ to some goal vertex with color γk(v). Thus,
there is a path in Pk reaching a goal vertex of color γk(v) and there is a path in Gk̄ reaching a
goal vertex of color γk(v). This exactly means that there exists a solution. Which proves that if
Algorithm 1 outputs some v when executed by ϕk on Pk then there exists a solution.

Proposition 3. When Algorithm 1 outputs some v, when executed by ϕk on Pk, it is the goal
vertex reached by a path pk such that there is an optimal distributed plan (pk, pk̄).

Proof. Notice that any output v of Algorithm 1 is necessarily a goal vertex, by construction.
Suppose Algorithm 1 outputs v, a goal vertex reached by a path pk such that for any pk̄, (pk, pk̄)
is not an optimal distributed plan. Denote by v′ a goal vertex reached by a path p′k such that
there exists an optimal distributed plan (p′k, p

′
k̄
) and Θk̄(γk(v′)) = optimal after some time. Such

a v′ exists because, as Algorithm 1 outputs v, by Proposition 2 there exists a solution to the
considered planning problem. When Algorithm 1 stops by outputting v, two cases are possible:
either (1) gk(v′) is the optimal cost for reaching v′ or (2) it is strictly greater than this optimal
cost.

Consider case (1). For sure, v′ is either open or candidate. The fact that gk(v′) <∞ implies
that v′ has been marked as open at some time. From that, as v′ ∈ Fk, it is not possible that v′
has been marked as closed at line 5 of expand function. Moreover, as Θk̄(γk(v′)) = optimal after
some time, it is not possible that Θk̄(γk(v′)) has been equal to useless, and so it is not possible
that v′ has been marked as closed at line 14 of Algorithm 1. As gk(v′) is the optimal cost for
reaching v′, one has gk(v′) < gk(v) because v is not part of a globally optimal plan. Moreover
Hk̄(γk(v′)) ≤ Gk̄(γk(v)) by definition and if Θk̄(γk(v)) = optimal, Gk̄(γk(v′)) ≤ Gk̄(γk(v)). In
conclusion one has Rk(v′) < Rk(v). This implies that, at line 3 of Algorithm 1, it is never
possible to select v before v′. And, for this reason it is not possible to output v.

RR n° 7927

10 L. Jezequel & E. Fabre

Consider case (2). Using the same argument than in the proof of the original A∗ algorithm,
one can show that there exists an open vertex v′′ such that: v′′ is on a p′k and gk(v′′) is optimal.
For the same reason as for case (1) it is not possible to select v before v′′ at line 3 of Algorithm 1.
And, so it is not possible to output v.

In both cases a contradiction has been given with the fact that Algorithm 1 can output a goal
vertex reached by a path reached by a path pk such that for any pk̄, (pk, pk̄) is not an optimal
distributed plan. This proves that when Algorithm 1 outputs some v, it is the goal vertex reached
by a path pk such that there is an optimal distributed plan (pk, pk̄).

3.3 Implementation of Gk̄

The remaining of this section gives a feasible construction of the distant (color) cost function Gk̄
and of the oracle Θk̄, showing that Algorithm 1 is usable in practice. These two functions have
to be computed by agent ϕk̄ independently of problem Pk, and in particular, independently of
Gk and Θk. The expand function is considered atomic: no update of Θk̄ or Gk̄ will occur during
the execution of this function by ϕk.

A possible implementation follows, where Θk̄ and Gk̄ are computed within Algorithm 1 by
ϕk̄:

• initialization: ∀c ∈ Γ, Gk̄(c) = +∞, and if Fk̄∩γ−1
k̄

(c) = ∅ then Θk̄(c) = useless otherwise
Θk̄(c) = null,

• update: as soon as some final vertex v ∈ Fk̄ is open or candidate, if no other open vertex
v′ ∈ Vk̄ satisfies gk̄(v′) + hk̄(v′, γk̄(v)) < gk̄(v), then color γk̄(v) can not be reached with a
lower cost in Pk̄, so Θk̄(γk̄(v)) is set to optimal and

Gk̄(γk̄(v)) = min
v′∈Fk̄,γk̄(v′)=γk̄(v)

gk̄(v′)

• final update: when Algorithm 1 stops, for all c ∈ Γ such that Θk̄(c) = null, set Θk̄(c) =
useless, and Gk̄(c) = +∞.

Proposition 4. For any c ∈ Γ there exists a finite time after which either Θk̄(c) = optimal or
Θk̄(c) = useless. Moreover, as soon as the value of Θk̄(c) is different from null it no longer
changes.

Proof. Recall that all vertices are accessible in Pk̄. One can not rely on the values of Θk to prove
Proposition 4, so, for that purpose, Proposition 1 can not be considered as true, the case where
Algorithm 1 does not terminates thus has to be considered. Consider c ∈ Γ. If no goal vertex
with color c exists, then, Θk̄(c) = useless from the beginning. Else, two cases are possible: (1)
Algorithm 1 terminates, and (2) Algorithm 1 does not terminate.

In case (1) all c ∈ Γ for which Θk̄(c) = null are set to useless when Algorithm 1 terminates.
In case (2) it can be shown that the update will set all Θk̄(c) which are null to optimal after

some time. For the same reasons as in the proof of Proposition 1, after some time all vertices
are either closed or candidate. Let v ∈ Fk̄ be such a vertex, with γk̄(v) = c, and Θ 6= null.
If v is candidate it means that Θk̄(c) = optimal because there is no open vertex, and thus, in
particular, no open vertex v′ such that gk̄(v′) + hk̄(v′, c) < gk̄(v). If v is closed it means that v
has been the candidate vertex with the smallest Rk̄ at sometimes, and thus Θk̄(c) as been set to
optimal.

In all cases Θj(c) 6= null, which proves the first part of Proposition 4.

Inria

A#: a Distributed A* for Factored Planning 11

The second part of the proposition is straightforward. Only initialization and final update
can set Θk̄(c) to useless. It is not possible that Θk̄(c) = optimal before initialization. Moreover,
final update can only change those Θk̄(c) equal to null. Thus it is not possible for Θk̄(c) to be
set to useless after having being set to optimal. Only update can set Θk̄(c) to optimal. At that
time the only c such that Θk̄(c) = useless come from initialization. It means that they are such
that no goal vertex with that color exists in Pk̄. Thus, it is not possible that a vertex with that
color becomes either open or candidate. Hence, it is not possible to change Θk̄(c) from useless
to optimal.

This ends the proof of the second part of Proposition 4.

Proposition 5. For any c ∈ Γ if Θk̄(c) = optimal then the value of Gk̄(c) is the optimal cost in
Pj for reaching a goal vertex with color c. Moreover, if Θk̄(c) = useless, c can not be the color
reached by a globally optimal solution.

Proof. If Θk̄(c) = optimal it means that, at some time, there existed v ∈ Fk̄ such that v was open
or candidate and γk̄(v) = c, and there were no open vertex v′ ∈ Vk̄ such that gk̄(v′) +hk̄(v′, c) <
gk̄(v). At this time Gk̄(c) had been set equal to gk̄(v′′), where v′′ is a goal vertex with color c
minimizing the value of gk̄. Gk̄(c) is thus the cost of a path reaching color c in Pk̄. Assume
it is possible to find a path with cost cm strictly smaller than Gk̄(c). Let v′′′ be the goal
vertex with color c reached by this path. By a similar argument than in the proof of the
original A∗ algorithm, either (1) gk̄(v′′′) = cm, or (2) there exists an open vertex v′′′′ such that
gk̄(v′′′′) + hk̄(v′′′′, c) ≤ cm. In case (1) v′′′ could have been selected as a goal vertex with color
c minimizing the value of gk̄, this is in contradiction with the fact that cm < Gk̄(c). In case (2)
the existence of v′′′′ is in contradiction with the fact that there were no open vertex v′ ∈ Vk̄ such
that gk̄(v′) + hk̄(v′, c) < gk̄(v). This proves the first part of the Proposition 5.

If Θk̄(c) = useless two cases are possible. Either no goal vertex exists with color c, in this
case c can clearly not be the color reached by a globally optimal solution. Or Algorithm 1
stopped and Θk̄(c) has been set to useless during final update. In this case it is possible that
no global solution exists, so c can not be the color reached by a globally optimal solution. It is
also possible that a global solution exists, reaching color c′. In this case, necessarily, c′ 6= c. This
is due to the fact that, in this case, Algorithm 1, outputs this solution, and thus, just before
that, a candidate vertex v of color c′ had the minimal value of Rk̄, thus Θk̄(c′) has been set to
optimal. As a globally optimal solution exists reaching c′ 6= c it is not possible that a globally
optimal solution exists reaching c. Hence, if Θk̄(c) = useless, c can not be the color reached by
a globally optimal solution. This proves the second part of Proposition 5.

3.4 Running example
Consider the graph of Figure 2. Heuristics h1 should have the following properties: h1(i1, r) ≤ 1,
h1(v1, r) ≤ 0, and h1(v, b) ≤ +∞ for any v. In the same way the values of H2 (provided to ϕ1

by ϕ2) should always be such that: H2(r) ≤ 2, and H2(b) ≤ 2 + 0 = 2.
Assume ϕ1 is running Algorithm 1 on P1. Initially, i1 is open, g1(i1) = 0, and R1(i1) =

g1(i1) + minc∈{r,b}(h1(i1, c) + H2(c)). All other vertices are closed and such that g1 is infinite.
Moreover, Θ1(b) = useless, as no goal vertex with color b exists in P1. The first execution of
the while loop will directly call the expand function, as i1 is not candidate. It will be marked
as closed (as i1 is not a goal vertex). As g1(i1) = 0 ≤ 0 = g1(i1) + 0, i1 will not be re-
opened. As g1(v1) = +∞ > 1 = g1(i1) + 1, v1 will be opened, with g1(v1) = 1, and R1(v1) =
g1(v1) + minc∈{r,b}(h1(v1, c) + H2(c)), and pred(v1) = i1. After that, the expand function
terminates. Immediately, Θ1(r) = optimal as v1 is a goal state with color r and no other open

RR n° 7927

12 L. Jezequel & E. Fabre

P1 : i1 v1, r
β, 1

α, 0

P2 : i2 v2, r v′2, b
α, 2 β, 0

β, 1

Figure 2: A CFS problem. Goal vertices are represented with their color (ex. v1 is a goal with
color r). Costs and labels are written above edges.

vertex exists, G1(r) = g1(v1) = 1. As there is open vertices, a second execution of the while loop
starts. The open or candidate vertex with minimal value of Rk is v1. As v1 is not candidate, a
call to expand occurs immediately. As v1 ∈ F1, it is now candidate, and R1(v1) = g1(v1) +G2(r)
if Θ2(r) = optimal or R1(v1) = g1(v1) +H2(r) else. As v1 has no neighbors, no new vertices are
opened. From that, a new execution of the while loop occurs. As v1 is candidate it is checked
if it allows to conclude. No more calls to expand function occur as there no longer exists open
vertices. As soon as Θ2(r) = optimal, with G2(r) = 2 it is possible to conclude. The only
possible local solution is to go from i1 to v1 in one step. Its cost is 1 locally, but 1 + 2 = 3
globally, as the part of the solution in P2 is to go from i2 to v2 in one step.

4 Distributed planning with two components

This section extends the algorithm proposed to solve CFS problems to the more general frame-
work of distributed planning (DP) problems, still in the limited case of two components. Com-
pared to CFS, DP problems introduce two difficulties. First, colors are assigned dynamically to
vertices: the color of vertex v is not given in advance by some coloring function γ, but is set as
a function of the path p leading to this vertex v = p+. Secondly, rather than a finite set Γ of
colors, one potentially has an infinite set, since the idea is the the ‘color’ of vertex v = p+ is the
sequence of shared actions met along path p leading to v. And there is generally no (efficient)
bound on the number of shared actions in a globally optimal distributed plan2.

Let us recast a DP problem (P1,P2) as a CFS problem (P ′1,P ′2) with color set Γ = (Λ1∩Λ2)∗,
the set of sequences of shared actions. One has P ′k = (V ′k, E

′
k,Λ

′
k, λ
′
k, c
′
k, i
′
k, F

′
k) with V ′k = Vk×Γ,

E′k = {((v, w), (v′, w′)) : (v, v′) ∈ Ek ∧ w′ = w πΛ1∩Λ2(γk((v, v′)))}, i′k = (ik, ε), F ′k = Fk × Γ,
γ′k : F ′k → Γ is such that γ′k((v, w)) = w, and c′k is such that c′k(((v, w), (v′, w′))) = ck((v, v′)).
(P ′1,P ′2) has however a major difference with CFS problems considered in Section 3: V ′1 , E′1, V ′2 ,
and E′2 may be infinite.

The remaining of this section is dedicated to extending the results of Section 3 to the case
of the particular infinite graphs considered here. It will allow to use Algorithm 1 along with
expand function given in Algorithm 3 for solving DP problems. This new expand function is
in fact responsible for computing parts of P ′k from Pk (only when needed). Three points have
to be addressed: (1) computation of Rk((v, w)) sometimes implies to take a minimum over an

2Strictly speaking, there exists a bound since the product planning problem P = P1 × P2 is finite, and no
optimal plan will cross twice the same global state. However, the interest of distributed planning is to deploy
local reasonings in Pk without making assumptions on the size of the ‘external’ component Pk̄.

Inria

A#: a Distributed A* for Factored Planning 13

infinite number of elements, (2) termination of the algorithm relies on finiteness of the graphs,
(3) computation of Gk̄ and Θk̄ are not directly possible on infinite graphs as non-accessible colors
can not be determined at initialization.

Algorithm 3 expand function
{expand function has been called with an argument v of the form (v′, w)}
if v′ ∈ Fk then
mark v = (v′, w) candidate
calculate Rk(v)

else
mark v = (v′, w) closed

end if
for all v′′ such that (v′, v′′) ∈ Ek do
w′ ← wπΓ(γk((v′, v′′)))
gk((v′′, w′))← min(gk((v′′, w′)), gk((v′, w)) + ck((v′, v′′)))
if gk((v′′, w′)) strictly decreased then
mark (v′′, w′) open
pred((v′′, w′))← (v′, w)

end if
calculate Rk((v′′, w′))

end for

4.1 Computation of Rk and Hk̄

For any color w (or at least any color which may correspond to an optimal distributed plan),
Hk̄(w) should give a lower bound on the cost of reaching this color in Pk̄. Clearly, taking
Hk̄(w) = 0 for any w gives such a lower bound. However, it is usually better to get a tight
bound in order to avoid as much exploration of the graphs as possible. For practical use of our
algorithm, using a more accurate Hk̄ would be recommended. An example of such an Hk̄ is the
following, where w′ < w is notation for w′ is a prefix of w (recall that Hk̄ is computed by ϕk̄):

Hk̄(w) = min(Ho
k̄(w), Hc

k̄(w))

with:
Ho
k̄(w) = min

(vk̄,w
′) open

w′<w

(gk̄((vk̄, w
′)), hk̄((vk̄, w

′))),

Hc
k̄(w) = min

(vk̄,w
′) candidate
w′<w

(gk̄((vk̄, w
′))).

Notice that for any w it is possible to compute Hk̄(w), as the set of open and candidate (v, w) is
always finite. Notice also that all Hk̄(w) can be computed by ϕk from a finite number of them
given by ϕk̄: the one which are such that (vk̄, w) is open or candidate. We denote them by Ĥk̄.
One then has: Hk̄(w) = minw′<w Ĥk̄(w′).

When (v, w) is candidate, the computation of Rk is not an issue, it can be done exactly as
in the simpler cases. Notice that, when (v, w) is candidate, v is necessarily in Fk. Hence, when
Θk̄(w) = optimal one has:

Rk((v, w)) = gk((v, w)) +Gk̄(w),

RR n° 7927

14 L. Jezequel & E. Fabre

and in other cases:
Rk((v, w)) = gk((v, w)) +Hk̄(w).

However, when (v, w) is open it is not possible to directly use the previous definition of
Rk((v, w)) as it may involve the computation of a minimum over an infinite number of elements.
First of all, computing Rk as before would require the computation of hk((v, w), w′) for any color
w′. We consider instead hk((v, w)) = minw′ hk((v, w), w′), which is computable with standard
heuristic computation technics as a lower bound on the cost of a path in Pk from v to a goal
vertex.

From that, when (v, w) is open, we suggest to compute Rk((v, w)) as follows:

Rk((v, w)) = gk((v, w)) + hk((v, w)) + min
w′>w

Hk̄(w′).

The second difficulty is that there may be an infinite number of colors w to consider when
computing minw′ Hk̄(w′) = minw′>wHk̄(w′). This suggest to add a constraint on Hk̄: it should
be such that minw′>wHk̄(w′) is computable for any w. Fortunately, using the implementation
of Hk̄ proposed above it is possible. One just has to remark that:

min
w′>w

Hk̄(w′) = min(Hk̄(w), min
w′>w

Ĥk̄(w′)),

as the number of w such that Ĥk̄(w) is defined is always finite, this minimum can be computed.

4.2 Termination of the algorithm

The main difference here with the case of CFS problems is that the termination of the algorithm
is not ensured when there is no solution. This is due to the fact that the graph to explore is in
general infinite. In fact, it is possible to ensure termination, as there is a bound on the length of
the color corresponding to a possible solution. This bound can be computed by considering the
number of vertices in the product of P1 and P2: if a solution exists, one is such that it passes at
most one time in each vertex of this graph. However, it is not straightforward to tightly compute
this bound in a distributed manner. For this reason, in the following we focus on the case where
there exists a solution.

Theorem 2. In this context, if the considered planning problem (P1,P2) has a solution, then:
any execution of Algorithm 1 by ϕk on Pk terminates. Moreover, the output of Algorithm 1 for
agent ϕk is a goal vertex vk ∈ Fk, reached by a local plan pk. The assembling of p1 and p2

provided by agents ϕ1 and ϕ2 resp. yields an optimal distributed plan (p1, p2) solving (P1,P2).

To prove theorem 2 one first prove that as soon as a solution exists for (P1,P2), Algorithm 1
terminates and outputs a vertex (Proposition 6). After that it is sufficient to notice that the
proof of Proposition 3 never relies on the assumption that V1, E1, V2, or E2 are finite, so this
proposition also applies here.

Proposition 6. When (P1,P2) has a solution, Algorithm 1 terminates by outputting some v
when executed by ϕk on Pk.

Proof. Assume (P1,P2) has a solution but Algorithm 1 does not terminate. It means there is
always an open or candidate couple (v, w). After some time, such a couple will be candidate.
This is due to the fact that there exists a reachable goal vertex (else no solution would exist).
After some time, any candidate couple which may be part of a solution will become the couple

Inria

A#: a Distributed A* for Factored Planning 15

with the minimal value for Ri. This is due to the fact that (1) all couples (v′, w′) marked as open
by a call to expend function with argument (v, w) are such that gk((v′, w′)) ≥ gk((v, w)) + c,
where c is the minimal cost of an edge in Pk, (2) any candidate couple (v, w) which may be part
of a solution is such that Rk((v, w)) < +∞, and (3) as for any w, Θk̄(w) has to take a value after
some time and Algorithm 1 does not terminate, any candidate couple with minimal value for Rk
will be discarded after some time. After some time a couple (v, w) such that Θk̄(w) = optimal
will become candidate. Once again this is due to the existence of a solution. From the previous
argument, such a couple will become the couple with minimal value for Rk. Thus, Algorithm 1
will terminate thanks to this couple. This is in contradiction with the assumption taken, thus
this assumption is false, which means that when (P1,P2) has a solution, Algorithm 1 terminates.

Assume Algorithm 1 terminates without outputting a (v, w). It means that, at some time,
all couples (v, w) were closed. However, as (P1,P2) has a solution there exists a reachable couple
(v′, w′) such that v′ ∈ Fk and after some time Θk̄(w′) = optimal. As all couples (v, w) were
closed it means that all the reachable part of P ′k has been explored (each (v, w) has been marked
open at some time). As v′ is a goal vertex, (v′, w′) has been marked candidate after being marked
open. As after some time Θk̄(w′) = optimal it is not possible that (v′, w′) has been marked closed
before Algorithm 1 terminated. This is in contradiction with our assumption, thus, Algorithm 1
can only terminate by outputting some (v, w).

4.3 Computation of Gk̄ and Θk̄

As before, these two functions have to be computed by agent ϕk̄ independently of Pk, and in
particular, independently of Gk and Θk. A possible implementation, where Θk̄ and Gk̄ are
computed along execution of Algorithm 1 by ϕk̄, is the following:

• initialization: ∀w ∈ Γ, Θk̄(w) is considered as null and Gk̄(w) = +∞ (but only the
Θk̄(w) 6= null and the corresponding values of Gk̄ are stored).

• update (1): as soon as there exists v ∈ Fk̄ such that (v, w) is open or candidate, and there
is no open couple (v′, w′) such that gk̄((v′, w′)) + hk̄((v′, w′)) < gk̄((v, w)) and w′ < w,
Θk̄(γk̄(v)) = optimal and

Gk̄(w) = min
v′∈Fk̄

gk̄((v′, w)).

• update (2): as soon as for a given w there exists no w′ < w and v such that (v, w′) is open
or (v, w) is candidate, if Θk̄(w) = null, then Θk̄(w) is set to useless.

• final update: when Algorithm 1 stops, for all w ∈ Γ such that Θk̄(w) = null, set Θk̄(w) =
useless, and Gk̄(w) = +∞.

Proposition 4 and Proposition 5 still hold with these new manners of computing Θk̄ and
Gk̄. The only difference in the proofs is about detection of non-reachable colors. One just has
to remark that, after some time, any non-reachable color w will be such that no prefix w′ of w
appears in a couple (v, w′) either open or candidate. Hence, after some time, Θk̄(w) will be equal
to useless thanks to update (2). After that it will never become equal to optimal as no prefix w′
of w exists such that a couple (v, w′) is either open or candidate, so update (1) will never occur
for w.

4.4 Running example

Consider the graph of Figure 3.

RR n° 7927

16 L. Jezequel & E. Fabre

P1 : i1 v1
β, 1

α, 0

P2 : i2 v2 v′2
α, 2 β, 0

β, 1

Figure 3: A DP problem. All non-initial vertices are goal. Costs and labels are written above
edges.

(i1, ε) (i1, α) (i1, αα)

(v1, β) (v1, αβ) (v1, ααβ)

. . .

. . .

α, 0

β, 1

α, 0

β, 1

α, 0

β, 1

Figure 4: From CFS to DP.

Applying the transformation of DP problems into CFS problems proposed above , the graph
P ′1 would be as depicted in Figure 4.

An execution of Algorithm 1 by ϕ1 on P1 starts with (i1, ε) open. Then a call to expand
function closes (i1, ε) and opens (i1, α) and (v1, β). After that depending on the values of the
different heuristics, a call to expand function will occur on either (i1, α) or (v1, β). Assume
it is called on (i1, α). Then (i1, α) is closed and (i1, αα) and (v1, αβ) are opened. After that
expand will be called on either (v1, β), (i1, αα) or (v1, αβ). Which will either mark (v1, β) or
(v1, αβ) candidate, or close (i1, αα) and open (i1, ααα) and (v1, ααβ). After each time an element
(v1, wβ) is opened with w ∈ {α}∗, Θ1(wβ) = optimal and G1(wβ) = |w|.0 + 1. As all costs of
edges are positive, any open element of the form (v1, wβ) with w ∈ {α}∗ becomes candidate after
a finite time. After some time Θ2(β) = useless (it is not possible to reach a goal state in G2

using only one edge with color β), and Θ2(αβ) = optimal with G2(αβ) < min(H2(wβ), G2(wβ))
for all w ∈ {α}∗ such that Θ2(wβ) 6= optimal and G2(αβ) < G2(wβ) for all w ∈ {α}∗ such that
Θ2(wβ) = optimal. It allows ϕ1 to conclude that its part of the optimal solution (which has a
global cost of 3) reaches v1 with color αβ. Moreover, the values of pred allow to conclude that
the path in P1 should be to loop on i1 one time and then go to v1.

5 Conclusion

A* is a celebrated depth-first search algorithm to quickly find a shortest path in a possibly
huge oriented graph. Its variants are extremely used to solve optimal planning problems, which
are weak versions of optimal control problems. This paper has presented A#, a multi-agent
version of A*, dedicated to quickly find an optimal multi-agent strategy to drive a distributed

Inria

A#: a Distributed A* for Factored Planning 17

system to a target state. Its convergence and its consistency have been proved. Compared to
other approaches to factored/distributed planning, this is the first distributed search algorithm
that also provides a globally optimal plan. Moreover, it is not hierarchical in the sense that all
components run the same algorithm simultaneously, and bias each other’s searches by their own
guesses. It is thus more a ‘consensus’ approach than a master-slave approach.

The practical interest of A# will be soon tested on random planning benchmarks. In terms
of theoretical complexity, however, the worst case bounds of factored planning problems remain
unchanged, and one may have to explore the whole local graph of each local planning problem.
However, compared to running A* on the equivalent product problem, one may be exponentially
faster when components are loosely coupled. This is the standard key advantage of distributed
planning, which explores possible plans as partial orders of actions rather than sequences, and
thus saves the exploration of different interleavings of concurrent actions.

While the paper is limited to two components, A# extends to graphs of interacting compo-
nents in a usual manner (these graphs are obtained by placing an edge between components that
share actions). In particular, A# may become very efficient when the interaction graph between
components is a tree.

Beyond intensive benchmarking of A#, our future work will examine its extension to the
efficient distributed detection of problems that have no solution, which remains an open question.

References
[1] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100
–107, 1968.

[2] S. Edelkamp. Planning with pattern databases. In Proceedings of the 6th european conference
on planning, pages 13–24, 2001.

[3] M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for optimal sequen-
tial planning. In In Proc. ICAPS 2007, pages 176–183, 2007.

[4] E. Karpas and C. Domshlak. Cost-optimal planning with landmarks. In Proceedings of the
21st international joint conference on Artifical intelligence, pages 1728–1733, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[5] R. Brafman and C. Domshlak. Factored planning: How, when, and when not. In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI-2006), pages 809–814, 2006.

[6] R. Brafman and C. Domshlak. From one to many: Planning for loosely coupled multi-agent
systems. In ICAPS, pages 28–35, 2008.

[7] E. Amir and B. Engelhardt. Factored planning. In In IJCAI‚Äô03, pages 929–935. Morgan
Kaufmann, 2003.

[8] E. Fabre and L. Jezequel. Distributed optimal planning: an approach by weighted automata
calculus. In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages 211 –216,
dec. 2009.

RR n° 7927

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Planning for Distributed Systems
	Planning as path search in a graph
	The A* solution
	Distributed planning
	Coordinated parallel path searches

	Compatible final states
	Intuition on the approach
	Proposed algorithm
	Implementation of G
	Running example

	Distributed planning with two components
	Computation of Rk and H
	Termination of the algorithm
	Computation of G and
	Running example

	Conclusion

