J. Zhang, M. Marsza?ek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study, International Journal of Computer Vision, vol.36, issue.1, pp.213-238, 2007.
DOI : 10.1007/s11263-006-9794-4

URL : https://hal.archives-ouvertes.fr/inria-00548574

D. Grangier and S. Bengio, A Discriminative Kernel-Based Approach to Rank Images from Text Queries, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.8, pp.1371-1384, 2008.
DOI : 10.1109/TPAMI.2007.70791

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, TagProp: Discriminative metric learning in nearest neighbor models for image auto-annotation, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459266

URL : https://hal.archives-ouvertes.fr/inria-00439276

M. Choi, J. Lim, A. Torralba, and A. Willsky, Exploiting hierarchical context on a large database of object categories, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540221

S. Nowak and M. Huiskes, New strategies for image annotation: Overview of the photo annotation task at ImageCLEF, Working Notes of CLEF, 2010.

C. Lampert, H. Nickisch, and S. Harmeling, Learning to detect unseen object classes by between-class attribute transfer, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206594

S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder et al., Visual Recognition with Humans in the Loop, ECCV, 2010.
DOI : 10.1007/978-3-642-15561-1_32

T. Mensink, J. Verbeek, and G. Csurka, Learning structured prediction models for interactive image labeling, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995380

URL : https://hal.archives-ouvertes.fr/inria-00567374

V. Vapnik, The Nature of Statistical Learning Theory. Spinger, 1995.

F. Perronnin, J. Sánchez, and T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification, ECCV, 2010.
DOI : 10.1007/978-3-642-15561-1_11

URL : https://hal.archives-ouvertes.fr/inria-00548630

A. Makadia, V. Pavlovic, and S. Kumar, A New Baseline for Image Annotation, ECCV, 2008.
DOI : 10.1007/978-3-540-88690-7_24

J. Weston, S. Bengio, and N. Usunier, Large scale image annotation: learning??to??rank with??joint word-image embeddings, ECML, 2010.
DOI : 10.1007/s10994-010-5198-3

J. Deng, A. Berg, K. Li, and F. Li, What Does Classifying More Than 10,000 Image Categories Tell Us?, ECCV, 2010.
DOI : 10.1007/978-3-642-15555-0_6

C. Desai, D. Ramanan, and C. Fowlkes, Discriminative models for multi-class object layout, ICCV, 2009.

B. Settles, Active learning literature survey, 2009.

S. Vijayanarasimhan and K. Grauman, Multi-level active prediction of useful image annotations for recognition, NIPS, 2009.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large margin methods for structured and interdependent output variables, pp.1453-1484, 2005.

C. Bishop, Pattern recognition and machine learning. Spinger, 2006.

S. Nowozin and C. Lampert, Structured Learning and Prediction in Computer Vision, Foundations and Trends?? in Computer Graphics and Vision, vol.6, issue.3-4, pp.185-365, 2011.
DOI : 10.1561/0600000033

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, Workshop on Statistical Learning in Computer Vision, ECCV, 2004.

A. Oliva and A. Torralba, Modeling the shape of the scene: A holistic representation of the spatial envelope, pp.145-175, 2001.

J. Bradley and C. Guestrin, Learning tree conditional random fields, ICML, 2010.

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory, vol.14, issue.3, pp.462-467, 1968.
DOI : 10.1109/TIT.1968.1054142

P. Pletscher, C. Ong, and J. Buhmann, Spanning tree approximations for conditional random fields, AISTATS, 2009.

M. Huiskes and M. Lew, The MIR flickr retrieval evaluation, Proceeding of the 1st ACM international conference on Multimedia information retrieval, MIR '08, 2008.
DOI : 10.1145/1460096.1460104

S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.68

URL : https://hal.archives-ouvertes.fr/inria-00548585

T. Mensink, G. Csurka, F. Perronnin, J. Sánchez, and J. Verbeek, LEAR and XRCE's participation to Visual Concept Detection Task -ImageCLEF, 2010.

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2007.
DOI : 10.1007/s11263-009-0275-4

]. J. Platt, Probabilities for SV machines, Advances in Large Margin Classifiers, 2000.

S. Nowozin, P. Gehler, and C. Lampert, On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation, ECCV, 2010.
DOI : 10.1007/978-3-642-15567-3_8

K. Van-de-sande and T. Gevers, The University of Amsterdam's Concept Detection System at ImageCLEF, 2010.

E. Mbanya, C. Hentschel, S. Gerke, M. Liu, A. Nürnberger et al., Augmenting Bag-of-Words -Category Specific Features and Concept Reasoning, 2010.

I. Dimitrovski, D. Kocev, S. Loskovska, and S. D?eroski, Detection of Visual Concepts and Annotation of Images Using Predictive Clustering Trees, 2010.

N. Motohashi, R. Izawa, and T. Takagi, Meiji University at Im- ageCLEF2010 Visual Concept Detection and Annotation Task, 2010.