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Towards Good Practice in Large-Scale Learning for Image Clasification

Florent Perronnify Zeynep Akata®, Zaid Harchaouiand Cordelia Schmtd
* TVPA team, XRCE, France ® LEAR teany INRIA, France

Abstract ing [37] and supervector coding!P]. A detailed compar-
ison of these high-dimensional descriptors was performed
We propose a benchmark of several objective functionsin [9]; it showed that the Fisher vector representation out-
for large-scale image classification: we compare the one- performs the others. We use this image representation in the
vs-rest, multiclass, ranking and weighted average ranking following and focus on large-scale learning of classifiers.

SVMs. USing StOChaStiC gradient descent Optimization, we Most image C|assiﬁcation approaches have adopted the
can scale the learning to millions of images and thousandssimme strategy to train aimdependent one-vs-rest binary
of classes. Our experimental evaluation shows that ranking c|assifier for each class. A benefit of this approach is that
based algorithms do not outperform a one-vs-rest strategythe classifiers can be learned in parallel. This is a strong ar
and that the gap between the different algorithms reducesgyment in our large-scale scenario since it can signifigantl
in case of high'dimensional data. We also show that for reduce the training time. As an examp|e’ the two top Sys-
one-vs-rest, learning through cross-validation the oplim  tems at the ImageNet Large Scale Visual Recognition Chal-

degree of imbalance between the positive and the negativgenge (ILSVRC) 20107] used such an approachd 2.
samples can have a significant impact. Furthermore, early

stopping can be used as an effective regularization styateg
when training with stochastic gradient algorithms. Follow
ing these “good practices”, we were able to improve the
state-of-the-art on a large subset of 10K classes and 9M of
images of ImageNet from 16.7% accuracy to 19.1%.

A popular approach in the computer vision commu-
nity is to view image classification as a ranking prob-
lem: given an image, the goal is to rank the labels ac-
cording to their relevance. Performance measures such
as the top-k accuracy which is used to report results on
standard benchmarke,.g. in ILSVRC, reflect this goal.
While the one-vs-rest strategy is computationally effitien
and yields competitive results in practice, it is clearlpep-
timal with respect to a strategy optimizing directly a rarki

Large-scale image classification has recently received!oss b, 10, 16, 35, 40, 41].
significant interestT1, 19, 28, 29. This goes in hand with In this paper, we examine if these ranking approaches
large-scale datasets being available. For instance, INElge scale well to large datasets and if they improve the per-
(www.image-net.org) consists of more than 14M images la- formance. We compare the one-vs-rest binary SVM, the
beled with almost 22K concepts]]. multiclass SVM of Crammer and Singet(] which opti-

Current state-of-the-art methods for large-scale imagemizes top-1 accuracy, the ranking SVM of Joachimg [
classification 19, 29 use high-dimensional image descrip- which optimizes the rank of the labels as well the recent
tors in combination with linear classifiers. The use of linea weighted approximate ranking of Westenal. [3€] which
classifiers is motivated by their computational efficiency — optimizes the top of the ranking list. The datasets we con-
a requirement when dealing with a large number of classessider are large-scale in the number of classes (up to 10K),
and images. High dimensional descriptors allow to sepa-images (up to 9M) and feature dimensions (up to 130K).
rate the data with a linear classifier, i.e., they perform the For efficiency reasons we train our linear classifiers using
feature mapping explicitly and avoid using non-linear ker- Stochastic Gradient Descent (SGD) algorithmsi[3] with
nels. As a rule of thumb, linear classifiers with high di- the primal formulation of the objective functions as #i]
mensional descriptors perform similarly to low dimensiona for binary SVMs or in p3] for structured SVMs. By us-
bag-of-visual-words (BOV) with non-linear classifierq.[ ing the exact same optimization framework, we truly focus
In the literature several high dimensional descriptors ex- on the merits of the different objective functions, not oa th
ist, e.g, the Fisher vectorl4, 26], local coordinate cod-  merits of the particular optimization techniques.

*The LEAR team is partially funded by the European integrategect OL.”’ experimental evaluation shows that ranking based
AXES. algorithms do not outperform a one-vs-rest strategy and tha

1. Introduction




RECOMMENDATIONS FOR LARGESCALE IMAGE CLASSIFICATION

1. Stochastic traininglearning with stochastic gradient de-| 4. Step-size a small-enough fixed step-size w.r.t learning
scent is well-suited for large-scale datasets rate is often sufficient for state-of-the-art performance

2. Class imbalanceoptimizing the imbalance parameter in| 5. One-vs-rest one-vs-rest strategy is a flexible option for
one-vs-rest strategy is a must for competitive performang large-scale image classification

@

3. Early stopping regularizing through early stopping re- | 6. Capacity saturation for sufficiently large feature repre-
sults in fast training and good generalization performance  sentation all strategies lead to similar performance

the gap between the different algorithms reduces in case ofcation and proposed to combine image descriptor compres-
high-dimensional data. Our experiments also show that, insion with learning based on stochastic gradient descent. We
the case of the one-vs-rest strategy, learning througiscros underline that in most previous works tackling large-scale
validation the optimal degree of imbalance between the pos-datasets, the objective function which is optimized is al-
itive and the negative examples can have a significant im-ways the same: one binary SVM is learned per class in a
pact. Furthermore, early stopping can be used as an effecene-vs-rest fashionl[, 19, 28, 29). One-vs-rest strategies
tive regularization strategy for fast training with SGDI+o  offer several advantages —seeg, [27], for a defense of
lowing these “good practices”, we were able to improve the such strategies.

state-of-the-art on a a large subset of 10K classes and 9M One noticeable exception to this rule is the large-scale
of images of ImageNetfi[/] from 16.7% accuracy to0 19.1%. ranking algorithm of Westomt al. [3€] inspired by B4].

We summarize our findings in the “recommendation box” at In their work, Westoret al. report on a subset of 15K Im-
the top of this page. ageNet categories a significant increase of accuracy when
The next section reviews related work and Section optimizing a ranking objective function compared to one
presents the different objective functions used in our one-vs-rest: from 2.27% top-1 accuracy to 4.25%. We in-

evaluation.  Section4 describes the SGD-based op- cluded this ranking algorithm in our benchmark.

timization.  Experimental results for two large sub-  There has also been a significant amount of work on re-
sets of the ImageNet dataset, ILSVRC 2010 and Im- ducing the computational cost of large-scale classifioatio
ageNet10K, are presented in Sectidn The code  For instance, Westoet al. proposed to learn jointly the
used for our experimental evaluation is available at classifier as well as a dimensionality reduction of the fea-

http://lear.inrialpes.fr/software. tures 38]. To make the complexity sublinear in the number
of classes, various approaches have been proposed which
2 Related Work employ tree structures!] 14, 27]. These approaches are

outside the scope of our paper.

In the following we present related work for large-scale L .
image classification. Some approaches use simple clas3- Objective Functions
sifiers such as nearest neighbor (NNY][ While exact
NN can provide a competitive accuracy when compared to{(
SVMs [11, 39, it is difficult to scale to large datasets. On
the other hand, approximate nearest neighbor (ANN) can
perform poorly on high-dimensional image descriptors-(sig
nificantly worse than one-vs-rest SVMs) while still being
much more computationally intensived].

For these reasons, the vast majority of the literature on Minimize 2O(W) + L(S; W), (1)
large-scale image classification has employed large-margi
classifiers. A fair amount of work has been devoted to scal-Where W is the weight matrix stacking the weight vec-
ing the learning algorithms to large datasets. An explicit tors corresponding to each subproblem.  The objec-
mapping of the image descriptors to efficiently deal with tive decomposes into the empirical risk(S; W) :=
non-linear kernels was proposed ifi[ 25, 36]. Torresani & S_iv; L(xi, 55 W), with L(x;, y;; W) a surrogate loss
et al [39 used compact binary attribute descriptors to han- of the labeled exampléx;,y;), and the regularization
dle a large number of images. Sanchez and Perroain[ penaltyQ(W) := 25:1 |w.||?. The parametex > 0 con-
argued that high-dimensional image descriptors are necestrols the trade-off between the empirical risk and the regu-
sary to obtain state-of-the-art results in large-scalssifia larization penalty.

Let us first introduce a set of notations. L&t =
x;,yi),t = 1...N} be the training set where; ¢ X
is an image descriptog; € ) is the associated label apd
is the set of possible labels. We shall always take- R”.
A learning strategy corresponds to an empirical risk min-
imization with a regularization penalty as follows


http://lear.inrialpes.fr/software

We first briefly review the classical binary SVM. We then Weighted Approximate Ranking SVM (WAR). An is-
proceed with the multiclass, ranking and weighted approx- sue with the previous objective function is that the loss is
imate ranking SVMs. We finally discuss the issue of data the same when going from rank 99 to 100 or from rank 1
re-weighting. to rank 2. However, in most practical applications, one is

interested in the top of the ranked list. Usunétral. [35]

Binary One-Vs-Rest SVM (OVR) . In the case of the therefore proposed to minimize a function of the rank which

one-vs-rest SVM, we assume that we have only two classed! V€S More weight to the top of the list. Lat > ap >

andy = {—1,+1}. Letl(u) = 1 if u is true ando oth- ...ac > 0 be a set of” coefficients. For S%mple(i,yi)

erwise. The 0-1 los8 (y;w”z; < 0) is upper-bounded by ~ the 10SS isl;.(, .,y with ¢ defined agy = 35, a;. The
Lovr(xi,yi;w) = max{0, 1 — y;wTx,}. If we have more ~ Penalty incurred by going from rarikto £ +- 1 is a;.. Hence,

than two classes, then one transforms@helass problem & decreasing sequente; };~, implies that a mistake on

into C binary problems and trains independertilpne-vs-  the rank when the true rank is at the top of the list incurs a

rest classifiers. higher loss than a mistake on the rank when the true rank is
lower in the list.

3.1. Beyond binary While [35] proposes an upper-bound on the loss, Weston

et al. [38] propose an approximation. We follow] which

From now on, we treat the classes jointly apid = is more amenable to large-scale optimization and write:

{1,...,C}. Let{w.,¢c = 1...C} denote the” classifiers

corresponding to each of ti& classes. In this cas&V is c Lai (%1, i, 43 W)
aC x D dimensional vector obtained by concatenating the  Lwar(x;, yi; W) = Zﬁm (xi,9i Zail\Xi, Y, U, W) , (2
differentw,’s. We denote by\(y,7) the loss incurred for y=1 ra(Xi, i)

assigning labej while the correct label wag. In this work, .
we focus on the 0/1 losse. A(y,7) = 0if y = 7 and1 wherera (x,y) = .., L(wlz + A(y,c) > wjz) is a
otherwise. In what follows, we assume that we have oneregularized rank. Following3], we chooser; = 1/j.

label per image to simplify the presentation. As opposed to other workg ], 41], this does not optimize
directly standard information retrieval measures suchvas A

erage Precision (AP). However, it mimics their behavior by
putting emphasis on the top of the list, works well in prac-
tice and is highly scalable.

Multiclass SVM (MUL). There exist several flavors of
the multiclass SVM including the Weston and Watkins
[39 and the Crammer and Singerl(] formulations
(see B1] for a comprehensive review). Both variants 3.2. Data reweighting
propose a convex surrogate loss Ady;, ¢;) with ¢, =
arg max, w. z;, i.e. the loss incurred by taking the highest

Yy
score as the predicted label. We choose the Crammer an

When the training set is unbalanceids. when some
§lasses are significantly more populated than others, it can
Singer formulation, corresponding towu. (xi, yi: w) = be benef_|C|aI to reweight the data. This unbalance can k_Je
max, {A(yi, y) + ngl} B Wg «;, which provides a extreme in the one-vs-rest case when one has to deal with

tighter bound on the misclassification err6r], Note that @ large number of class€s as the unbalance between the

this can be viewed as a particular case of the structuredPOSitive class and the negative class is (on average)l.
SVM[34]. In the binary case, the reweighting can be performed by in-

troducing a parameter and the empirical risk then writes

as:
Ranking SVM (RNK). Joachims [6] considers the

. . . 1—
problem of ordering pairs of documents. Given a sam- _~_ Lovr(xi, yi; w) + P Lovr(xi, yi; w)
ple (x;,y;) and a labely # y;, the goal is to enforce Ny Z N Z

Wy, X; > ngi. The rank of labely for samplex can be e e (3)
written asr(x,y) = 25:1 IL(wlx > wlx). Giventhe  wherel, (resp. I_) is the set of indices of the positive
triplet (x;,v:, %), 1(w?x > wl'x) is upper-bounded by: (resp. negative) samples and. (resp.N_) is the cardinal-
ity of this set. Note thap = 1/2 corresponds to the natural
Lui (%4, yi, y; w) = max{0, Ay, y) — W;fixi + W;;in}_ reb_alancing o_f _the datae. in suph acase one gives as much
weight to positives and negatives.
Therefore, the overall loss ¢k;, ;) writes as: When training all classes simultaneously, introducing

one parameter per class is computationally intractable. It
c would require to cross-validaté' parametergointly, in-
Lenk (X, yi; W) = max{0, A(yi,y)—(w,~w,)Tx;}. i izati
RNK (Xi, Yi; » A, Y i~ Wy) X cluding the regularization parameter. In such a case, the
y=1 natural re-balancing appears to be the most natural choice.



In the multiclass case, the empirical loss becomes:
11

ol > i Z Ly (x4, Y53 W)

c=1 icl.

y; = ¢} and N, is the cardinality of this

(4)

wherel. = {i :

set. One can perform a similar rebalancing in the case of

Lrnk and Lwar.

4. Optimization Algorithms

We now consider the optimization of the objective func-

This is already an optimized code which includes fast linear
algebra and a number of optimizations such as the use of a
scale variable to update only when a loss is incurred. We
now discuss a number of implementation details.

Bias. Until now, we have not considered the bias in our
objective functions. This corresponds to an additional pa-
rameter per class. Following common practice, we add one
constant feature to each observation As is the case in
Bottou's code, we do not regularize this additional dimen-
sion.

Stopping criterion. Since at each step in SGD we have a

tions. To handle large datasets, we employ Stochastic Grangjsy estimate of the objective function, this value cannot

dient Descent (SGD}] which has recently gained popular-
ity in image classificationl[9, 25, 26, 28, 29, 3¢]. Since we
deal with linear classifiers, we can perform the optimiza-
tion directly in the primal. In the following, we describe
the optimization algorithms for various objective functio
and give implementation details. Finally, a brief compari-
son with batch solvers is reported.

4.1. Stochastic training

Training with stochastic gradient descent (SGD) consists
at each step in choosing a sample at random and updatin
the parameterss using a sample-wise estimate of the reg-
ularized risk. In the case diovr and Ry, the sample is
simply a pair(x;, y;) while in the case oRrnk and Rwar
it consists in a tripletx;, y;, y) wherey # y;. Letz, de-
note the sample drawn at stegwhether it is a pair or a
triplet) and letR(z;; w) be the sample-wise estimate of the
regularized riskw is updated as follows:

w®) = w1

— N Vewt-1 R(ze; W) 5)

wheren, is the step size.

We provide in Tablel the sampling and update proce-
dures for the objective functions used in our evaluation,
assuming no reweighting of the data. FBevr, RmuL
and Rgrnk, these equations are straightforward and opti-
mize exactly the regularized risk. Fdtwar it is only
approximate as it does not compute exactly the value of
ra(xi,yi), but estimates it from the number of samples
which were drawn before a violating sampjesuch that
Lyi(zi, yi, y; w) > 0 was found. Ifk samples were drawn,
then: ra(x;,y;) ~ L%J. For a large number of classes,
this approximate procedure is significantly faster than the
exact one (see3f] for more details). Note also that we im-
plement the regularization by penalizing the squared norm
of w, while [38] actually bounds the norm ofr. We tried

both strategies and observed that they provide similar re-

sults in practice.
4.2. Implementation details

We use as basis for our code the SGD library for binary
classification available on Bottou’s website (version [l/]3)

be used for stopping. Therefore, in all our experiments, we
use a validation set and stop iterating when the accuracy
does not increase by more than a thresidold

Regularization. While a vast majority of the works on
large-margin classification regularize explicitly by pkrna

ing the squared norm af (or by bounding it), regularizing
implicitly by early stopping is another optione. one sets

A = 0 and iterates SGD until the performance converges on
the validation set (see.g [2]). In our experiments, apply-
ing this strategy yields competitive results.

tep size. To guarantee converge to the optimum, the se-
quence of step sizes should satisfy,”, 7 = o and
Yooy mi < oo. Assumingl > 0, the usual choice is
n = 1/A(t + to), wherety is a parameter to tune. Bot-
tou provides in his code a heuristic to $gt We tried to
cross-validatety but never observed significant improve-
ments. However, we also experimented with a fixed step
sizen asin |2, 39].
Reweighting. All sampling/update equations in Tallere
based on non-reweighted objective functions.(Section
3.2). To reweight the data, we can modify either the sam-
pling or the update equations. We chose the first alternative
since, in general, it led to faster convergence. If we take th
example ofLoy g then the sampling is modified as follows:
drawy = 41 with probap, y = —1 with probal — p. Then
drawz; such thaty; = y.

4.3. Comparison with batch solvers

It is well known that SGD can perform as well as batch
solvers for OVR SVMs at a fraction of the cost B]. How-
ever, to the best of our knowledge, public SGD solvers do
not exist for other SVM formulations such as MUL SVM.
As a sanity check, we compared our MUL SGD solver
to two MUL batch solvers: LibLINEAR [3 and SVM-
Light [17]. Because of the cost of running batch solvers,

we ran experiments only on small subsets of ImageNet on

small BOV vectors. Our experiments (not reported here)
show that our SGD solver can perform on par with these
solvers at a fraction of the cost.



| | Sampling

Update |

Rovr | Draw (x;,y;) from S. 0i = 11if Lovr(xi, ys; w) > 0,0 otherwise.
wi = (1 =)W 4 pdixiy
RmuL | Draw (x;,y:) from S. § = argmaxy Ay, y) + w,x; andd; = ! ifg#yi
e Y v v ! 0 otherwise.
wy V(=) + dimexs iy =y
wi = wi (L= md) — G iy =7
wi (1= n\) otherwise.
Rrnk | Draw (xi,yi) from S. 0; = 1if Lyi(xi,yi, g; w) > 0,0 otherwise.
wy V(1= A) + Gmxi iy =y
Drawy # y; from . wi = WiV —pN) —simxs ify=7
w1 =) otherwise.
Rwar | Draw (x;,y;) from S. 0; = 1if g s.t. Lui(xi, yi, 5; w) > 0 was sampled) otherwise.
Fork=1,2,...,C — 1, do: Wz(ltfl)(l —mA) + 52'('_@]779(2‘ if y =y
Drawg # v from ). wi) = 3 Wi (L) —les mxi Ty =7
If Lui(xi,y:,5; w) > 0, break. Y Y e it on1 X vy=yv
w1 —mA)  otherwise.

Table 1. Sampling and update equations for various obgétinctions.

5. Experiments

Y

The experimental setup is described in Sectioh A
detailed analysis of the different objective functions and
parameters is given in Sectidn?2 for the ILSVRC 2010
dataset. Sectioh.3 presents results on the large-scale Ima-
geNetl0K dataset.

y
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5.1. Experimental setup

[ e e tagep
—#— BOV: N=1,024 + SP (D=4,096)
—e— FV: N=16 (D=2,048)

—e— FV: N=64 (D=8,192)

Top-1 Accuracy (in %)

Datasets. We use two subsets of ImageNét] for our
evaluation. The ILSVRC2010 dataséf [contains 1,000
classes and 1.4M images. This dataset was used in the Im —v— FV: N=256 (D=32,768)
ageNet Large Scale Visual Recognition Challenge in 2010. : © | —— FV: N=256 + SP (D=131,072)
We follow the standard training/validation/testing praab 0y 2 4 8 16 32 64
(resp. 1.2M/50K/150K images). The ImageNet10K dataset Unbalance B

contains 10,184 classes and approx. 9M imadéek [Fol- . ]

lowing [29], we use half of the data for training, 50K images F9ure 1. Impact of imbalancé = (1 — p)/p on the accuracy
for validation and the remainder for testing. In all these ex on ILSVRC 2010. The plain lines correspond to w-OVR while

eriments. we compute the ton-1 (or top-5) accurac erthe dashed lines correspond to u-OVR (which is independent o
P ! P p-1( p-5) yp (). For each methody is the number of Gaussians, SP indicates
class and report the averadel[29, 39].

whether spatial pyramids were used abds the dimensionality
of the features. Similar curves were obtained for top-5 emu

Features. Images are resized to 100K pixels if larger.

We extract approx. 10K SIFT descriptofs]] from 24x24

pac';che(sj(f)n a rlegglgr gi'dgxeg_y 6 plxelspatct: Sjl(_:r?les' ;—hey.arecompressed. For FV we employ product quantizatios [

:grsu;?e trzzr: agg;eén;t:d iniolgnuisrgna?ge Iev'el s?gs:atl?fecn\?\;eand for BOV scalar quantization []. Signatures are de-
: N ' d on-the-fly by the SGD routingg

use the Fisher Vector (FV) representation which was shownCompresse on-the-tly by the routineg|{

state of the art ina recent evalqatl(ﬂjl. [By.default weuse  t 5 Detailed analysis on ILSVRC2010

N = 256 Gaussians and a spatial pyramid (SP) with- 4

regions (the entire images and three horizontal stripds. T Importance of reweighting in OVR. We first show the im-

resulting descriptor is of approx. 130K dimensions. We also portance of reweighting the positive and negative samples

report results with the bag of visual words (BOV) given its in OVR. In what follows, u-OVR refers to the unweighted

popularity in large-scale classificationl, 38]. Our default version (all samples have the same weight) while w-OVR

BOV is 4K dimensional withV = 1,024 andR = 4. Given refers to the reweighted version. Since we reweight by bi-

the large datasets we work with, image signatures need to basing the samplingc(f. Section3.2), we introduce the im-
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—8—\=1e-5,n=n=0.1 —e— MUL
42 t RNK
~—6—A=0.0,n=n=01 —— WAR
ns ; ; : : 20 ; ; :
100 200 300 400 500 600 16 32 64 128 256

Passes through the data Number of Gaussians N
Figure 2. Impact of regularization on w-OVR (with= 1). Re-
sults on ILSVR 2010 with 130K-dim FVs. One pass signifies see-
ing all positives for a given class + (on average) as manytiega
Hence, 500 passes is approximately as costly as seeing@&aeh s
ple of the dataset once (because there are 1,000 classes)arSi
curves were obtained for top-5 accuracy.
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balance parametgt = (1 — p)/p which is the (average)

number of negatives sampled for each positjge= 1 cor- s el
responds to the natural rebalancing of the data (giving the ¥ wan

same weight to positives and negatives). We experimented 16 a2 - feé s 256
with different image signatures and especially with differ pheroTasssEe
ent dimensions for FV by varying the number of Gaussians

N and by using a SP or not. Results are reported in Flgureof the feature dimensionality) on the classification accyrdop:

1. We can see that properly tuniigcan have a significant o, 1 Bottom: top-5. Because of the cost of running thegeex
impact on accuracy. Especially for smaller dimensional rep jments, we did not use SPs.

resentations, w-OVR significantly outperforms u-OVR and

the natural rebalancing.¢. 3 = 1) is insufficient to get

good results. For the largest FV, cross-validatitggs little n) and (iii) using no regularization\(= 0) and a fixed step

effect. While it had been shown that tuning this parameter is sjze, i.e. implicitly regularizing with the number of itera-

importantto plot ROC curves in two-class classificatioll [ tions. The test results are shown in Figiréor the best

we believe we are the first to show that this parameter has &ross-validated parameters of the three methods. Strategy

crucial impact for multiclass problems. (i), which is the standard approacH[is slightly faster to
Note that we also reweighted the data for MUL, RNK converge in the first iterations thanks to initial largermpste

and WAR but this had virtually no impact on accuracy. One sizes. However, at convergence all three methods yield sim-

of the reasons is that, although we work on the same datajlar results. A major advantage of strategy (iii) with respe

it is much less unbalanced for MUL, RNK and WAR than to strategies (i) and (ii) is that there is a single paramieter

for OVR. Indeed, the ratio between the number of samplestune (the number of iterationsiter) instead of two fiter

in the most and least populated classes on ILSVRC2010 isand \). Given the training times in large-scale.f( Sec-

approx. 4. In the OVR case however the imbalance for ation 5.3), we choose this approach in the following exper-

given class is the ratio between the number of positive andiments. Note that we also experimented with the implicit

Figure 3. Impact of the number of GaussiaNs(and therefore

negative samples and is therefore on the order of 999. regularization with early stopping on the small-scale PAS-
Implicit regularization works. The following experiments ~ CAL VOC 2007 dataset and observed a small drop of per-
are reported for w-OVR with natural reweighting & 1), formance compared to explicit regularization (from 62.1%

but similar results were obtained with differeftparame- 0 60.2%) which seems to indicate that this strategy is bette
ters or with MUL, RNK and WAR. We ran experiments on Suited to large-scale datasets.

the largest features (the 130K-dim F\W). when regular-  One-vs-rest works. We compare OVR, MUL, RNK and
ization is supposed to have the largest impact. We compareVAR. For OVR, we report results for the re-weighted ver-
three regularization strategies: (i) using explicit regiza- sion,i.e. w-OVR. For MUL, RNK and WAR we report the
tion (A > 0) and a decreasing step sizg & 1/(A\(t+1t0)), results for the unweighted versions only (again the differ-
(ii) using explicit regularization and a fixed step sizg £ ence with the weighted versions was typically on the order



| | [ Ww-OVR [ MUL [ RNK | WAR | | [ U-OVR [ w-OVR [ MUL | RNK | WAR |

Top-1 BOV 26.4 227 | 20.8 | 24.1 BOV 4K-dim 3.8 7.5 6.0 4.4 7.0
FV 45.7 46.2 | 46.1 | 46.1 FV 130K-dim - 19.1 - - 17.9
Top-5 BOV 46.4 38.4 | 41.2 | 44.2 T _ -
FV 65.9 648 | 658 | 665 able 3. Top-1 accuracy (in %) on ImageNet10K

Table 2. Accuracy (in %) on ILSVRC 2010. _
5.3. Large-scale experiments on ImageNet10K

) We now summarize our experimental results on the large
of 0.1-0.5%). We report results for 130K-dim FVs and 4K- |55eNet10K dataset. In Table we report results for the
dim BOY vectors in Table2. We can draw the following 4k _qim BOV and the 130K-dim FV using top-1 accuracy
conclusions. asin[L1, 29. Given the cost of running the experiments on

First, for high-dimensional FV features all methods per- the high-dimensional FVs, we carried-out experiments only
form pretty much the same: the difference between the beswith the two objective functions which performed best on
and worst performing methods is 0.5% at top-1 and 1.7% ILSVRC 2010: w-OVR and WAR. Again, our conclusion
at top-5. We performed an additional set of experiments onis that w-OVR performs better than more complex objective
FVs to study the influence of the signature dimensionality. functions (at least on this dataset with those featuresy. Se
The results are reported in FiguseWe can indeed observe  Figure4 for sample results.

that, as the number of Gaussia¥sncreases,e. asthefea-  Comparison with the state of the art. We now compare
tures grow larger, the difference of accuracy betweenmliffe  our results with publications which report results at thalec
ent methods becomes smaller. Hence, for high-dimensionabf 0(10*) categories 11, 29, 3¢). Compared to [1], our
features, the learning objective function seems to hatle lit  BOV results are on par (even slightly better since we report
impact. Put into the perspective of the statistical leagnin - 7,505 while they report 6.4%) and our FV results are sig-
theory described in], this implies that the)(-) function  nificantly (almost 3 times) better due to the use of higher-
associated to each surrogate loss — which defines how thjimensional features.

performance in the surrogate loss transfers to the targetlo  \yestonet al.. who used a different ImageNet subset in

— does not play a major role here (see Theorem 1G] [ their experiments, show that WAR outperforms OVRJ[
Indeed, in our experiments the different learning obj@giv -, gov descriptors, where their OVR baseline did not
corresponding to different surrogate losses lead to simila reyeight the positives/negativese. it is similar to our u-
yet, good results. Therefore, in these experiments, the capyr, we also observed that WAR significantly outperforms
pacity of the classifiers at hand is “large” enough, relative |, oyR. However, we showed experimentally that w-OVR

to the difficulty of the dataset, and this corresponds to the herforms significantly better than u-OVR and slightly bette
so-called “low-noise” condition in statistical learningder than WAR.

which ones gets “fast learning rates”. In this case, the dif-
ferences between the surrogate losses almost disappear iHaturaI rebalancingd — 1). We show that properly tun-

the fast rate regime. ing 5 can have a significant impact on accuracy: using the
Second, w-OVR seems to always perform best closely same features, we improve their baseline by an absolute
followed by WAR. As expected, MUL which focuses on  2.49%, from 16.7% to 19.1%. It is interesting to note that
the first rank seems to perform better at top-1 than at top-5while rebalancing the data had little impact on the 130K-
while RNK, which optimizes the rank of the correct labels, dim FV on ILSVRC 2010, it has a significantimpact on Im-
seems to be more competitive for top-5. An important con- ageNet10K. This does not contradict our previous statement
clusion is that, despite its simplicity and its supposedgdb  that different objective functions perform similarly orghi
timality, OVR is a competitive alternative to more complex dimensional features. Features are only high-dimensional
objective functions on ILSVRC 2010. with respect to the complexity of the problem and espe-
Comparison with the state of the art. We note that the  cially the number of classes. While 130K-dim is high-
two winning teams at ILSVRC 2010 reported better results dimensional with respect to the 1K categories of ILSVRC
than our 66.5% at top-5.2f] reports 74.3% by combin- 2010, itis not high-dimensional anymore with respect to the
ing SIFT and color descriptors and by using 520K-dim FVs 10K categories of ImageNet10K.
while [19] reports 71.8% by combining SIFT and LBP de- Timings for ImageNet10K and 130K-dim FVs. For the
scriptors as well as multiple encoding techniques andalpati computation we used a small cluster of machines with 16
pyramids. While better features can indeed increase accuCPUs and 32GB of RAM. The feature extraction step (in-
racy, this is out of scope here, as we focus on learning thecluding SIFT description and FV computation) took approx.
classifier. 250 CPU days, the learning of the w-OVR SVM approx.

As for [29), Sanchez and Perronnin use w-OVR with
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Figure 4. ImageNet10K results (top-1 accuracy in %) obthiwéh w-OVR and 130K-dim Fisher vectors. (a-d) Sample @assmong
the best performing ones. (e-h) Sample classes among tts¢ payforming ones.

400 CPU days and the learning of the WAR SVM approx. [21] S. Maji and A. Berg. Max-margin additive classifiers ftetection.

500 CPU days. Note that w-OVR performs slightly better
than WAR and is much easier to parallelize since the classi-
fiers can be learned independently.
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