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Abstract

We propose a benchmark of several objective functions
for large-scale image classification: we compare the one-
vs-rest, multiclass, ranking and weighted average ranking
SVMs. Using stochastic gradient descent optimization, we
can scale the learning to millions of images and thousands
of classes. Our experimental evaluation shows that ranking
based algorithms do not outperform a one-vs-rest strategy
and that the gap between the different algorithms reduces
in case of high-dimensional data. We also show that for
one-vs-rest, learning through cross-validation the optimal
degree of imbalance between the positive and the negative
samples can have a significant impact. Furthermore, early
stopping can be used as an effective regularization strategy
when training with stochastic gradient algorithms. Follow-
ing these “good practices”, we were able to improve the
state-of-the-art on a large subset of 10K classes and 9M of
images of ImageNet from 16.7% accuracy to 19.1%.

1. Introduction

Large-scale image classification has recently received
significant interest [11, 19, 28, 29]. This goes in hand with
large-scale datasets being available. For instance, ImageNet
(www.image-net.org) consists of more than 14M images la-
beled with almost 22K concepts [12].

Current state-of-the-art methods for large-scale image
classification [19, 29] use high-dimensional image descrip-
tors in combination with linear classifiers. The use of linear
classifiers is motivated by their computational efficiency —
a requirement when dealing with a large number of classes
and images. High dimensional descriptors allow to sepa-
rate the data with a linear classifier, i.e., they perform the
feature mapping explicitly and avoid using non-linear ker-
nels. As a rule of thumb, linear classifiers with high di-
mensional descriptors perform similarly to low dimensional
bag-of-visual-words (BOV) with non-linear classifiers [9].
In the literature several high dimensional descriptors ex-
ist, e.g., the Fisher vector [24, 26], local coordinate cod-
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ing [37] and supervector coding [42]. A detailed compar-
ison of these high-dimensional descriptors was performed
in [9]; it showed that the Fisher vector representation out-
performs the others. We use this image representation in the
following and focus on large-scale learning of classifiers.

Most image classification approaches have adopted the
simple strategy to train anindependent one-vs-rest binary
classifier for each class. A benefit of this approach is that
the classifiers can be learned in parallel. This is a strong ar-
gument in our large-scale scenario since it can significantly
reduce the training time. As an example, the two top sys-
tems at the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2010 [5] used such an approach [19, 29].

A popular approach in the computer vision commu-
nity is to view image classification as a ranking prob-
lem: given an image, the goal is to rank the labels ac-
cording to their relevance. Performance measures such
as the top-k accuracy which is used to report results on
standard benchmarks,e.g. in ILSVRC, reflect this goal.
While the one-vs-rest strategy is computationally efficient
and yields competitive results in practice, it is clearly subop-
timal with respect to a strategy optimizing directly a ranking
loss [6, 10, 16, 35, 40, 41].

In this paper, we examine if these ranking approaches
scale well to large datasets and if they improve the per-
formance. We compare the one-vs-rest binary SVM, the
multiclass SVM of Crammer and Singer [10] which opti-
mizes top-1 accuracy, the ranking SVM of Joachims [16]
which optimizes the rank of the labels as well the recent
weighted approximate ranking of Westonet al. [38] which
optimizes the top of the ranking list. The datasets we con-
sider are large-scale in the number of classes (up to 10K),
images (up to 9M) and feature dimensions (up to 130K).
For efficiency reasons we train our linear classifiers using
Stochastic Gradient Descent (SGD) algorithms [8, 18] with
the primal formulation of the objective functions as in [30]
for binary SVMs or in [23] for structured SVMs. By us-
ing the exact same optimization framework, we truly focus
on the merits of the different objective functions, not on the
merits of the particular optimization techniques.

Our experimental evaluation shows that ranking based
algorithms do not outperform a one-vs-rest strategy and that
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RECOMMENDATIONS FOR LARGE-SCALE IMAGE CLASSIFICATION

1. Stochastic training: learning with stochastic gradient de-
scent is well-suited for large-scale datasets

2. Class imbalance: optimizing the imbalance parameter in
one-vs-rest strategy is a must for competitive performance

3. Early stopping: regularizing through early stopping re-
sults in fast training and good generalization performance

4. Step-size: a small-enough fixed step-size w.r.t learning
rate is often sufficient for state-of-the-art performance

5. One-vs-rest: one-vs-rest strategy is a flexible option for
large-scale image classification

6. Capacity saturation: for sufficiently large feature repre-
sentation all strategies lead to similar performance

the gap between the different algorithms reduces in case of
high-dimensional data. Our experiments also show that, in
the case of the one-vs-rest strategy, learning through cross-
validation the optimal degree of imbalance between the pos-
itive and the negative examples can have a significant im-
pact. Furthermore, early stopping can be used as an effec-
tive regularization strategy for fast training with SGD. Fol-
lowing these “good practices”, we were able to improve the
state-of-the-art on a a large subset of 10K classes and 9M
of images of ImageNet [12] from 16.7% accuracy to 19.1%.
We summarize our findings in the “recommendation box” at
the top of this page.

The next section reviews related work and Section3
presents the different objective functions used in our
evaluation. Section4 describes the SGD-based op-
timization. Experimental results for two large sub-
sets of the ImageNet dataset, ILSVRC 2010 and Im-
ageNet10K, are presented in Section5. The code
used for our experimental evaluation is available at
http://lear.inrialpes.fr/software.

2. Related Work

In the following we present related work for large-scale
image classification. Some approaches use simple clas-
sifiers such as nearest neighbor (NN) [32]. While exact
NN can provide a competitive accuracy when compared to
SVMs [11, 38], it is difficult to scale to large datasets. On
the other hand, approximate nearest neighbor (ANN) can
perform poorly on high-dimensional image descriptors (sig-
nificantly worse than one-vs-rest SVMs) while still being
much more computationally intensive [38].

For these reasons, the vast majority of the literature on
large-scale image classification has employed large-margin
classifiers. A fair amount of work has been devoted to scal-
ing the learning algorithms to large datasets. An explicit
mapping of the image descriptors to efficiently deal with
non-linear kernels was proposed in [21, 25, 36]. Torresani
et al. [33] used compact binary attribute descriptors to han-
dle a large number of images. Sánchez and Perronnin [29]
argued that high-dimensional image descriptors are neces-
sary to obtain state-of-the-art results in large-scale classifi-

cation and proposed to combine image descriptor compres-
sion with learning based on stochastic gradient descent. We
underline that in most previous works tackling large-scale
datasets, the objective function which is optimized is al-
ways the same: one binary SVM is learned per class in a
one-vs-rest fashion [11, 19, 28, 29]. One-vs-rest strategies
offer several advantages —see,e.g., [27], for a defense of
such strategies.

One noticeable exception to this rule is the large-scale
ranking algorithm of Westonet al. [38] inspired by [35].
In their work, Westonet al. report on a subset of 15K Im-
ageNet categories a significant increase of accuracy when
optimizing a ranking objective function compared to one
one-vs-rest: from 2.27% top-1 accuracy to 4.25%. We in-
cluded this ranking algorithm in our benchmark.

There has also been a significant amount of work on re-
ducing the computational cost of large-scale classification.
For instance, Westonet al. proposed to learn jointly the
classifier as well as a dimensionality reduction of the fea-
tures [38]. To make the complexity sublinear in the number
of classes, various approaches have been proposed which
employ tree structures [4, 14, 22]. These approaches are
outside the scope of our paper.

3. Objective Functions

Let us first introduce a set of notations. LetS =
{(xi, yi), i = 1 . . .N} be the training set wherexi ∈ X
is an image descriptor,yi ∈ Y is the associated label andY
is the set of possible labels. We shall always takeX = R

D.
A learning strategy corresponds to an empirical risk min-

imization with a regularization penalty as follows

Minimize
W

λ
2 Ω(W) + L(S;W) , (1)

whereW is the weight matrix stacking the weight vec-
tors corresponding to each subproblem. The objec-
tive decomposes into the empirical riskL(S;W) :=
1
N

∑N

i=1 L(xi, yi;W), with L(xi, yi;W) a surrogate loss
of the labeled example(xi, yi), and the regularization
penaltyΩ(W) :=

∑C

c=1 ‖wc‖
2. The parameterλ ≥ 0 con-

trols the trade-off between the empirical risk and the regu-
larization penalty.

http://lear.inrialpes.fr/software


We first briefly review the classical binary SVM. We then
proceed with the multiclass, ranking and weighted approx-
imate ranking SVMs. We finally discuss the issue of data
re-weighting.

Binary One-Vs-Rest SVM (OVR) . In the case of the
one-vs-rest SVM, we assume that we have only two classes
andY = {−1,+1}. Let 1(u) = 1 if u is true and0 oth-
erwise. The 0-1 loss1(yiw

Txi < 0) is upper-bounded by
LOVR(xi, yi;w) = max{0, 1 − yiw

T
xi}. If we have more

than two classes, then one transforms theC-class problem
intoC binary problems and trains independentlyC one-vs-
rest classifiers.

3.1. Beyond binary

From now on, we treat the classes jointly andY =
{1, . . . , C}. Let {wc, c = 1 . . . C} denote theC classifiers
corresponding to each of theC classes. In this case,W is
aC ×D dimensional vector obtained by concatenating the
differentwc’s. We denote by∆(y, ȳ) the loss incurred for
assigning label̄y while the correct label wasy. In this work,
we focus on the 0/1 loss,i.e. ∆(y, ȳ) = 0 if y = ȳ and1
otherwise. In what follows, we assume that we have one
label per image to simplify the presentation.

Multiclass SVM (MUL). There exist several flavors of
the multiclass SVM including the Weston and Watkins
[39] and the Crammer and Singer [10] formulations
(see [31] for a comprehensive review). Both variants
propose a convex surrogate loss to∆(yi, ŷi) with ŷi =
argmaxy w

T
y xi, i.e. the loss incurred by taking the highest

score as the predicted label. We choose the Crammer and
Singer formulation, corresponding toLMUL (xi, yi;w) =
maxy

{

∆(yi, y) + w
T
y xi

}

− w
T
yi
xi, which provides a

tighter bound on the misclassification error [34]. Note that
this can be viewed as a particular case of the structured
SVM [34].

Ranking SVM (RNK). Joachims [16] considers the
problem of ordering pairs of documents. Given a sam-
ple (xi, yi) and a labely 6= yi, the goal is to enforce
wyi

xi > w
T
y xi. The rank of labely for samplex can be

written asr(x, y) =
∑C

c=1 1(wT
c x ≥ w

T
y x). Given the

triplet (xi, yi, y), 1(wT
c x ≥ w

T
y x) is upper-bounded by:

Ltri(xi, yi, y;w) = max{0,∆(yi, y) − w
T
yi

xi + w
T
y xi}.

Therefore, the overall loss of(xi, yi) writes as:

LRNK(xi, yi;w) =
C

∑

y=1

max{0,∆(yi, y)−(wyi
−wy)

T
xi} .

Weighted Approximate Ranking SVM (WAR). An is-
sue with the previous objective function is that the loss is
the same when going from rank 99 to 100 or from rank 1
to rank 2. However, in most practical applications, one is
interested in the top of the ranked list. Usunieret al. [35]
therefore proposed to minimize a function of the rank which
gives more weight to the top of the list. Letα1 ≥ α2 ≥
. . . αC ≥ 0 be a set ofC coefficients. For sample(xi, yi)

the loss isℓr(xi,yi) with ℓ defined asℓk =
∑k

j=1 αj . The
penalty incurred by going from rankk tok+1 isαk. Hence,
a decreasing sequence{αj}j≥1 implies that a mistake on
the rank when the true rank is at the top of the list incurs a
higher loss than a mistake on the rank when the true rank is
lower in the list.

While [35] proposes an upper-bound on the loss, Weston
et al. [38] propose an approximation. We follow [38] which
is more amenable to large-scale optimization and write:

LWAR(xi, yi;w) =

C
∑

y=1

ℓr∆(xi,yi)
Ltri(xi, yi, y;w)

r∆(xi, yi)
, (2)

wherer∆(x, y) =
∑C

c=1 1(wT
c x + ∆(y, c) ≥ w

T
y x) is a

regularized rank. Following [38], we chooseαj = 1/j.
As opposed to other works [40, 41], this does not optimize
directly standard information retrieval measures such as Av-
erage Precision (AP). However, it mimics their behavior by
putting emphasis on the top of the list, works well in prac-
tice and is highly scalable.

3.2. Data reweighting

When the training set is unbalanced,i.e. when some
classes are significantly more populated than others, it can
be beneficial to reweight the data. This unbalance can be
extreme in the one-vs-rest case when one has to deal with
a large number of classesC as the unbalance between the
positive class and the negative class is (on average)C − 1.
In the binary case, the reweighting can be performed by in-
troducing a parameterρ and the empirical risk then writes
as:

ρ

N+

∑

i∈I+

LOVR(xi, yi;w) +
1 − ρ

N−

∑

i∈I
−

LOVR(xi, yi;w)

(3)
whereI+ (resp. I−) is the set of indices of the positive
(resp. negative) samples andN+ (resp.N−) is the cardinal-
ity of this set. Note thatρ = 1/2 corresponds to the natural
rebalancing of the data,i.e. in such a case one gives as much
weight to positives and negatives.

When training all classes simultaneously, introducing
one parameter per class is computationally intractable. It
would require to cross-validateC parametersjointly, in-
cluding the regularization parameter. In such a case, the
natural re-balancing appears to be the most natural choice.



In the multiclass case, the empirical loss becomes:

1

C

C
∑

c=1

1

Nc

∑

i∈Ic

LMUL (xi, yi;w) (4)

whereIc = {i : yi = c} andNc is the cardinality of this
set. One can perform a similar rebalancing in the case of
LRNK andLWAR.

4. Optimization Algorithms

We now consider the optimization of the objective func-
tions. To handle large datasets, we employ Stochastic Gra-
dient Descent (SGD) [8] which has recently gained popular-
ity in image classification [19, 25, 26, 28, 29, 38]. Since we
deal with linear classifiers, we can perform the optimiza-
tion directly in the primal. In the following, we describe
the optimization algorithms for various objective functions
and give implementation details. Finally, a brief compari-
son with batch solvers is reported.

4.1. Stochastic training

Training with stochastic gradient descent (SGD) consists
at each step in choosing a sample at random and updating
the parametersw using a sample-wise estimate of the reg-
ularized risk. In the case ofROVR andRMUL , the sample is
simply a pair(xi, yi) while in the case ofRRNK andRWAR

it consists in a triplet(xi, yi, ȳ) whereȳ 6= yi. Let zt de-
note the sample drawn at stept (whether it is a pair or a
triplet) and letR(zt;w) be the sample-wise estimate of the
regularized risk.w is updated as follows:

w
(t) = w

(t−1) − ηt∇w=w(t−1)R(zt;w) (5)

whereηt is the step size.
We provide in Table1 the sampling and update proce-

dures for the objective functions used in our evaluation,
assuming no reweighting of the data. ForROVR, RMUL

andRRNK, these equations are straightforward and opti-
mize exactly the regularized risk. ForRWAR it is only
approximate as it does not compute exactly the value of
r∆(xi, yi), but estimates it from the number of samplesk
which were drawn before a violating sampleȳ such that
Ltri(xi, yi, ȳ;w) > 0 was found. Ifk samples were drawn,
then: r∆(xi, yi) ≈ ⌊C−1

k
⌋. For a large number of classes,

this approximate procedure is significantly faster than the
exact one (see [38] for more details). Note also that we im-
plement the regularization by penalizing the squared norm
of w, while [38] actually bounds the norm ofw. We tried
both strategies and observed that they provide similar re-
sults in practice.

4.2. Implementation details

We use as basis for our code the SGD library for binary
classification available on Bottou’s website (version 1.3)[7].

This is already an optimized code which includes fast linear
algebra and a number of optimizations such as the use of a
scale variable to updatew only when a loss is incurred. We
now discuss a number of implementation details.

Bias. Until now, we have not considered the bias in our
objective functions. This corresponds to an additional pa-
rameter per class. Following common practice, we add one
constant feature to each observationxi. As is the case in
Bottou’s code, we do not regularize this additional dimen-
sion.

Stopping criterion. Since at each step in SGD we have a
noisy estimate of the objective function, this value cannot
be used for stopping. Therefore, in all our experiments, we
use a validation set and stop iterating when the accuracy
does not increase by more than a thresholdθ.

Regularization. While a vast majority of the works on
large-margin classification regularize explicitly by penaliz-
ing the squared norm ofw (or by bounding it), regularizing
implicitly by early stopping is another option,i.e. one sets
λ = 0 and iterates SGD until the performance converges on
the validation set (seee.g. [2]). In our experiments, apply-
ing this strategy yields competitive results.

Step size. To guarantee converge to the optimum, the se-
quence of step sizes should satisfy

∑∞

t=1 ηt = ∞ and
∑∞

t=1 η
2
t < ∞. Assumingλ > 0, the usual choice is

ηt = 1/λ(t + t0), wheret0 is a parameter to tune. Bot-
tou provides in his code a heuristic to sett0. We tried to
cross-validatet0 but never observed significant improve-
ments. However, we also experimented with a fixed step
sizeη as in [2, 38].

Reweighting.All sampling/update equations in Table1 are
based on non-reweighted objective functions (c.f. Section
3.2). To reweight the data, we can modify either the sam-
pling or the update equations. We chose the first alternative
since, in general, it led to faster convergence. If we take the
example ofLOV R then the sampling is modified as follows:
drawy = +1 with probaρ, y = −1 with proba1−ρ. Then
drawxi such thatyi = y.

4.3. Comparison with batch solvers

It is well known that SGD can perform as well as batch
solvers for OVR SVMs at a fraction of the cost [7, 8]. How-
ever, to the best of our knowledge, public SGD solvers do
not exist for other SVM formulations such as MUL SVM.
As a sanity check, we compared our MUL SGD solver
to two MUL batch solvers: LibLINEAR [13] and SVM-
Light [17]. Because of the cost of running batch solvers,
we ran experiments only on small subsets of ImageNet on
small BOV vectors. Our experiments (not reported here)
show that our SGD solver can perform on par with these
solvers at a fraction of the cost.



Sampling Update

ROVR Draw (xi, yi) from S. δi = 1 if LOVR(xi, yi;w) > 0, 0 otherwise.
w

(t) = (1 − ηtλ)w(t−1) + ηtδixiyi

RMUL Draw (xi, yi) from S. ȳ = arg maxy ∆(yi, y) + w
′
yxi andδi =



1 if ȳ 6= yi

0 otherwise.

w
(t)
y =

8

>

<

>

:

w
(t−1)
y (1 − ηtλ) + δiηtxi if y = yi

w
(t−1)
y (1 − ηtλ) − δiηtxi if y = ȳ

w
(t−1)
y (1 − ηtλ) otherwise.

RRNK Draw (xi, yi) from S. δi = 1 if Ltri(xi, yi, ȳ;w) > 0, 0 otherwise.

Draw ȳ 6= yi from Y. w
(t)
y =

8

>

<

>

:

w
(t−1)
y (1 − ηtλ) + δiηtxi if y = yi

w
(t−1)
y (1 − ηtλ) − δiηtxi if y = ȳ

w
(t−1)
y (1 − ηtλ) otherwise.

RWAR Draw (xi, yi) from S. δi = 1 if ȳ s.t.Ltri(xi, yi, ȳ;w) > 0 was sampled,0 otherwise.
Fork = 1, 2, . . . , C − 1, do:


Draw ȳ 6= yi from Y.
If Ltri(xi, yi, ȳ;w) > 0, break.

w
(t)
y =

8

>

<

>

:

w
(t−1)
y (1 − ηtλ) + δiℓ⌊C−1

k
⌋
ηtxi if y = yi

w
(t−1)
y (1 − ηtλ) − δiℓ⌊C−1

k
⌋
ηtxi if y = ȳ

w
(t−1)
y (1 − ηtλ) otherwise.

Table 1. Sampling and update equations for various objective functions.

5. Experiments

The experimental setup is described in Section5.1. A
detailed analysis of the different objective functions and
parameters is given in Section5.2 for the ILSVRC 2010
dataset. Section5.3presents results on the large-scale Ima-
geNet10K dataset.

5.1. Experimental setup

Datasets. We use two subsets of ImageNet [12] for our
evaluation. The ILSVRC2010 dataset [5] contains 1,000
classes and 1.4M images. This dataset was used in the Im-
ageNet Large Scale Visual Recognition Challenge in 2010.
We follow the standard training/validation/testing protocol
(resp. 1.2M/50K/150K images). The ImageNet10K dataset
contains 10,184 classes and approx. 9M images [11]. Fol-
lowing [29], we use half of the data for training, 50K images
for validation and the remainder for testing. In all these ex-
periments, we compute the top-1 (or top-5) accuracy per
class and report the average [11, 29, 38].

Features. Images are resized to 100K pixels if larger.
We extract approx. 10K SIFT descriptors [20] from 24x24
patches on a regular grid every 6 pixels at 5 scales. They are
reduced from 128-dim to 64-dim using PCA. These descrip-
tors are then aggregated into an image-level signature. We
use the Fisher Vector (FV) representation which was shown
state of the art in a recent evaluation [9]. By default we use
N = 256 Gaussians and a spatial pyramid (SP) withR = 4
regions (the entire images and three horizontal stripes). The
resulting descriptor is of approx. 130K dimensions. We also
report results with the bag of visual words (BOV) given its
popularity in large-scale classification [11, 38]. Our default
BOV is 4K dimensional withN = 1, 024 andR = 4. Given
the large datasets we work with, image signatures need to be
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Figure 1. Impact of imbalanceβ = (1 − ρ)/ρ on the accuracy
on ILSVRC 2010. The plain lines correspond to w-OVR while
the dashed lines correspond to u-OVR (which is independent of
β). For each method,N is the number of Gaussians, SP indicates
whether spatial pyramids were used andD is the dimensionality
of the features. Similar curves were obtained for top-5 accuracy.

compressed. For FV we employ product quantization [15]
and for BOV scalar quantization [11]. Signatures are de-
compressed on-the-fly by the SGD routines [29].

5.2. Detailed analysis on ILSVRC2010

Importance of reweighting in OVR. We first show the im-
portance of reweighting the positive and negative samples
in OVR. In what follows, u-OVR refers to the unweighted
version (all samples have the same weight) while w-OVR
refers to the reweighted version. Since we reweight by bi-
asing the sampling (c.f. Section3.2), we introduce the im-
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Figure 2. Impact of regularization on w-OVR (withβ = 1). Re-
sults on ILSVR 2010 with 130K-dim FVs. One pass signifies see-
ing all positives for a given class + (on average) as many negatives.
Hence, 500 passes is approximately as costly as seeing each sam-
ple of the dataset once (because there are 1,000 classes). Similar
curves were obtained for top-5 accuracy.

balance parameterβ = (1 − ρ)/ρ which is the (average)
number of negatives sampled for each positive.β = 1 cor-
responds to the natural rebalancing of the data (giving the
same weight to positives and negatives). We experimented
with different image signatures and especially with differ-
ent dimensions for FV by varying the number of Gaussians
N and by using a SP or not. Results are reported in Figure
1. We can see that properly tuningβ can have a significant
impact on accuracy. Especially for smaller dimensional rep-
resentations, w-OVR significantly outperforms u-OVR and
the natural rebalancing (i.e. β = 1) is insufficient to get
good results. For the largest FV, cross-validatingβ has little
effect. While it had been shown that tuning this parameter is
important to plot ROC curves in two-class classification [1],
we believe we are the first to show that this parameter has a
crucial impact for multiclass problems.

Note that we also reweighted the data for MUL, RNK
and WAR but this had virtually no impact on accuracy. One
of the reasons is that, although we work on the same data,
it is much less unbalanced for MUL, RNK and WAR than
for OVR. Indeed, the ratio between the number of samples
in the most and least populated classes on ILSVRC2010 is
approx. 4. In the OVR case however the imbalance for a
given class is the ratio between the number of positive and
negative samples and is therefore on the order of 999.

Implicit regularization works. The following experiments
are reported for w-OVR with natural reweighting (β = 1),
but similar results were obtained with differentβ parame-
ters or with MUL, RNK and WAR. We ran experiments on
the largest features (the 130K-dim FV),i.e. when regular-
ization is supposed to have the largest impact. We compare
three regularization strategies: (i) using explicit regulariza-
tion (λ > 0) and a decreasing step size (ηt = 1/(λ(t+ t0)),
(ii) using explicit regularization and a fixed step size (ηt =
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Figure 3. Impact of the number of GaussiansN (and therefore
of the feature dimensionality) on the classification accuracy. Top:
top-1. Bottom: top-5. Because of the cost of running these exper-
iments, we did not use SPs.

η) and (iii) using no regularization (λ = 0) and a fixed step
size, i.e. implicitly regularizing with the number of itera-
tions. The test results are shown in Figure2 for the best
cross-validated parameters of the three methods. Strategy
(i), which is the standard approach [7], is slightly faster to
converge in the first iterations thanks to initial larger step
sizes. However, at convergence all three methods yield sim-
ilar results. A major advantage of strategy (iii) with respect
to strategies (i) and (ii) is that there is a single parameterto
tune (the number of iterationsniter) instead of two (niter
andλ). Given the training times in large-scale (c.f. Sec-
tion 5.3), we choose this approach in the following exper-
iments. Note that we also experimented with the implicit
regularization with early stopping on the small-scale PAS-
CAL VOC 2007 dataset and observed a small drop of per-
formance compared to explicit regularization (from 62.1%
to 60.2%) which seems to indicate that this strategy is better
suited to large-scale datasets.
One-vs-rest works. We compare OVR, MUL, RNK and
WAR. For OVR, we report results for the re-weighted ver-
sion, i.e. w-OVR. For MUL, RNK and WAR we report the
results for the unweighted versions only (again the differ-
ence with the weighted versions was typically on the order



w-OVR MUL RNK WAR

Top-1
BOV 26.4 22.7 20.8 24.1
FV 45.7 46.2 46.1 46.1

Top-5
BOV 46.4 38.4 41.2 44.2
FV 65.9 64.8 65.8 66.5

Table 2. Accuracy (in %) on ILSVRC 2010.

of 0.1-0.5%). We report results for 130K-dim FVs and 4K-
dim BOV vectors in Table2. We can draw the following
conclusions.

First, for high-dimensional FV features all methods per-
form pretty much the same: the difference between the best
and worst performing methods is 0.5% at top-1 and 1.7%
at top-5. We performed an additional set of experiments on
FVs to study the influence of the signature dimensionality.
The results are reported in Figure3. We can indeed observe
that, as the number of GaussiansN increases,i.e. as the fea-
tures grow larger, the difference of accuracy between differ-
ent methods becomes smaller. Hence, for high-dimensional
features, the learning objective function seems to have little
impact. Put into the perspective of the statistical learning
theory described in [3], this implies that theψ(·) function
associated to each surrogate loss – which defines how the
performance in the surrogate loss transfers to the target loss
– does not play a major role here (see Theorem 10 in [3]).
Indeed, in our experiments the different learning objectives
corresponding to different surrogate losses lead to similar,
yet, good results. Therefore, in these experiments, the ca-
pacity of the classifiers at hand is “large” enough, relative
to the difficulty of the dataset, and this corresponds to the
so-called “low-noise” condition in statistical learning under
which ones gets “fast learning rates”. In this case, the dif-
ferences between the surrogate losses almost disappear in
the fast rate regime.

Second, w-OVR seems to always perform best closely
followed by WAR. As expected, MUL which focuses on
the first rank seems to perform better at top-1 than at top-5
while RNK, which optimizes the rank of the correct labels,
seems to be more competitive for top-5. An important con-
clusion is that, despite its simplicity and its supposed subop-
timality, OVR is a competitive alternative to more complex
objective functions on ILSVRC 2010.

Comparison with the state of the art. We note that the
two winning teams at ILSVRC 2010 reported better results
than our 66.5% at top-5. [29] reports 74.3% by combin-
ing SIFT and color descriptors and by using 520K-dim FVs
while [19] reports 71.8% by combining SIFT and LBP de-
scriptors as well as multiple encoding techniques and spatial
pyramids. While better features can indeed increase accu-
racy, this is out of scope here, as we focus on learning the
classifier.

u-OVR w-OVR MUL RNK WAR

BOV 4K-dim 3.8 7.5 6.0 4.4 7.0
FV 130K-dim - 19.1 - - 17.9

Table 3. Top-1 accuracy (in %) on ImageNet10K

5.3. Large-scale experiments on ImageNet10K

We now summarize our experimental results on the large
ImageNet10K dataset. In Table3, we report results for the
4K-dim BOV and the 130K-dim FV using top-1 accuracy
as in [11, 29]. Given the cost of running the experiments on
the high-dimensional FVs, we carried-out experiments only
with the two objective functions which performed best on
ILSVRC 2010: w-OVR and WAR. Again, our conclusion
is that w-OVR performs better than more complex objective
functions (at least on this dataset with those features). See
Figure4 for sample results.
Comparison with the state of the art. We now compare
our results with publications which report results at the scale
of O(104) categories [11, 29, 38]. Compared to [11], our
BOV results are on par (even slightly better since we report
7.5% while they report 6.4%) and our FV results are sig-
nificantly (almost 3 times) better due to the use of higher-
dimensional features.

Westonet al., who used a different ImageNet subset in
their experiments, show that WAR outperforms OVR [38]
on BOV descriptors, where their OVR baseline did not
reweight the positives/negatives,i.e. it is similar to our u-
OVR. We also observed that WAR significantly outperforms
u-OVR. However, we showed experimentally that w-OVR
performs significantly better than u-OVR and slightly better
than WAR.

As for [29], Sánchez and Perronnin use w-OVR with
natural rebalancing (β = 1). We show that properly tun-
ing β can have a significant impact on accuracy: using the
same features, we improve their baseline by an absolute
2.4%, from 16.7% to 19.1%. It is interesting to note that
while rebalancing the data had little impact on the 130K-
dim FV on ILSVRC 2010, it has a significant impact on Im-
ageNet10K. This does not contradict our previous statement
that different objective functions perform similarly on high-
dimensional features. Features are only high-dimensional
with respect to the complexity of the problem and espe-
cially the number of classes. While 130K-dim is high-
dimensional with respect to the 1K categories of ILSVRC
2010, it is not high-dimensional anymore with respect to the
10K categories of ImageNet10K.
Timings for ImageNet10K and 130K-dim FVs. For the
computation we used a small cluster of machines with 16
CPUs and 32GB of RAM. The feature extraction step (in-
cluding SIFT description and FV computation) took approx.
250 CPU days, the learning of the w-OVR SVM approx.



(a) Star Anise (92.45%) (b) Geyser (85.45%) (c) Pulp Magazine (83.01%) (d) Carrycot (81.48%)

(e) European gallinule (15.00%) (f) Sea Snake (10.00 %) (g) Paintbrush (4.68 %) (h) Mountain Tent (0.00%)

Figure 4. ImageNet10K results (top-1 accuracy in %) obtained with w-OVR and 130K-dim Fisher vectors. (a-d) Sample classes among
the best performing ones. (e-h) Sample classes among the worst performing ones.

400 CPU days and the learning of the WAR SVM approx.
500 CPU days. Note that w-OVR performs slightly better
than WAR and is much easier to parallelize since the classi-
fiers can be learned independently.
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