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Abstract: The so-called ”general two-trailers system” is a nonholonomic system composed of a
controlled unicycle-like vehicle and two passive trailers with off-axle hitching. It is not differentially
flat and cannot be transformed into the chained form system. Methods developed for this latter
class of systems thus do not apply. The Transverse Function (TF) approach is here used to solve
the trajectory tracking problem for this system. The proposed control solution yields practical
stabilization of any reference motion, whether it is or is not feasible. Practical stabilization of non-
feasible trajectories in the case of non-differently flat systems is of particular interest due partly
to the difficulty of planning and calculating desired feasible state reference motions. The method
is illustrated by simulation results which show that, in addition to the unconditional practical
stabilization property evoked above, asymptotic stabilization of feasible and persistently exciting
motions can also be achieved with the same performance as local stabilizers derived from a linear
approximation of the tracking-error equations.
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Résumé : Le ”système général à deux remorques” est un système non-holonome composé d’un véhicule
commandé de type unicycle, et de deux remorques passives dont le point d’attache est déporté par rapport
à l’axe des roues du véhicule précédent. Ce système n’est pas différentiellement plat, et ne peut donc pas
être transformé en un système chainé. Les méthodes de commande développées pour cette dernière classe
de systèmes ne s’appliquent donc pas au système général à deux remorques. Dans ce rapport, l’approche
de commande par fonctions transverses est appliquée à ce système pour résoudre le problème de stabili-
sation de trajectoire. La commande proposée assure la stabilisation pratique de trajectoires quelconques,
i.e. qu’elles soient réalisables par le système ou non. Cette propriété est particulièrement intéressante
pour les systèmes non différentiellement plats, sachant qu’il est difficile dans ce cas de déterminer ex-
plicitement des trajectoires de référence réalisables. La méthode proposée est validée par des résultats
de simulation illustrant, outre la propriété de stabilisation pratique évoquée précédemment, la possibilité
de stabiliser asymptotiquement les trajectoires de référence réalisables et satisfaisant la propriété classique
dite ”d’excitation persistante”, avec des performances comparables à celles obtenues avec une commande
linéaire synthétisée à partir d’une approximation linéaire du système d’erreur.

Mots-clés : Système général à remorques, système non-holonome, fonction transverse, stabilisation de
trajectoire
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4 Morin & Samson

1 Introduction

Nonlinear control of the so-called ”N -trailers system” (i.e. a unicycle-like vehicle with N trailers) has
motivated numerous studies during the past two decades. Most of them assume that each trailer is
hitched at a point on the wheels’ axle of the preceding vehicle. This assumption implies that the system’s
kinematic model can be transformed into the canonical chained form, as shown by Murray and Sastry [1]
in the one-trailer case, and by Sørdalen [2] in the case of an arbitrary number of trailers. The wealth of
stabilization techniques developed for control systems in the chained form can then be applied. Another
consequence of this property is that the system is differentially flat [3]. This allows for straightforward
solutions to the path planning problem consisting essentially in the calculation of ”feasible” reference
trajectories, i.e. state trajectories that satisfy the system’s motion equations, passing through desired
state configurations. While a unicycle, or car, with a single off-axle hitched trailer remains differentially
flat [4], this property is lost when two or more trailers are hitched off axle. This latter case is usually
referred to as the ”general trailer system”. The general two-trailers system, corresponding to a unicycle
vehicle with two off-axle hitched trailers, is thus the simplest example in this category. The fact that, to
our knowledge, no exact path planner has ever been proposed for this type of systems is much related to
the system’s non-flatness. Although this difficulty seems, at first glance, disconnected from the trajectory
tracking problem, it is in fact one of the motivations of the present study. The reason is that the trajectory
tracking problem, commonly defined as the problem of stabilizing a reference trajectory asymptotically,
i.e. with convergence of the tracking error to zero in addition to stability in the sense of Lyapunov, is
well posed only when the reference trajectory is feasible. The difficulty of designing feasible reference
trajectories between arbitrary state configurations led, in the past, trajectory tracking methods for the
general trailer system to focus on very specific feasible reference trajectories, like fixed-points [5, 6] and
circular-like trajectories [5]. The present paper takes a different route. It is based on the Transverse
Function (TF) approach developed by the authors in the last decade (see e.g [7], [8]) with the prime
objective of achieving the practical stabilization of any –feasible or non-feasible– reference motion. The
above considerations explain why bypassing the feasibility issue is of particular interest for systems which
are not differentially flat. Now, practical stabilization of any reference trajectory is by no means opposed
to asymptotic stabilization of feasible and persistently exciting reference trajectories, which should rather
be considered as a complementary, more demanding and restritive, objective. The present study shows
how these two objectives can be combined in a single feedback control law. However, by lack of a complete
proof, the zeroing of the tracking errors is only illustrated here through simulation results.

The paper is related to several previous works by the authors, and more particularly to [9] where the
control of a three-segments wheeled snake-like mechanism is addressed. The kinematic model equations
of this wheeled mechanism and of the general two-trailers system are in fact identical. However, due to
different means of actuation –shape angles actuation vs. wheels actuation– their control properties are
different. In particular, some geometric configurations, such as aligned vehicles, are singular –and thus
must be avoided– for the snake mechanism, whereas they are not singular for the trailer system. On
the other hand, local controllability at these configurations, i.e. the satisfaction of the Lie Algebra Rank
Condition (LARC), involves Lie brackets of order three whereas it is sufficient to go to order two when the
trailers are not aligned [9]. This issue is related to singularities of the control Lie algebra [10] which, in the
snake-mechanism’s case, coincide with actuation singularities, and the passage through which is avoided
by forbidding all wheels’ axles to intersect at the same point (which can be at infinity). Undulatory snake-
like locomotion stems from this constraint. By contrast, in the trailer’s case such configurations are not
singular w.r.t. the actuation and thus should be permitted, all the more so that they allow for longitudinal
motion without energy consuming maneuvers. However, due to the Lie algebra singularity issue evoked
previously, achieving the practical stabilization of any reference trajectory turns out to be more difficult
for the general two-trailers system. This fact also explains the chronology followed by the authors for
the studies of these two systems. With respect to [9], the present study shows how to deal with singular
configurations in order to best exploit the motion capabilities of the trailer system and, in doing so, how
to overcome the superior complexity induced by the necessity of using Lie brackets of higher order in the

Inria
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control solution.
The paper is organized as follows. Preliminary technical recalls and notation are provided in Section

2. The system’s kinematic model and some of its control properties are presented in Section 3. The main
contribution, which details the control design methodology based on the application of the TF approach, is
presented in Section 4. Comparative simulation results of the TF control solution and a controller derived
from a linear approximation of the system are reported in Section 5. Finally, the concluding Section 6
points out future research directions.

2 Notation and recalls

In this paper, x′ denotes the transpose of a vector x ∈ R
n, In is the identity matrix of dimension (n× n),

and Om×n is the zero-valued matrix of dimension (m× n). Tp denotes the p-dimensional torus.

2.1 Systems on Lie groups

Only basic properties of systems on Lie groups will be used. A few definitions and notation are recalled
hereafter. The reader is referred, e.g., to [11] for more details in the context of the control of nonholonomic
systems.

The tangent space of a manifold M at a point q is denoted as TqM . If X is a vector field (v.f.) on
M , the solution at time t of ẋ = X(x) with initial condition x(0) = q is denoted as exp(tX, q). A Lie
group G is a manifold with a group operation (g1, g2) 7−→ g1g2 such that the mapping (g1, g2) 7−→ g1g

−1
2

is smooth, with g−1 denoting the group inverse of g. Let G denote a connected Lie group of dimension n.
The unit element of G is denoted as e, i.e. ∀g ∈ G, ge = eg = g. The left and right translation operators
on G are denoted as L and R respectively, i.e. ∀(σ, τ) ∈ G2, Lσ(τ) = Rτ (σ) = στ . A v.f. X on G is
left-invariant iff ∀(σ, τ) ∈ G2, dLσ(τ)X(τ) = X(στ), with df denoting the differential of a function f . The
Lie algebra –of left-invariant v.f.– of the group G is denoted as g. If X ∈ g, exp(tX) is used as a short
notation of exp(tX, e). A driftless control system ġ =

∑m
i=1 Xi(g)ξi on G is said to be left-invariant on G

if the control v.f. Xi are left-invariant. With f , g, and h denoting smooth curves on G, one has (omitting
the time index)

d

dt
(gf−1) = dRf−1(g)

(

ġ − dLgf−1(f)ḟ
)

(1)

and
d

dt
(h−1g) = dLh−1(g)ġ − dRh−1g(e)dLh−1(h)ḣ (2)

In the special case of the Lie group G = SE(2), the group operation is defined by

g1g2 =





(

x1

y1

)

+Q(θ1)

(

x2

y2

)

θ1 + θ2



 (3)

with gi = (xi, yi, θi)
′ and Q(θ) the rotation matrix in the plane of angle θ. The unit element is e = (0, 0, 0)′

and the inverse of g = (x, y, θ)′ is

g−1 =





−Q(−θ)

(

x
y

)

−θ



 (4)

One deduces from (3) that

dLg1(g2) =

(

Q(θ1) 02×1

01×2 1

)

(5)

and

dRg2(g1) =





I2 Q(θ1)

(

−y2
y1

)

01×2 1



 (6)
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6 Morin & Samson

The family X = {X1, X2, X3} of v.f. defined by Xi(g) = X(g)ei, i = 1, 2, 3 with

X(g) = Q̄(θ) :=

(

Q(θ) 02×1

01×2 1

)

(7)

and e1, e2, e3 the canonical basis vectors of R3, constitutes a basis of left-invariant vector fields.

2.2 Transverse Functions

Notions about transverse functions are recalled –see e.g. [8] for more details. Let X = {X1, . . . , Xm}
denote a family of smooth v.f. X1, . . . , Xm on a n-dimensional manifold M . X satisfies the Lie Algebra
Rank Condition (LARC) at some point q0 if Lie(X)(q0) = Tq0M with

Lie(X) = span{Xi, [Xi, Xj ] , [Xi, [Xj , Xk] , . . . ; i, j, k, . . . = 1, . . . ,m}

and Lie(X)(q) = {X(q) : X ∈ Lie(X)}. Given a compact manifold K, a smooth function f : K −→ M is
transverse to X if, for any α ∈ K,

span{X1(f(α)), . . . , Xm(f(α)), df(α)(TαK)} = Tf(α)M (8)

with df the differential of f . Note that the dimension of K must be at least equal to (n − m). Given
q0 ∈ M such that the family X satisfies the LARC at q0, the “Transverse Function theorem” in [7] ensures
the existence of a family (fε)ε>0 of functions transverse to X, with maxα dist(fε(α), q0) → 0 as ε → 0,
where “dist” denotes any distance locally defined in the neighborhood of q0.

We slightly generalize the definition of a transverse function to any smooth function f : K ×R −→ M
by requiring that for any fixed time value t, the function α 7−→ f(α, t) is transverse in the above sense.

3 Modeling and properties of the control Lie algebra

The general two-trailers system, whose view from above is sketched in Fig. 1, is composed of a unicycle-like
vehicle pulling two trailers with off-axle hitch points. The control inputs are the unicycle linear velocity v0ℓ
and its angular velocity ω0. The two trailers are passive. For simplicity, for i = 1, 2 the distance between
the center Pi of trailer i and its hitching point Li, and the distance between Li and Pi−1 are set equal to
one.

Figure 1: General two-trailer system

Inria
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3.1 Modeling

For symmetry reasons, a body-fixed frame Rc with origin P1 is attached to the mid-vehicle, i.e. the first
trailer. The configuration of this vehicle with respect to an inertial frame R0 is thus characterized by

g =





x
y
θ



 ∈ SE(2)

with x and y the coordinates of P1 inR0, and θ the orientation ofRc w.r.t. R0. The complete configuration
vector of the system is given by (g, ϕ) ∈ SE(2)× T

2 with

ϕ =

(

ϕ1

ϕ2

)

∈ T
2

the vector of hitch angles, also called the ”shape vector” of the system. Let v1ℓ and ω1 denote the linear
and angular velocities of the first trailer. Then







ẋ = v1ℓ cos θ
ẏ = v1ℓ sin θ

θ̇ = ω1
(9)

From now on, v = (v1ℓ , ω
1)′ will be the considered as the vector of control inputs. It is related to the

unicycle’s velocity vector (v0ℓ , v
0
θ)

′ according to the biunivocal transformation

v = Q(ϕ1)

(

v0ℓ

−ω0

)

The classical non-slipping assumption associated with wheel-ground contact, applied to both trailers, yields
the following two nonholonomic constraints:

−v1ℓ sinϕ1 + ω1(1 + cosϕ1) + ϕ̇1 = 0
v1ℓ sinϕ2 − ω1(1 + cosϕ2) + ϕ̇2 = 0

In matrix form these equations can be written as

ϕ̇ = Aϕ(ϕ)v (10)

with

Aϕ(ϕ) =

(

sinϕ1 −1− cosϕ1

− sinϕ2 1 + cosϕ2

)

(11)

Eq. (9-10) define a kinematic control system for the trailer system with v as the control input. The
following change of coordinates

ϕ 7−→ η =

(

η1
η2

)

=

(

tan ϕ1

2
tan ϕ2

2

)

(12)

is well defined away from the “jack-knife” angles ϕ1,2 = π and is useful to avoid these “bad” hitch angle
values. It also simplifies the control system equations. Indeed, from (9-10) one has

η̇ = A(η)v , A(η) =

(

η1 −1
−η2 1

)

(13)

so that each shape variable ηi now satisfies a polynomial differential equation. By regrouping relations (9)
and (13) one obtains the following driftless control model :

{

ġ = X(g)Cv
η̇ = A(η)v

(14)

RR n° 7938



8 Morin & Samson

with X(g) defined by (7) and

C =





1 0
0 0
0 1



 (15)

Setting ξ = (g′, η′)′, this system may also be written as

ξ̇ = Z1(ξ)v1 + Z2v2 (16)

with

Z1(ξ) =













cos ξ3
sin ξ3
0
ξ4
−ξ5













, Z2 =













0
0
1
−1
1













(17)

3.2 Properties of the control Lie algebra

The following proposition recalls controllability properties of System (16) and establishes other properties
which play a key role in the forthcoming control design.

Proposition 1. The family of v.f. Z = {Z1, Z2} satisfies the following properties:

1. dimLie(Z)(ξ) = dim(ξ) for any ξ, i.e. the LARC is satisfied at any point.

2. With Z3 = [Z1, Z2], Z4 = [Z1, Z3], Z5 = [Z2, Z3], Z6 = [Z1, Z4], and Z7 = [Z2, Z5], one has

Lie(Z) = span
R
{Z1, . . . , Z5, Z6}

= span
R
{Z1, . . . , Z5, Z7}

3. [Z1, Z5] = [Z2, Z4] = 0.

Proof: The proof follows by a direct calculation of the Lie brackets of Z1, Z2 up to the fourth order.

4 Control design

4.1 Control objective

Given a (any) reference Cartesian motion for the trailer system, specified by a reference trajectory gr(.) =
(xr, yr, θr)

′(.) ∈ SE(2), one of the control objectives is to stabilize at zero the tracking error defined by

g̃ = g−1
r g (18)

More precisely, the objective is to achieve the practical stabilization of g̃ = 0, i.e. the stabilization of a set
inside a given neighborhood of g̃ = 0, having in mind that the more demanding objective of asymptotic
stabilization of g̃ = 0 is possible only when the reference trajectory gr is feasible for the mid-vehicle. In view
of (14) this latter constraint implies that the reference frame lateral velocity, i.e. the second component of
the vector vr defined by ġr = X(gr)vr, is identically equal to zero. In addition, the control law must ensure
the boundedness of the internal shape vector η so as to prevent the unicycle and its trailers from colliding
into each other, a phenomenom known as the ”knife-edge” effect. Respecting this constraint constitutes
in fact the real challenge, since otherwise it would suffice to control one of the vehicles without paying
attention to the others. Another (complementary) objective is to achieve the asymptotic stabilization of
feasible trajectories, i.e. the asymptotic stabilization of g̃ = 0. This property implies that v converges

Inria



Feedback control of the general two-trailers system 9

asymptotically to vr and that along the reference trajectory η satisfies the following relation (compare
with (13))

η̇ = A(η)(vr,1, vr,3)
′ (19)

For arbitrary time functions vr,1, vr,3, this system of equations does not admit closed-form solutions. This
raises the difficulty of specifying a reference value ηr for η. Note, however, that

ηr,1 = ηr,2 = cr :=
vr,3
vr,1

(20)

is a solution when the ratio vr,3/vr,1 is constant. This case corresponds to motions along straight lines and
circles, with cr the associated curvature. Provided that the linearized system along these trajectories is
controllable –a property easily established when vr,1(t) > ǫ > 0– one can also apply classical linear control
techniques to stabilize such trajectories. For the sake of completeness, a control law of this type is derived
in Section 5 and its performance compared in simulation with the more complex, but also more versatile,
TF control solution here proposed.

4.2 Extension to a system on a Lie group

Although System (16) is not a system on a Lie group, Property 2 of Proposition 1 points out that the
Lie algebra generated by Z1, Z2 is finite-dimensional, of dimension equal to six. This implies that there is
a Lie group associated with this Lie algebra and that the v.f. Z1, Z2 can be ”lifted” to left-invariant v.f.
on a 6-dimensional manifold. This property, which to our knowledge has not been reported before in the
literature, will be exploited further for the control design.

Theorem 1. Consider the dynamic extension of (16) defined by

˙̄ξ = Z̄1(ξ̄)v1 + Z̄2v2 (21)

with

ξ̄ =

(

ξ
ξ̄6

)

, Z̄1(ξ̄) =

(

Z1(ξ)
1

)

, Z̄2 =

(

Z2

0

)

Then,

1. Z̄ = {Z̄1, Z̄2} satisfies Properties 1, 2, and 3 of Proposition 1.

2. The v.f. Z̄1, Z̄2 are left-invariant on SE(2)× R
3 with respect to the group operation defined by

x • y =









gxgy
x4 exp(y6) + y4
x5 exp(−y6) + y5

x6 + y6









(22)

with gx and gy denoting the first three components of x and y respectively.

3. The differentials of the left and right translation operators associated with the group operation (22)
are given by

dLx(y) =









Q̄(x3) O3×3

O3×3





1 0 x4 exp(y6)
0 1 −x5 exp(−y6)
0 0 1













and

dRy(x) =

(

dR1,1(x3, y1,2) O3×3

O3×3 dR2,2(y6)

)

RR n° 7938



10 Morin & Samson

with

dR1,1(x3, y1,2) =





I2 Q(x3)

(

−y2
y1

)

02×1 1



 , dR2,2(y6) =





exp(y6) 0 0
0 exp(−y6) 0
0 0 1





Proof: The proof consists of basic calculations.

Remark and correction of [12, Prop. 2]: Except for the Lie group invariance property, the control v.f. of
System (21) share the same properties as the control v.f. of System (16). In particular, one verifies that
the linearization of System (21) along feasible reference trajectories –for which vr,2 ≡ 0– associated with
constant reference velocities vr1 and vr3 is also controllable when vr,1 6= 0. This property constitutes a
counter-example to an earlier result, namely [12, Prop. 2], which points out conditions on the structure
of a control Lie algebra that are necessary to the controllability of a linear approximation along feasible
trajectories generated with constant control inputs. It also gives us the opportunity to indicate that the
proof of this result is correct when a complementary assumption of homogeneity upon the control v.f. is
made. Since the control v.f. of (21) are not homogeneous w.r.t. any dilation, by the simple fact that they
involve trigonometric functions, the above mentioned result does not apply and the controllability of the
linear approximation cannot be ruled out.

4.3 Transverse functions

Previous papers, like [8] and [13] for instance, point out general algorithms for the determination of
transverse functions (TF) that work for any set of control v.f. which satisfy the LARC. However, given
a physical system and various TF for this system, no systematic methodology exists at this time to a
priori select a “good” candidate in terms of some performance criterion, itself not easily defined in the
case of systems performing maneuvers. Let us just mention the sensible rule –reflecting the authors’
own experience in this matter– according to which the design of TF should make use of the geometrical
properties of the system’s control vector fields. For instance, while the functions proposed in [8] are defined
on a torus, we showed more recently in [14] and [13] how to define TF on a special orthogonal group when
the LARC is satisfied with first-order Lie brackets only. This latter possibility is preferable to the former
one for systems that exhibit specific symmetry properties (see [13, Sec. III] for more details). More
generally, it is possible to combine different definition domains so as to produce TF defined on a product
of toruses and special orthogonal groups. The TF proposed next, for a class of families of v.f. which
includes the family {Z̄1, Z̄2} of System (21), belong to this third category.

The following notation will be used.
1. ∆ε and P denote constant matrices:

∆ε = Diag(ε, ε, ε2, ε3, ε3) , P =

(

0 −1 0
1 0 0

)

with Diag(x1, . . . , xp) the diagonal matrix whose ordered elements on the diagonal are x1, . . . , xp.
2. Vector-valued functions involved in the calculation of the proposed TF are

µa1
(θ1) =















a1,1sθ1
a1,2cθ1

0
a2
1,1a1,2

3 cθ1

−
a1,1a

2
1,2

3 sθ1















, δa2,a3
(θ2, θ3) =













a2,1sθ2
a3,1sθ3

0
a2,2cθ2
a3,2cθ3













, νD(Q) =

(

DQe1
PD̄Qe3

)

with Q ∈ SO(3), θi ∈ S
1, sθi and cθi standing for sin θi and cos θi respectively, ai = (ai,1, ai,2), and

D = Diag(d1, d2, d3) , D̄ = Diag(d2d3, d1d3, d1d2) (23)
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Feedback control of the general two-trailers system 11

3. Given v.f. X1, . . . , Xp and a vector v ∈ R
p, Xv is used for

∑p
i=1 viXi to shorten the notation.

The following result is obtained by combining the TF theorems in [8] and [13].

Theorem 2. Consider a Lie group G with Lie algebra g and denote by x • y the group product of x and
y in G. Consider two left-invariant v.f. X1, X2 ∈ g such that

g = Lie(X1, X2) = span
R
{X1, . . . , X7} (24)

and
[X1, X5], [X2, X4] ∈ span

R
{X1, . . . , X5} (25)

with
X3 = [X1, X2], X4 = [X1, X3], X5 = [X2, X3], X6 = [X1, X4], X7 = [X2, X5] (26)

There exist ε̄ > 0 and constant parameters a1,2,3 and d1,2,3 such that, for any ε ∈ (0, ε̄), the function fε

defined on T
3 × SO(3) by

fε(θ1, θ2, θ3, Q) = fε
3 (θ2, θ3) • f

ε
2 (Q) • fε

1 (θ1)
with

fε
1 (θ1) = exp(X∆εµa1

(θ1))
fε
2 (Q) = exp(X∆ενD(Q))
fε
3 (θ2, θ3) = exp(X∆εδa2,a3

(θ2, θ3))

(27)

is transverse to X1, X2.

The proof is given in the appendix.

This result calls for several remarks.
1. From (24), the dimension of G is less than, or equal to, seven. When dim(G) < 7, some parameters

of the TF can be set equal to zero. For example, if g = span
R
{X1, . . . , X6}, one can set a3 = 0, and if

g = span
R
{X1, . . . , X5}, one can set a2 = a3 = 0 so that fε = fε

2 (Q) • fε
1 (θ1).

2. The rationale behind the proposed TF expressions is as follows. Three functions are involved,
namely fε

1 , f
ε
2 , and fε

3 . The role of fε
1 is to grant transversality in the direction of the first-order Lie

bracket X3 = [X1, X2]. More precisely, we have ḟε
1 = X(fε

1 )ηε,a1
(θ1)θ̇1 with the third component of ηε,a1

–i.e. the coefficient of X3(f
ε
1 )– being always different from zero. Similarly, fε

2 grants transversality in the
directions of the second-order Lie brackets X4 = [X1, X3] and X5 = [X2, X3], and fε

3 grants transversality
in the direction of the third-order Lie brackets X6 = [X1, X4], X7 = [X2, X5], with θ2 yielding the X6

direction and θ3 the X7 direction.
3. Let G = SE(2)×R

3. By Theorem 1, Z̄1 and Z̄2 are left invariant v.f. of G and satisfy the properties
of Proposition 1. Therefore, they also satisfy the assumptions of Theorem 2, so that TF for {Z̄1, Z̄2} are
given by (27). Since Z̄1, Z̄2 satisfy Property 2 of Proposition 1, it follows from the above remark that
one can set a3 (or a2 equal to zero). In other words, the dependence of fε

3 (and subsequently fε) on two
variables θ2 and θ3, rather than only one –either one of them–, is not completely necessary. It can be
interesting to use non-zero values for both pairs of parameters because there is no reason to favor one
of the Lie brackets X6 and X7 w.r.t the other. We have also verified that this redundancy grants more
freedom as for the determination of the parameters a1,2,3 for which the transversality property holds.

4. Once given the family of functions (27), it remains to determine values of the parameters ε, a1−3

and d1−3 –i.e. ten scalars– for which the transversality property is satisfied. The number of parameters
can be brought back to three because the proof of Theorem 2 can be worked out with a1,1 = a1,2 = dj
(j = 1, 2, 3), a2,1 = a3,1, and a2,2 = a3,2 = a32,1. However, using a larger number of parameters yields more
flexibility in the control performance and the monitoring of the tracking errors. This can also be useful
for the control of other systems that satisfy the assumptions of Theorem 2. For the simulation results
reported further on, and in the absence of a better method to characterize a “good” set, we have essentially
applied a brute “guess and check”method which allowed us to find out values for which we are reasonably
confident –after testing on various feasible and non-feasible trajectories– that they yield transversality and
acceptable overall performance of the controller.
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12 Morin & Samson

4.4 Tracking error system

From (2), (5), (6), (14), and (18), it follows that

{

˙̃g = X(g̃)Cv + pg(g̃, vr)
η̇ = A(η)v

(28)

with

pg(g̃, vr) = −





1 0 −g̃2
0 1 g̃1
0 0 1



 vr

the additive “perturbation” arising from the motion of the reference frame. Setting now

ξ =

(

g̃
η

)

this error-system may also be written as

ξ̇ = Z1(ξ)v1 + Z2v2 + pξ(ξ, vr) (29)

with Z1, and Z2 defined by (17), and

pξ(ξ, vr) =

(

pg(g̃, vr)
02×1

)

(30)

A dynamic extension, corresponding to the lifting of Z1 and Z2 to Z̄1 and Z̄2 evoked in Theorem 1, is

˙̄ξ = Z̄1(ξ̄)v1 + Z̄2v2 + p̄ξ̄(ξ̄, vr, η̇r) (31)

with p̄ξ̄ = (p′ξ, 0)
′. The feedback control design reported in the next two sections uses the left-invariance

of Z̄1 and Z̄2, and the transverse functions determined in Section 4.3, in order to practically stabilize the
point ξ = 0 for any reference trajectory gr(.), and asymptotically stabilize this point in the particular case
of feasible trajectories composed of straight lines and circles.

4.5 Practical stabilizers

We first recall how Theorem 1 can be used for control design purposes [8]. Let f̄ denote a smooth function

defined on K × R, with K a ℓ-dimensional compact manifold. Let ( ∂f̄
∂α

)i, i = 1, . . . , ℓ denote a family of
v.f. such that –for short, and with a slight abuse of notation

˙̄f(α, t) =
∂f̄

∂α
(α, t)ω +

∂f̄

∂t
(α, t)

for some ℓ-dimensional “frequency” vector ω. Consider the “modified” error z̄ = ξ̄ • f̄−1. Several indexes
are purposely skipped in forthcoming relations in order to lighten up the notation. From (2) and (31), and
using the invariance of Z̄1 and Z̄2,

˙̄z = dRf̄−1(ξ̄)
(

˙̄ξ − dLz̄(f̄)
˙̄f
)

= dRf̄−1(ξ̄)dLz̄(f̄)
(

Z̄1(f̄)v1 + Z̄2v2 −
∂f̄
∂α

ω
)

+ dRf̄−1(ξ̄)
(

p̄ξ̄ − dLz̄(f̄)
∂f̄
∂t

)

This relation may also be written as

˙̄z = B̄

(

v
ω

)

+ p̄ (32)
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with

p̄ = dRf̄−1(ξ̄)
(

p̄ξ̄ − dLz̄(f̄)
∂f̄
∂t

)

B̄ = dRf̄−1(ξ̄)dLz̄(f̄)H(α, t)

H(α, t) =
(

Z̄1(f̄(α, t)) Z̄2 − ∂f̄
∂α

(α, t)
)

The transverslity of the function f̄ w.r.t. Z̄1 and Z̄2 means that the 6× (ℓ+2) dimensional matrix-valued
function H is of full rank (equal to 6) ∀(α, t). This in turn implies that B̄ is a full-rank matrix-valued
function. Using the pair (v, ω) as an extended control input, it is then simple to design a feedback control
which exponential stabilizes z̄ = 0. Note, however, that we are only interested here in controlling the first
five components of z̄, since z̄6 = (ξ̄6−f6) involves the variable ξ̄6 which does not correspond to any physical
entity. Let z denote the vector regrouping these five components, p denote the first five components of p̄,
and B denote the 5× (ℓ+ 2)-dimensional matrix formed with the first five lines of B̄, so that

ż = B

(

v
ω

)

+ p (33)

One verifies that z, B̄ (and thus B), as well as p̄ (and thus p) do not depend on the “extra” variable ξ̄6,
so that these terms can be calculated without having to compute this variable. Now, since B is also of
full rank (equal to 5), it is simple to define v and ω so as to achieve the exponential stabilization of z = 0.
Take, for instance,

(

v
ω

)

= −B†(kz + p) , k > 0 (34)

with B† = B′(BB′)−1 the Moore-Penrose right pseudo-inverse of B. This yields the closed-loop equation
ż = −kz so that the tracking error g−1

r g converges to f̄g –the vector composed of the first three components
of f̄– and η converges to f̄η –the vector composed of the fourth and fifth components of f̄ . There remains
to specify f̄ . A possibility is given by f̄ = fε, with fε defined in Theorem 2 and constant parameters
ε, a1,2,3, d1,2,3 that ensure the transversality of f ǫ. Then, α = (θ1, θ2, θ3, Q) and f̄ ranges in a compact
set, so that practical stabilization of any reference trajectory for the general two-trailers system follows.
Decreasing ε improves the tracking precision, since fε uniformly tends to the null vector when ε tends
to zero, but also renders (BB′) closer to a singular matrix with the common consequence of increasing
the intensities of the control inputs v and ω, and thus the frequency of maneuvers, especially when the
reference trajectory is not feasible.

4.6 Asymptotic stabilization of reference trajectories with constant curvature

It is possible to modify the practical stabilizer (34) so as to allow for the asymptotic stabilization of feasible
reference trajectories. Rewrite System (33) as

ż = B

(

ṽ
ω

)

+ p̃ (35)

with ṽ = (v1 − vr,1, v2 − vr,3)
′ and

p̃ = p+B





vr,1
vr,3
03×1





Exponential stabilization of z = 0 can be obtained by using (34) with v and p replaced by ṽ and p̃
respectively. A more general control expression, yielding the same closed-loop dynamics for z (and thus
also unconditional practical stabilization of any reference trajectory) is

(

ṽ
ω

)

= −B+
W (kz + p̃)− (I8 −B†B)λ (36)
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14 Morin & Samson

with
B+

W = WB′(BWB′)−1 (37)

a general right pseudo-inverse of B, W any (ℓ+2)×(ℓ+2) symmetric positive definite (s.p.d.) matrix, and
λ any function of time whose importance in relation to the complementary objective of stabilizing feasible
reference trajectories asymptotically is pointed out and explicited in [15]. More precisely, asymptotic
stabilization of feasible reference trajectories relies on specific choices of i) the transverse function f̄ , ii)
the ”correction term” λ, and iii) the weight matrix W . Possible choices for f̄ and λ are detailed next.

In view of the definition of z, the convergence of z to zero yields the convergence of g̃ and (η − ηr) to
zero when f̄g converges to the unit element of SE(2) and f̄η converges to (ηr,1, ηr,2, 0)

′. This suggests to
use the function f̄ defined by

f̄(α, t) = fr(t) • (f
ε(α∗))−1 • fε(α) (38)

with
α = (θ1, θ2, θ3, Q), fr(t) = (0, 0, 0, ηr,1(t), ηr,2(t), 0)

′

and α∗ a suitable constant element of T3×SO(3). Indeed, the transversality of this function is ensured by
the transversality of fε and f̄(α∗, t) = fr(t) = (0, 0, 0, ηr,1(t), ηr,2(t), 0)

′. It thus suffices that α converges
to α∗ to obtain the desired convergence result. Following [15], we propose to achieve the convergence of α
to α∗ via the combined choices of α∗ and the function λ in (36). As already pointed out, the choice of this
latter function does not affect the exponential convergence of z to zero. On the other hand, it influences
the system’s zero-dynamics associated with z = 0. We propose the function defined by

λ = kλ(0, 0, sin(θ1 − θ∗1), k̄λqsq
′
v, sin(θ2 − θ∗2), sin(θ3 − θ∗3))

′ (39)

with kλ, k̄λ positive gains, and (qs, qv) the scalar and vectorial part of the quaternion associated with
(Q∗)−1Q. The expression (39) is inspired by [15], where a similar function –used for a lower-order system–
is shown to yield the convergence of α to a suitably chosen element α∗ whose correspondance, for the
system here considered, is

α∗ = (θ∗1 , θ
∗
2 , θ

∗
3 , Q

∗) = (−π/2,−π/2, 0, I3) (40)

The proof of convergence remains to be worked out in the present case, but simulation results alike these
reported in Section 5 tend to show that this property is granted for feasible reference trajectories (for
which vr,2 = 0) with a constant curvature.

4.7 Linear asymptotic stabilizers of reference trajectories with constant cur-

vature

Since the linearization of the two-trailers system is controllable along trajectories with a constant curvature,
linear asymptotic stabilizers of such trajectories can be obtained by applying classical control design
techniques. A possible solution of this type is derived next for comparison purposes. Let ηr denote the
reference shape vector defined by (20), and η̃ := η − ηr. Define the following variables:

xi = g̃i (i = 1, 2, 3), x4 =
η̃1 − η̃2

2
+ g̃3, x5 =

η̃1 + η̃2
2

+ g̃2 (41)

Proposition 2. The feedback law

ṽ1 = −vr,3x2 − k4|vr,1|x1

ṽ2 =
vr,1

1 + c2r

(

k3(x4 − (1 + c2r)x3)sign(vr,1) + · · ·

(1 + k2)(x5 − (1 + c2r)x2) + k1x4sign(vr,1) + k0x5

)

(42)

with k4 > 0 and k0,1,2,3 any set of gain values that make the polynomial s4 + k3s
3 + k2s

2 + k1s + k0
Hurwitz-stable, make the reference trajectory (gr, ηr) localy exponentially stable provided that i) cr is
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Feedback control of the general two-trailers system 15

constant, ii) vr,1 is bounded, and iii) there exist constant T, δ > 0 such that

∀t ∈ R+,

∫ t+T

t

|vr,1(s)| ds ≥ δ (43)

The proof is given in the appendix.

5 Simulation results

For the reported simulations, the time history of the reference frame velocity vr is summarized in the
following table. Feasible trajectories correspond to the case when vr,2 = 0, ∀t. Controllability of the
system’s linear approximation along such trajectories further requires that vr,1 6= 0.

t ∈ (s) vr = (m/s, m/s, rad/s)′

[0, 5) (0, 0, 0)′

[5, 13) (0.6, 0, 0.05(t− 5))′

[13, 21) (0.6, 0, 0.4− 0.05(t− 13))′

[21, 28) (0.8, 0, 0)′

[28, 35) (0, 0, 0.4)′

[35, 42) (0,−0.5, 0)′

[42, 44) (−0.75(t− 42), 0, 0.3(t− 42))′

[44, 50) (−1.5, 0, 0.6)′

[50, 52) (−1.5, 0, 0.6− 0.6(t− 50))′

[52, 57) (−1.5, 0,−0.6)′

[57, 59) (−1.5, 0,−0.6 + 0.3(t− 57))′

[59, 60) (0, 0, 0)′

5.1 TF controller

The control law is defined by (36) with

W = Diag(1, 1, 100, 100, 100, 100, 100, 100), k = 3

λ and α∗ given by (39) and (40) respectively, kλ = 5|vr,1|, and k̄λ = 20. The transverse function used in
the control law is given by (38), with fε given by (27) and the parameters ε, a1,2,3, d1,2,3 of this function
chosen as follows

ε = 0.6, a1 = (0.4sign(vr,1), 1.1), a2 = (2.5sign(vr,1), 3)
a3 = (1.5,−6sign(vr,1)), (d1, d2, d3) = −sign(vr,1)(1.6, 1, 1)

In order to avoid singularities of the reference shape vector ηr at vr,1 = 0 (see (20)), and discontinu-
ities at time-instants when the reference velocity is itself discontinuous, the function defined by (20) is
approximated by the solution to the following differential equation

η̇r,i = −kη

(

ηr,i −
vr,3vr,1
v2r,1 + δ2

)

Choosing δ small and kη large yields reference values close to these given by (20) when vr,1 is away from
zero, and close to zero when vr,1 = 0. The simulation values are δ = 0.01 and kη = 5. Note that, by design
of the TF control solution, the practical stabilization property –contrary to asymptotic stabilization– is
basically independent of the choice of ηr provided that this term is uniformly bounded. Another practical
modification concerns the parameter ε involved in the term fε(α∗) that we have replaced by

ε̃ = ε(tanh(vr,1/µ))
2 (44)
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16 Morin & Samson

with µ a small positive number, equal to 0.01 in the simulation. Then, ε̃ ≈ ε when vr,1 is away from zero,
and ε̃ = 0 when vr,1 = 0 so that the precompensation term f ε̃(α∗) in (38) vanishes in this case. This is
coherent with the fact that a non-zero precompensation is not useful when vr,1 = 0 because asymptotic
stabilization of fixed points is not achievable with the present solution.

Fig. 2 shows the trajectories of the vehicule (full line) and of the reference frame (dashed line) in
Cartesian space. The initial position coordinates of the mid-vehicle at t = 0 are (x, y) = (−2, 1), whereas
these of the reference frame are (xr, yr) = (0, 0). The figure also illustrates the control’s capacity to
maintain the vehicle’s position nearby the origin of the reference frame, whatever the trajectory of this
frame.

Fig. 3 shows the time evolution of the norm of z. Picks occur at time-instants when the transverse
function coefficients ai vary abruptly due to sign changes of vr,1 and also fast variations of ε̃ when vr,1
gets close to zero. These variations could be compensated for at the control level so as to maintain z
equal to zero, but we have chosen not to do so for the sake of simplicity and to illustrate an aspect of the
controller’s robustness.

Finally, Fig. 4 shows the time evolution of Cartesian tracking errors, the boundedness of the orientation
error, and the convergence of these errors to zero when the reference trajectory is feasible and the curvature
cr is constant, i.e when t ∈ [21; 28], t ∈ [44; 50] and t ∈ [52; 57].

−10 −8 −6 −4 −2 0 2 4

−6

−4

−2

0

2

4

x

y

Figure 2: TF controller. Trajectories in the x− y plane
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Figure 4: TF controller. Tracking errors in SE(2)

5.2 Linear controller

For comparison purposes, tracking of the same reference frame trajectory with the linear controller of
Section 4.7 has also been simulated. The control gains ki of the linear controller are defined by k4 = 2 and
s4 + k3s

3 + k2s
2 + k1s + k0 = (s + 2)4. Fig 5 shows the trajectories in Cartesian space of the controlled

mid-vehicule (full line) and of the reference frame (dashed line), and Fig 6 shows the time evolution of the
Cartesian tracking errors. When the reference trajectory is feasible (or almost feasible) and persistently
exciting, the vehicule’s behavior is similar to the one obtained with the TF controller. On the other hand,
and as expected, the tracking errors can become arbitrarily large when the reference motion is not feasible,
as in the case of pure lateral reference motion when t ∈ [35; 42]. Another shortcoming of this solution,
not visible on these figures, is the occurence of the knife-edge effect when the reference motion is a pure
rotation, when t ∈ [28; 35]. This effect, of no consequence in simulation, would of course be problematic in
practice. A third shortcoming of the linear controller is its incapacity to reduce the Cartesian error when
the reference frame is motionless, when t ∈ [0; 5].
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Figure 5: Linear controller. Trajectories in the x− y plane
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Figure 6: Linear controller. Tracking errors in SE(2)

6 Conclusion

A new solution to the trajectory tracking problem has been proposed for the general two-trailers system.
Unlike more classical, simpler, but also far less versatile control solutions proposed for this system, it yields
practical stabilization of any reference trajectory, whether it is or is not feasible. A direct follow-up of the
present work is a completion of the asymptotic stability analysis in the case of feasible trajectories with
constant curvature. Other possible extensions include, e.g., the treatment of a larger number of trailers
and experimental validation of the proposed solution.
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Appendix 1: Proof of Theorem 2

The following notation is used in the proof.

• We denote by ℓ(k) the ”length” of the Lie bracket associated with Xk, i.e. ℓ(1) = ℓ(2) = 1, ℓ(3) = 2,
ℓ(4) = ℓ(5) = 3, ℓ(6) = ℓ(7) = 4.

• We denote by O(ε) any function which depends continuously on a parameter ε and such that O(0)
is the null function.

• For any vector u ∈ R
n, up→q denotes the sub-vector of u equal to (up, up+1, · · · , uq)

T .

• For any v.f. Z, Y ∈ g and any k ∈ N, adk(Z)(Y ) is the v.f. defined recursively by ad0(Z)(Y ) = Y
and adk(Z)(Y ) = [Z, adk−1(Z)(Y )] for k ≥ 1.

We show below that the function fε defined by (27) is a TF for ε small enough and for an adequate choice
of the parameters a1, a2, a3, and D.

From (27), let us rewrite fε as
fε = fε

3f
ε
2f

ε
1

where the • symbol for the group operation is omitted to simplify the notation, and

fε
1 = exp (X∆εµa1

) , fε
2 = exp (X∆ενD) , fε

3 = exp (X∆εδa2,a3
) (45)

with X = [X1, . . . , X7],

µa1
(θ1) =



















a1,1 sin θ1
a1,2 cos θ1

0
a2
1,1a1,2

3 cos θ1

−
a1,1a

2
1,2

3 sin θ1
02×1



















, δa2,a3
(θ2, θ3) =

















a2,1 sin θ2
a3,1 sin θ3

0
a2,2 cos θ2
a3,2 cos θ3

02×1

















, νD(Q) =





DQe1
PD̄Qe3
02×1



 (46)

and
∆ε = Diag(ε, ε, ε2, ε3, ε3, ε4, ε4)

= Diag
(

εℓ(1), εℓ(2), εℓ(3), εℓ(4), εℓ(5), εℓ(6), εℓ(7)
) , P =

(

0 −1 0
1 0 0

)
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Note the slight abuse of notation since µa1
, δa2,a3

, νD, and ∆ε so defined are not exactly the same as those
defined in Section 4.3 (they have been extended as R7-valued functions). The resulting expression of fε,
however, is the same.

Expression of ḟ ε

We first establish the expression of ḟε. The calculation makes use of the following classical formula [16,
Pg. 105] for the derivative of the exponential mapping on Lie groups:

d

dt
exp(Z + tY )|t=0 =

∞
∑

k=0

(−1)k

(k + 1)!
adk(Z)(Y )(exp(Z)) (47)

When Z(t) denotes a time-varying vector field, the above expression yields

d

dt
exp(Z(t)) =

∞
∑

k=0

(−1)k

(k + 1)!
adk(Z(t))(Ż(t))(exp(Z(t)))

with Ż(t) the time-varying vector field d
dt
Z(t). Expansion of the above series yields

d

dt
exp(Z(t)) =

(

Ż(t)−
1

2
[Z, Ż](t) +

1

6
[Z, [Z, Ż]](t)−

1

24
[Z, [Z, [Z, Ż]]](t) + · · ·

)

(exp(Z(t))) (48)

The following lemma, whose proof is given further, is used for the calculation of ḟε.

Lemma 1. For any ε and any vectors v, w ∈ R
7,

ad1(X∆εv)(X∆εw) = [X∆εv,X∆εw] = X∆ε

















02×1

M(v1→3 × w1→3)
v1w4 − v4w1

v2w5 − v5w2









+O(ε)









(49)

ad2(X∆εv)(X∆εw) = X∆ε

















03×1

v1→2(v1w2 − v2w1)
v1(v1w3 − v3w1)
v2(v2w3 − v3w2)









+O(ε)









(50)

ad3(X∆εv)(X∆εw) = X∆ε









05×1

v21(v1w2 − v2w1)
v22(v1w2 − v2w1)



+O(ε)



 (51)

and
adk(X∆εv)(X∆εw) = X∆εO(ε) , ∀k ≥ 4, (52)

with

M =

(

eT3
P

)

=





0 0 1
0 −1 0
1 0 0





Calculation of ḟε
1 :

From (45), fε
1 = exp(Z) with Z = X∆εµa1

. Using Lemma 1 above and the expression (46) of µa1
, the
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following expressions are obtained:

Ż = X∆εµ̇a1

= X∆ε

(

a1,1 cos θ1,−a1,2 sin θ1, 0,−
a2
1,1a1,2

3 sin θ1,−
a1,1a

2
1,2

3 cos θ1, 0, 0
)T

θ̇1

[Z, Ż] = ad1(Z)(Ż)

= X∆ε

[

(0, 0,−a1,1a1,2, 0, 0, ca1
(θ1), ca1

(θ1))
T
+O(ε)

]

θ̇1

[Z, [Z, Ż]] = ad2(Z)(Ż)

= X∆ε

[

(

0, 0, 0,−a21,1a1,2 sin θ1,−a1,1a
2
1,2 cos θ1, 0, 0

)T
+O(ε)

]

θ̇1

[Z, [Z, [Z, Ż]]] = ad3(Z)(Ż)

= X∆ε

[

(0, 0, 0, 0, 0, ca1
(θ1), ca1

(θ1))
T
+O(ε)

]

θ̇1

adk(Z)(Ż) = X∆εO(ε) , ∀k ≥ 4

where ca() is a generic notation for any smooth function that depends on a parameter a. Even though the
different functions ca1

are not necessarily the same, the same notation is used because only the existence
of these functions is needed here. Gathering all the above expressions of adk(Z)(Ż) in (48) yields

ḟε
1 = X(fε

1 )∆ε[µ̄a1
(θ1) +O(ε)]θ̇1 (53)

with

µ̄a1
(θ1) =

(

a1,1 cos θ1,−a1,2 sin θ1,
a1,1a1,2

2
,−

a21,1a1,2

2
sin θ1,−

a1,1a
2
1,2

2
cos θ1, ca1

(θ1), ca1
(θ1)

)T

(54)

Calculation of ḟε
2 :

From (45), fε
2 = exp(Z) with Z = X∆ενD. From (46),

Ż = X∆ε





−DQS(e1)
−PD̄QS(e3)

02×3



ωQ (55)

with S(.) the 3 × 3 matrix-valued operator associated with the cross product on R
3 and ωQ the angular

velocity vector associated with Q, i.e. Q̇ = QS(ωQ). It follows from the definition (23) of D and D̄ that,
for any Q ∈ SO(3),

(DQe1)× (DQS(e1)ωQ) = D̄((Qe1)× (QS(e1)ωQ)) = D̄QS(e1)
2ωQ

Combining with (49) and (55) yields

[Z, Ż] = X∆ε









O2×3(ε)
−MD̄QS(e1)

2 +O(ε)
cD(Q) +O(ε)
cD(Q) +O(ε)









ωQ = X∆ε













O2×3(ε)
−eT3 D̄QS(e1)

2 +O(ε)
−PD̄QS(e1)

2 +O(ε)
cD(Q) +O(ε)
cD(Q) +O(ε)













ωQ

It then follows from (50) that

[Z, [Z, Ż]] = X∆ε









O3×3(ε)
−eT1,2DQe1e

T
3 D̄QS(e1)

2 +O(ε)
cD(Q) +O(ε)
cD(Q) +O(ε)









ωQ
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with

eT1,2 =

(

1 0 0
0 1 0

)

and from (51) that

[Z, [Z, [Z, Ż]]] = X∆ε





O5×3(ε)
cD(Q) +O(ε)
cD(Q) +O(ε)



ωQ

Gathering all previous expressions of adkZ(Ż) in (48) and using (52) yields

ḟε
2 = X(fε

3 )∆ε [ν̄D(Q) +O(ε)]ωQ (56)

with

ν̄D(Q) =













−eT1,2DQS(e1)
−eT3 DQS(e1) +

1
2e

T
3 D̄QS(e1)

2

1
2PD̄Q(S(e1)

2 − 2S(e3))−
1
6e

T
1,2DQe1e

T
3 D̄QS(e1)

2

cD(Q)
cD(Q)













(57)

Calculation of ḟε
3 :

From (45), fε
3 = exp(Z) with Z = X∆εδa2,a3

so that,

Ż = X∆ε (a2,1 cos θ2, 0, 0,−a2,2 sin θ2, 0, 0, 0)
T
θ̇2

+X∆ε (0, a3,1 cos θ3, 0, 0,−a3,2 sin θ3, 0, 0)
T
θ̇3

Using Lemma 1, the following expressions are obtained:

[Z, Ż] = X∆ε (0, 0,−a2,1a3,1 sin θ3 cos θ2, 0, 0,−a2,1a2,2, 0)
T
θ̇2

+X∆ε (0, 0, a2,1a3,1 sin θ2 cos θ3, 0, 0, 0,−a3,1a3,2)
T
θ̇3

[Z, [Z, Ż]] = X∆ε

[

(

0, 0, 0,−a22,1a3,1 sin θ3 sin θ2 cos θ2,−a2,1a
2
3,1 sin

2 θ3 cos θ2, 0, 0
)T

+O(ε)
]

θ̇2

+X∆ε

[

(

0, 0, 0, a22,1a3,1 sin
2 θ2 cos θ3, a2,1a

2
3,1 sin θ2 sin θ3 cos θ3, 0, 0

)T
+O(ε)

]

θ̇3

and

[Z, [Z, [Z, Ż]]] = X∆ε

[

(

0, 0, 0, 0, 0,−a32,1a3,1 sin θ3 sin
2 θ2 cos θ2,−a2,1a

3
3,1 sin

3 θ3 cos θ2
)T

+O(ε)
]

θ̇2

+X∆ε

[

(

0, 0, 0, 0, 0, a32,1a3,1 sin
3 θ2 cos θ3, a2,1a

3
3,1 sin θ2 sin

2 θ3 cos θ3
)T

+O(ε)
]

θ̇3

Gathering all these terms in (48) and using (52) again yields

ḟε
3 = X(fε

3 )∆ε

[

δ̄a2,a3
(θ2, θ3) +O(ε)

]

(θ̇2, θ̇3)
T (58)

with

δ̄a2,a3
(θ2, θ3) =





















a2,1 cos θ2 0
0 a3,1 cos θ3

1
2a2,1a3,1 sin θ3 cos θ2 − 1

2a2,1a3,1 sin θ2 cos θ3
−a2,2 sin θ2 −

1
6a

2
2,1a3,1 sin θ3 sin θ2 cos θ2

1
6a

2
2,1a3,1 sin

2 θ2 cos θ3
− 1

6a2,1a
2
3,1 sin

2 θ3 cos θ2 −a3,2 sin θ3 +
1
6a2,1a

2
3,1 sin θ2 sin θ3 cos θ3

1
2a2,1a2,2 +

1
24a

3
2,1a3,1 sin θ3 sin

2 θ2 cos θ2 − 1
24a

3
2,1a3,1 sin

3 θ2 cos θ3
1
24a2,1a

3
3,1 sin

3 θ3 cos θ2
1
2a3,1a3,2 −

1
24a2,1a

3
3,1 sin θ2 sin

2 θ3 cos θ3





















(59)
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Expression of ḟε:

For any time functions g1, g2 on G such that ġi = X(gi)vi for i = 1, 2, the left-invariance of the vector
fields Xi implies that

d

dt
(g2g1) = dLg2g1(e)

[

X(e)v1 +Ad(g−1
1 )X(e)v2

]

Recall that L is the left-translation operator on G. By applying this relation to the product fε
2f

ε
1 , it follows

from (53) and (56) that

d

dt
(fε

2f
ε
1 ) = dLfε

2
fε

1
(e)
[

X(e)∆ε(µ̄a1
+O(ε))θ̇1 +Ad((fε

1 )
−1)X(e)∆ε(ν̄D +O(ε))ωQ

]

(60)

where the arguments of µ̄a1
and ν̄D have been omitted. Since fε = fε

3f
ε
2f

ε
1 , we deduce from the above

relation and (58) that

ḟε = dLfε(e)H̄ε
a,D(θ1, θ2, θ3, Q)









θ̇1
ωQ

θ̇2
θ̇3









(61)

with

H̄ε
a,D =

(

X(e)∆ε(µ̄a1
+O(ε)) Ad((fε

1 )
−1)X(e)∆ε(ν̄D +O(ε)) Ad((fε

2f
ε
1 )

−1)X(e)∆ε(δ̄a2,a3
+O(ε))

)

(62)

Sufficient conditions for the transversality of f ε:

From the definition of a transverse function, (24), and the left invariance of the v.f. Xi, f
ε is a TF for

given values of a1, a2, a3, D, and ε > 0, if and only if,

∀θ1, θ2, θ3, Q, Im(H̄ε
a,D(θ1, θ2, θ3, Q)) + span(X1(e), X2(e)) = g (63)

The proof of the existence of parameters a1, a2, a3, D, and ε̄ > 0 such that, for ε ∈ (0, ε̄), (63) is satisfied
relies on the following lemma (whose proof is given further).

Lemma 2. For any vectors v, w ∈ R
7,

Ad(exp(X∆εv))X(e)∆εw = X(e)∆ε(w + γ(v, w) +O(ε)) (64)

with γ a polynomial function of v and w which vanishes when v = 0 or w = 0. Furthermore,

1. γi is a sum of monomials of the form civi1 · · · vipwip+1
with p ≥ 1 and ci some constant, and

∑p+1
k=1 ℓ(ik) = ℓ(i).

2. When v3 = 0,
γ3(v, w) = v1w2 − v2w1

γ4(v, w) = v1(w3 +
1
2γ3(v, w))

γ5(v, w) = v2(w3 +
1
2γ3(v, w))

(65)

Since fε
1 = exp(X∆εµa1

), so that (fε
1 )

−1 = exp(−X∆εµa1
) , it follows from this lemma that

Ad((fε
1 )

−1)X(e)∆ε(ν̄D +O(ε)) = X(e)∆ε(ν̄D +O(ε) + γ(−µa1
, ν̄D +O(ε)) +O(ε))

= X(e)∆ε(ν̄D + γ(−µa1
, ν̄D) +O(ε))
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where the second equality comes from the fact that γ is a polynomial function of its arguments. Similarly,
using the fact that fε

2 = exp(X∆ενD) and the property Ad(g1g2) = Ad(g1)Ad(g2),

Ad((fε
2f

ε
1 )

−1)X(e)∆ε(δ̄a2,a3
+O(ε)) = Ad((fε

2 )
−1)Ad((fε

1 )
−1)X(e)∆ε(δ̄a2,a3

+O(ε))
= Ad((fε

2 )
−1)X(e)∆ε(δ̄a2,a3

+ γ(−µa1
, δ̄a2,a3

) +O(ε))
= X(e)∆ε(δ̄a2,a3

+ γ(−µa1
, δ̄a2,a3

) + γ(−νD, δ̄a2,a3
+ γ(−µa1

, δ̄a2,a3
)) +O(ε))

Therefore, using (62),
H̄ε

a,D = X(e)∆ε(Ma,D +O(ε)) (66)

with

Ma,D =
(

µ̄a1
ν̄D + γ(−µa1

, ν̄D) δ̄a2,a3
+ γ(−µa1

, δ̄a2,a3
) + γ(−νD, δ̄a2,a3

+ γ(−µa1
, δ̄a2,a3

))
)

Since Ma,D does not depend on ε, it follows from (66) that (63) is satisfied, for some a1, a2, a3, D and for
ε small provided that the 5× 6 matrix

H0(θ1, θ2, θ3, Q) = (05×2 I5,5)Ma,D(θ1, θ2, θ3, Q)

is of full rank for any θ1, θ2, θ3, Q. Note that this condition is only sufficient for the transversality of
fε. In particular, when dim(G) < 7 the transversality of fε can be achieved with a smaller rank of
H0(θ1, θ2, θ3, Q).

Full rankedness of H0:

Let us decompose H0 as follows:

H0 =

(

T V
U W

)

with

T =

(

µ̄a1,3→5 ν̄D,3→5 + γ3→5(−µa1
, ν̄D)

)

, U =

(

µ̄a1,6→7 ν̄D,6→7 + γ6→7(−µa1
, ν̄D)

)

V =

(

δ̄a2,a3,3→5 + γ3→5(−µa1
, δ̄a2,a3

) + γ3→5(−νD, δ̄a2,a3
+ γ(−µa1

, δ̄a2,a3
))

)

W =

(

δ̄a2,a3,6→7 + γ6→7(−µa1
, δ̄a2,a3

) + γ6→7(−νD, δ̄a2,a3
+ γ(−µa1

, δ̄a2,a3
))

)

We first determine conditions under which T is of full rank. The rank of this matrix is equal to the rank
of the matrix

T̄ =





T1

T2 + µa1,1T1

T3 + µa1,2T1





with Ti denoting the i-th row of T . It follows from (46), (54), and (65) that

T̄ =





µ̄a1,3 ν̄D,3 − µa1,1ν̄D,2 + µa1,2ν̄D,1

0 ν̄D,4 +
1
2µa1,1(−µa1,1ν̄D,2 + µa1,2ν̄D,1)

0 ν̄D,5 +
1
2µa1,2(−µa1,1ν̄D,2 + µa1,2ν̄D,1)





=







a1,1a1,2

2 ν̄D,3 − µa1,1ν̄D,2 + µa1,2ν̄D,1
(

0
0

)

1
2PD̄Q(S(e1)

2 − 2S(e3)) +O(|D|)3) +O(|D|)O(|a1|
2)







where the last equality comes from (23), (54), and (57). Since S(e1)
2 − 2S(e3) is invertible, so that the

rank of the matrix PD̄Q(S(e1)
2 − 2S(e3)) is equal to two when D is invertible, it follows from (23) that

the rank of T̄ is equal to three if, for example, a1,1 = a1,2 = d1 = d2 = d3 > 0 is chosen small enough.
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Let us now consider the terms V and W . Let a2,1 = a3,1 = κ > 0 and a2,1 = a3,1 = κ3. Then, it
follows from (59) that

∀i, |δ̄a2,a3,i| ≤ 2κℓ(i) (67)

and
(

δ̄a2,a3,6

δ̄a2,a3,7

)

=
1

2
κ4W0 with W0 =

(

1 + 1
12 sin θ3 sin

2 θ2 cos θ2 − 1
12 sin

3 θ2 cos θ3
1
12 sin

3 θ3 cos θ2 1− 1
12 sin θ2 sin

2 θ3 cos θ3

)

Now, Property 1 of Lemma 1 implies that γi(−µa1
, δ̄a2,a3

) is linear in δ̄a2,a3
and only depends on the

components δ̄a2,a3,k of δ̄a2,a3
such that ℓ(k) < ℓ(i). This implies, using (67), that |γi(−µa1

, δ̄a2,a3
)| ≤

cκℓ(i)−1 with c denoting some constant. From the above definition of V and W one then deduces that

κ ≥ 1 =⇒ |Vi| ≤ ciκ
ℓ(i+2) ≤ ciκ

3 and W =
1

2
κ4W0 +R, |R| ≤ c0κ

3 (68)

with Vi the i-th row of V and ci, c0 some constants. The possible dependence of these constants upon
a1 and D is not important. Note also that the above expression implies that W is invertible for κ large
enough, since W0 is invertible.

Since T is of full rank, there exist for any (θ1, Q) three column vectors of T which form a 3×3 invertible
matrix. Without lost of generality, let us assume that these columns are the three first ones and consider
the 4× 4 submatrix H−

0 of H0 obtained by omiting the fourth column of H0. Then,

H−
0 =

(

T− V
U− W

)

with T− invertible. Recall that H−
0 is invertible if and only if the Shur complement W − U−(T−)−1V is

invertible. Since neither T− nor U− depend on κ, it follows from (68) that this property is satisfied for δ
large enough. Therefore, for any θ1, θ2, θ3, Q there exists κ > 0 such that H0 is of full rank. Due to the
compacity of T3 × SO(3), this in turn implies the existence of κ > 0 such that for any θ1, θ2, θ3, Q, the
matrix H0 is of full rank.

Proof of Lemma 1

For any ε and any v, w ∈ R
7,

[X∆εv,X∆εv] =
[

7
∑

i=1

Xiε
ℓ(i)vi,

7
∑

j=1

Xjε
ℓ(j)wj

]

=
∑

i<j

[Xi, Xj ]ε
ℓ(i)+ℓ(j)(viwj − vjwi)

If ℓ(i) + ℓ(j) > maxk ℓ(k) = 4, then [Xi, Xj ]ε
ℓ(i)+ℓ(j) = X∆εO(ε) since maxk ∆ε(k, k) = 4 and [Xi, Xj ] ∈

g = span
R
{X1, . . . , X7}. Therefore,

[X∆εv,X∆εw] = A1 +X∆εO(ε) with A1 =
∑

i < j
ℓ(i) + ℓ(j) ≤ 4

[Xi, Xj ]ε
ℓ(i)+ℓ(j)(viwj − vjwi)

The sum A1 can be written as

A1 = [X1, X2]ε
2(v1w2 − v2w1) + [X1, X3]ε

3(v1w3 − v3w1) + [X1, X4]ε
4(v1w4 − v4w1)

+[X2, X3]ε
3(v2w3 − v3w2) + [X2, X5]ε

4(v2w5 − v5w2)
+[X1, X5]ε

4(v1w5 − v5w1) + [X2, X4]ε
4(v2w4 − v4w2)

= X3ε
2(v1w2 − v2w1) +X4ε

3(v1w3 − v3w1) +X6ε
4(v1w4 − v4w1)

+X5ε
3(v2w3 − v3w2) +X7ε

4(v2w5 − v5w2)
+X∆εO(ε)RR n° 7938
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where the last equality comes from the definition (26) of the Xi’s and from (25) which allows one to express
[X1, X5] and [X2, X4] as a linear combination of X1, . . . , X5. Therefore,

[X∆εv,X∆εv] = X∆ε [β(v, w) +O(ε] , β(v, w) =

















02×1

v1w2 − v2w1

v1w3 − v3w1

v2w3 − v3w2

v1w4 − v4w1

v2w5 − v5w2

















and (49) follows.

Let us now establish (50). From the above equation,

ad2(X∆εv)(X∆εw) = [X∆εv, ad
1(X∆εv)(X∆εw)]

=
[

7
∑

i=1

Xiε
ℓ(i)vi,

7
∑

j=1

Xjε
ℓ(j)(βj(v, w) +O(ε))

]

=
[

7
∑

i=1

Xiε
ℓ(i)vi,

7
∑

j=1

Xjε
ℓ(j)βj(v, w)

]

+X∆εO(ε)

= A2 +X∆εO(ε) , A2 =
∑

i < j
ℓ(i) + ℓ(j) ≤ 4

[Xi, Xj ]ε
ℓ(i)+ℓ(j)(viβj(v, w)− vjβi(v, w))

By using (26), (25), and the fact that β1 = β2 = 0, one obtains

A2 = [X1, X3]ε
3v1β3(v, w) + [X1, X4]ε

4v1β4(v, w)
+[X2, X3]ε

3v2β3(v, w) + [X2, X5]ε
4v2β5(v, w)

+[X1, X5]ε
4v1β5(v, w) + [X2, X4]ε

4v2β4(v, w)
= X4ε

3v1β3(v, w) +X6ε
4v1β4(v, w) +X5ε

3v2β3(v, w) +X7ε
4v2β5(v, w) +X∆εO(ε)

Eq. (50) directly follows from the above equalities.

The calculation of ad3(X∆εv)(X∆εw) is similar and not reproduced here. Finally, for k ≥ 4,

adk(X∆εv)(X∆εw) = O(εk+1) = O(ε5)

because X∆εu = O(ε) for any u. Relation (52) follows by decomposing adk(X∆εv)(X∆εw) on the
generating family of v.f. X1, . . . , X6, X7 of g, and using the fact that maxk ∆ε(k, k) = 4.

Proof of Lemma 2:

Recall the classical property (see e.g. [16])

Ad(exp(Z))X(e) = exp(ad(Z))(X)(e) =
+∞
∑

k=0

1

k!
adk(Z)(X)(e)

Therefore,

Ad(exp(X∆εv))X(e)∆εw =
+∞
∑

k=0

1

k!
adk(X∆εv)(X∆εw)(e) (69)

From here, the proof easily follows by using the expressions of adk(X∆εv)(X∆εw) given in Lemma 1.
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Appendix 2: Proof of Proposition 2

One deduces from (28) that the linearized system along a reference trajectory with constant curvature cr
is given by























˙̃g1 = ṽ1 + vr,3g̃2
˙̃g2 = vr,1g̃3 − vr,3g̃1
˙̃g3 = ṽ2
˙̃η1 = vr,1η̃1 + crṽ1 − ṽ2
˙̃η2 = −vr,1η̃2 − crṽ1 + ṽ2

with η̃ = η − ηr. By using the change of variables (41) one obtains the following equivalent system























ẋ1 = ṽ1 + vr,3x2

ẋ2 = vr,1x3 − vr,3x1

ẋ3 = ṽ2
ẋ4 = vr,1x5 − vr,1x2 + crṽ1
ẋ5 = vr,1x4 − vr,3x1

(70)

Setting ṽ1 = −vr,3x2 − k4|vr,1|x1 with k4 > 0 ensures the exponential stability of x1 = 0 for any vr,1 that
satisfies (43). The zero-dynamics associated with x1 = 0 is















ẋ2 = vr,1x3

ẋ3 = ṽ2
ẋ4 = vr,1x5 − (1 + c2r)vr,1x2

ẋ5 = vr,1x4

(71)

Let us first assume that vr,1 = 1. Then, x
(4)
5 = x

(2)
5 − (1+ c2r)ṽ2 and an exponential stabilizer of the origin

of the above system is thus given by

ṽ2 =
1

1 + c2r
(k3

...
x 5 + (1 + k2)ẍ5 + k1ẋ5 + k0x5) (72)

with k0,1,2,3 any set of gain values that make the polynomial s4 + k3s
3 + k2s

2 + k1s+ k0 Hurwitz-stable.

By introducing the time-scaling τ =
∫ t

0
|vr,1(α)| dα one then deduces from (72) that ṽ2 given by (42) is

an exponential stabilizer of the origin of System (71) for any vr,1 that satisfies (43). Since x1 = 0 is
also exponentially stable under the same condition, the origin of the complete linearized system (70) is
exponentially stable. Now, since the tracking-error dynamics is affine w.r.t. vr, the original (non-linear)
system can be written as

ẋ = A(vr)x+R(x)vr

with R(0) = 0, ∂R
∂x

(0) = 0, and the origin of the linearized system ẋ = A(vr)x exponentially stable. Local
exponential stability of the origin of this system follows from the assumption that vr is bounded and from
classical exponential stability results [17, Th. 4.13].
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