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Abstract. In synthetic biology, a common application field for compu-
tational methods is the prediction of knockout strategies for reaction
networks. Thereby, the major challenge is the lack of information on re-
action kinetics. In this paper, we propose an approach, based on abstract
interpretation, to predict candidates for reaction knockouts, relying only
on partial kinetic information. We consider the usual deterministic steady
state semantics of reaction networks and a few general properties of re-
action kinetics. We introduce a novel abstract domain over pairs of real
domain values to compute the differences between steady states that are
reached before and after applying some knockout. We show that this ab-
stract domain allows us to predict correct knockout strategy candidates
independent of any particular choice of reaction kinetics. Our predictions
remain candidates, since our abstract interpretation over-approximates
the solution space. We provide an operational semantics for our abstrac-
tion in terms of constraint satisfaction problems and illustrate our ap-
proach on a realistic network.

Keywords: Abstract interpretation, deterministic semantics, steady state,
constraint satisfaction, synthetic biology.

1 Introduction

Synthetic biology aims at creating artificial micro-organisms, either by construct-
ing them from scratch or by modifying existing once [2, 1, 21]. To this end, com-
putational modeling is applied to predict the dynamic behavior of the resulting
organisms [24, 32]. Thereby, it is a common task to abstract micro-organisms as
sets of chemical reactions and to predict the effects of reaction deletion on the
dynamics of the concentrations of chemical species [38, 5]. Such knockout con-
siderations are in particular applied to predict strategies that increase the rate
of some target reactions of interest.

Kinetic information is essential to predict the dynamics of chemical sys-
tems [22]. In reaction networks, each reaction is endowed with a kinetic rate
law, that is a function that defines a rate in dependence of the concentration of
the reaction’s reactants. Common examples of rate laws are the law of mass ac-
tion and Michaelis-Menten kinetics. These depend on kinetic rate constants that,



however, remain mostly unknown. Moreover, in practice, many of a model’s re-
actions combine several unknown reaction steps to one, see e.g. [19, 20]. In these
cases, only basic properties of the kinetics function are given, e.g. that the rate
increases or decreases with the concentration of some chemical species. Thus,
the precise prediction of the dynamics of chemical systems remains out of reach.

The commonly accepted dynamic semantics of systems of chemical reactions
describes species concentrations in terms of stochastic processes [18]. When deal-
ing with high concentrations, a meaningful approximation is to ignore the mo-
ments of probability distributions with an order greater than one [40, 17]. Such,
so called, deterministic semantics is then represented by systems of ordinary
differential equations (Odes) that describe the changes in the mean of species
concentrations over time. Knockout predictions then usually regard fix points of
Odes when no more changes in concentrations occur (steady state). It is known
that in nature systems of chemical reactions exist that have none or more than
one steady state [37, 11, 14].

Abstract interpretation [8] has been introduced for the static analysis of
program semantics. The idea is to approximate the state space of programs
based on approximations of domains and computations. In the realm of chemical
reaction systems, abstract interpretation has been applied to obtain different
approximations of their dynamic, stochastic semantics [12, 10] or to decrease the
size of (infinitely) large sets of Odes representing their deterministic semantics
[6, 13].

In this paper we propose an approach based on abstract interpretation, that
predicts candidates for reaction knockout, with only partial kinetic informa-
tion. We focus on cases that are on one hand simple, since reaction systems are
assumed to always reach a steady state as it is usually done when predicting re-
action knockouts [39, 5]. On the other hand, they are complicated, since kinetics
functions are completely unknown, except for a few basic properties. Our major
idea is to compare steady states of reaction systems before and after a reaction
knockout is applied. We use abstract interpretation to reason about the effects of
knockouts in the absence of kinetic information. Therefore, we introduce a small
abstract domain that works on relations of pairs of non negative real numbers
and abstract operators that represent an over-approximation of real domain ad-
dition and multiplication. We then propose a small set of properties for kinetics
functions that are general enough to be also fulfilled by mass action kinetics
and Michaelis-Menten kinetics. As our central contribution, we show that the
predictions obtained with our abstract interpretation are independent of any
particular choice of kinetics functions, as long as these fulfill these properties.
Our predictions remain candidates due to the over-approximating nature of our
approach. We also present an operational semantics for our approach based on a
mapping of the abstract reaction semantics to constraint satisfaction problems
[33].

We start off by introducing the deterministic and steady state semantics of
reaction systems (Section 2). Then we formalize the reaction knockout task in
terms of a real domain constraint satisfaction problem (Section 3). To do so, in
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the first instance, we restrict ourselves to reactions with mass action kinetics.
Then we define our abstract domain and the abstract interpretation of our mass
action knockout constraints yielding sets of finite domain constraints (Section
4). We show that our abstract interpretation is a correct over-approximation in
that every solution of the real domain problem is reflected by the solutions of
the abstract domain problem. We proceed by introducing properties of kinetics
functions and show that these are fulfilled by mass action kinetics and Michaelis-
Menten kinetics (Section 5). Then, we prove that every kinetics function with
these properties yields the same results in our abstraction, which allows us to
generally stick to mass action in our abstract interpretation. We next show how
to solve the thus obtained table constraints (Section 6). As this may yield large
sets of solutions, we propose to integrate Branch-And-Bound optimization w.r.t.
different criteria. We then provide in Section 7 a real-world example based on
a model from literature and our own implementation and discuss the obtained
solutions. These, on one hand, confirm results already known in literature and on
the other hand represent new interesting strategies that are currently evaluated
in wet-lab experiments. To finish, we provide a discussion of existing approaches
for prediction reaction knockouts in absence of kinetic information (Section 8).
An extended version of this paper with appendices containing detailed informa-
tion on proofs and on the example model is provided online.4

2 Reaction Networks

Let M be a finite set of chemical species (molecule types). A chemical solution
S with molecules in M is a tuple (Sm)m∈M with Sm ∈ R≥0. We call Sm the
concentration of m in S, that is the number of molecules of species m in S
divided by the volume of S.

A reaction network over M is a finite set R of chemical reactions with species
in M . Thereby, a chemical reaction is a rewrite rule that states how chemical
solutions change over time. More formally, a chemical reaction r with species in
M is a tuple of the the following form:

(r) m1, . . . ,mj : mj+1, . . . ,mk
κ−→ mk+1, . . . ,ml

where m1, . . . ,ml ∈ M and κ : Rk≥0 → R≥0 is a function. Species mj+1, . . . ,mk

are called the reactants of r, i.e. molecules of this type are consumed when r
is applied. Species on the right hand side are called the products of r, which
are produced at application time. Species m1, . . . ,mj are called enzymes of r.
They are neither consumed nor produced but may increase the rate of reaction
r, which is defined by the kinetics function κ. We assume that species can only
play a single role in every reaction, i.e. they are either enzyme, reactant, or
product. However, in every role they might occur more than once. We write
enzr(m), reactr(m), and prodr(m) for the number of occurrences of m as an
enzyme, reactant, or product of r.

4 http://www.lifl.fr/BioComputing/extendedPapers/vmcai13.pdf
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(spec)
m ∈M

dSm
dt

(t) =
∑
r∈R(prodr(m)− reactr(m)) · rateS,r(t)

(rate)
r ∈ R enz(r) = (m1, . . . ,mj) react(r) = (mj+1, . . . ,mk)

rateS,r(t) = κr(Sm1(t), . . . , Smk (t))

Fig. 1. Deterministic semantics of reaction network R over M .

A kinetics function of arity k, κ : Rk≥0 → R≥0, defines the rate (propensity) at
which k-tuples of molecules of S may react, in function of the concentrations of
the reactant and enzyme types in the solution. If (m1, . . . ,mk) are the enzyme
and reactant types of a chemical reaction with kinetics function κ then the
reaction rate for a chemical solution S is equal to κ(Sm1

, . . . , Smk
). We write κr

for the kinetics function of r ∈ R.

Standard chemical reactions have two reactants, no enzymes, and follow mass
action kinetics [18]. The kinetics of such standard reactions is then simply defined
as the product of the concentration of its reactants times some rate constant (see
the Appendix of the extended version of this paper for more details). However,
as a first approximation this reaction model can be extended to arbitrary many
enzymes and reactants. We denote this generalized version of the mass action
kinetics function as mac : Rk≥0 → R≥0 for some constant c ∈ R≥0, such that
mac(x1, . . . , xk) = c · x1 · . . . · xk.

Other kinds of kinetics functions give better models of enzymatic reactions.
These are justified by compositions of several standard reactions with mass-
action kinetics. The most frequent example is Michaelis-Menten kinetics, which
accounts for a single-reactant reaction that is triggered by a single enzyme. It is
given by the kinetics function mmc1,c2 : R2

≥0 → R≥0, such that mmc1,c2(a, e) =
c1 ·a ·e/(c2+a), where a, e are the concentrations of the reactant and enzyme, re-
spectively. Rates following Michaelis-Menten kinetics describe a saturation curve
that steadily increases with the concentration of the reactant but approaches a
limit depending on the enzyme concentration. Yet another interesting alternative
are Hill kinetics.

Deterministic Semantics. The deterministic semantics of a reaction network R
is a collection of functions (Sm)m∈M of type Sm : R≥0 → R≥0. The value of
Sm(t) defines the concentration of m in the solution at time point t, so that the
solution at time point t is (Sm(t))m∈M . If the initial solution at time point 0
is fixed then the solutions at all later time points t > 0 are determined by a
collection of Odes (see below). However, we might not know the initial solution
in practice.

The deterministic semantics of a reaction network R over M is defined by
applying rule (spec) to each species in M . The resulting Odes compute the
change of Sm at time point t by substituting reactants by products for all chem-
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(specst)
m ∈M∑

r∈R prodr(m) · rateS,r =
∑
r′∈R reactr′(m) · rateS,r′

(ratest)
r ∈ R enz(r) = (m1, . . . ,mj) react(r) = (mj+1, . . . ,mk)

rateS,r = κr(Sm1 , . . . , Smk )

Fig. 2. Steady state semantics of reaction network R over M .

ical reactions r ∈ R according to their rate, see Fig. 1. Rule (rate) defines the
rate of a reaction r at time point t by rateS,r(t) = κr(Sm1(t), . . . , Smk

(t)).

Steady-State Semantics. The steady state semantics assumes that reaction net-
works reach a fixed point in which all reactions continue to perform with constant
speed. This means that the changes for all m ∈M become zero:

dSm
dt

(t) = 0

The amounts Sm(t) will thus become constant for all species m ∈M , so that we
can denote them by Sm. Furthermore, reactions r ∈ R become constant fluxes
with constant rates, so that rateS,r(t) becomes constant and can thus be denoted
by rateS,r.

The steady state semantics of a reaction network R is given by the system of
arithmetic equations in Fig. 2. These equations relate molecule concentrations
Sm to reaction rates rateS,r. Rule (specst) states that the production and con-
sumption must coincide for any molecule type. It should be noticed that these
equations are only a necessary condition for steady states of the dynamic system
(and that some systems may not have any steady state). However, as mentioned
earlier, we assume that reaction networks always reach a steady state.

Example. We consider a reaction network where A’s and B’s are inputs from
the environment that can react to a complex C which is then released into the
environment. We assume that all inputs and outputs are done such that an
equilibrium must be reached.

(r1)
ma1−−−→ A (r2)

ma2−−−→ B (r3) A,B
ma3−−−→ C

(r4) A
ma4−−−→ (r5) B

ma5−−−→ (r6) C
ma6−−−→

Note that we chose artificial rate constants i for reaction ri. In practice the
situation will be even worse in that most rate constants will be unknown. The
deterministic semantics is given by the following system of Odes:

dSA

dt (t) = 1− 3 · SA(t) · SB(t)− 4 · SA(t),
dSB

dt (t) = 2− 3 · SA(t) · SB(t)− 5 · SB(t),
dSC

dt (t) = 3 · SA(t) · SB(t)− 6 · SC(t).
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Fig. 3. Dynamics of example reaction network.

In order to determine the functions SA, SB , and SC , it is sufficient to fix the
initial solution. We will choose SA(0) = SB(0) = SC(0) = 0 for illustration,
which leads to the dynamics drawn in Fig. 3. It should be noticed that the con-
centrations of all molecules stabilize when time t tends to infinity, i.e., a steady
state solution is reached. The Odes induce the following arithmetic equations
for this steady state:

1 = 3 · SA · SB + 4 · SA, 2 = 3 · SA · SB + 5 · SB , 3 · SA · SB = 6 · SC .

One can now solve these quadratic equations to determine two solutions for SA:

(1) SA =
−23 +

√
769

24
(2) SA =

−23−
√

769

24

As only the second solution is positive, we obtain a single steady state at SA =
0.197119, SB = 0.357695, and SC = 0.0352542.

3 Reaction Knockouts

We are now interested in modifying reaction networks, such that the rate of some
reactions are increased or decreased in the steady state. The only modifications
that we permit are reaction knockouts, i.e. inactivation of some reactions. As
mentioned in introduction, we assume in this section that all reactions have
mass action kinetics. In Section 5, we extend our approach to a more general,
only partially known kinetics, relying on our abstract interpretation given in
Section 4.

The knockout problem that we want to study is the following: we are given
a reaction network R and some objective O. An objective compares the rate of
reactions in steady states that R reaches before and after applying some reaction
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(r1)
ma2−−→ A (r2) A

ma1−−→ B (r4) B
ma1−−→

(r3) A
ma1−−→ C (r5) C

ma1−−→∧5
i=1 xonri

∈ {0, 1} xr3 = xA · xonr3
xr1 = xr2 + xr3

∃x.(xr1 = x · xonr1
∧ x = 2) xr4 = xB · xonr4

xr2 = xr4
xr2 = xA · xonr2

xr5 = xC · xonr5
xr3 = xr5

Fig. 4. Example of a simple knockout problem: the knockout problem on top with its
reaction network and objective O, its knockout constraint below.

(specko)
m ∈M∑

r∈R prodr(m) · rateon
S,r =

∑
r′∈R reactr′(m) · rateon

S,r′

(rateko)
r ∈ R κr = macr enz(r) = (m1, . . . ,mj) react(r) = (m1, . . . ,mk)

rateon
S,r = cr · Sm1 · . . . · Smk · onr

Fig. 5. Knockout steady states semantics of mass action reaction networks R over M .

knockouts. O may state that the rate of some reactions r should be increased
(denoted inc(r)), decreased (dec(r)), that a reaction may not be knocked out
(on(r)), or conjunctions thereof. We then try to find a set of reactions R′ ⊆ R
to knockout, i.e. a knockout strategy, such that there exist solutions S, S′ that
are steady states for R and R \R′, respectively, and satisfy O. Notice that this
knockout problem could also be defined to compare several steady states that
are possibly reached before and after applying some knockout. We leave such
extensions to future work, see Section 9.

As a simple example consider the reaction network in Figure 4 and the ob-
jective to increase the rate of reaction r4. Intuitively, this can be achieved by
knocking out reaction r3, such that more of the A molecules produced by reac-
tion r1 are transformed to B. A higher concentration of B in return leads to an
increase in the speed of reaction r4. Another idea could be to knockout reaction
r5. Then, however, the C molecules produced by reaction r3 are no more con-
sumed. Consequently, the concentration of C continuously increases, such that
a steady state can never be reached.

In order to generally solve the above problem, we have to reason about the
steady state semantics of a system of chemical reactions and all its subsets at the
same time. Therefore, we first introduce the notion of reaction knockout in the
semantics (knockout steady state semantics) and then we reduce the problem to
reasoning with a single set of arithmetic constraints.

Knockout Steady State Semantics. We enrich our steady state semantics, such
that it supports the knockout of a subset of chemical reactions. The idea is to
introduce a Boolean value onr ∈ {0, 1} for all reactions r ∈ R, which expresses
whether or not reaction r is switched on (that is onr = 1). This leads us to the
knockout steady state semantics in Fig. 5.
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(arithmcon) φR =
∧
m∈M φm ∧

∧
r∈R φr

(speccon)
m ∈M

φm =
(∑

r∈R prodr(m) · xr =
∑
r′∈R reactr′(m) · xr′

)
(ratecon)

r ∈ R κr = macr enz(r) = (m1, . . . ,mj) react(r) = (m1, . . . ,mk)

φr = (xr = cr · xm1 · . . . · xmk · xonr ∧ xonr ∈ {0, 1})

Fig. 6. Knockout constraint φR for mass action reaction networks R.

Arithmetic Constraints. We introduce the following set of variables:

V = {xr, xonr | r ∈ R} ∪ {xm | m ∈M}

Variables xm denote the unknown concentration Sm, variables xr the unknown
reaction rate rateon

S,r
, and variables xonr

the unknown Boolean value onr. We
then consider the following language of arithmetic constraints where x, y, z ∈ V
and c ∈ R≥0:

φ ::= x+ y=z | x · y=z | x=c | x ∈ {0, 1} | φ ∧ φ′ | ∃x.φ

The conditions of the knockout semantics for a mass action reaction network
R can now be expressed by the arithmetic constraint φR defined in Fig. 6. Notice
that the constraint given there can be flattened easily, so that it belongs to the
constraint language specified above. Notice further that equalities of the form
x = y can be expressed by ∃z.(x+z = y∧z = 0). As an exemplary mapping from
a reaction network to a knockout constraint, consider the one in Figure 4. One
can see that the constraint has no solution when knocking out only reaction r5,
i.e. setting xonr5

= 0, since in that case we obtain the following contradiction:

xr3 = xr5 = xC · xonr5
= 0 by xonr5

= 0
⇒ xr3 = xA · xonr3

= 0 = xA by xonr3
= 1

⇒ xr2 = xA · xonr2
= 0 by xA = 0

⇒ xr1 = 2 · xon1
= 2 = xr2 + xr3 = 0 by xonr1

= 1

Let ν be a variable assignment into the domain R≥0. The constraint problem
that we try to solve is now as follows: given a reaction network R, with its
knockout constraint φR and an objective O, find variable assignments ν, ν′, such
that ν, ν′ satisfy φR, for all reactions r ∈ R it holds that ν(xonr ) = 1, and (ν, ν′)
satisfies objective O. The reactions r for which it holds that ν′(xonr

) = 0 then
define our reaction knockout strategy.

4 Abstract Interpretation

The next idea is to reason about changes in concentrations in steady states
when switching off reactions. This is done by interpreting arithmetic constraints
abstractly into finite domain table constraints.
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+α ↑ ⇑ ↓ ⇓ ∼ ≈
↑ ↑ ↑ ↑,↓,∼ ↑,↓,∼ ↑ ↑
⇑ sy. ⇑ ↑,↓,∼ ↑,↓,∼ ↑ ⇑
↓ sy. sy. ↓ ↓ ↓ ↓
⇓ sy. sy. sy. ⇓ ↓ ⇓
∼ sy. sy. sy. sy. ∼ ∼
≈ sy. sy. sy. sy. sy. ≈

·α ↑ ⇑ ↓ ⇓ ∼ ≈
↑ ↑ ⇑ ↑,↓,∼ ⇓ ↑ ≈
⇑ sy. ⇑ ⇑ ≈ ⇑ ≈
↓ sy. sy. ↓ ⇓ ↓ ≈
⇓ sy. sy. sy. ⇓ ⇓ ≈
∼ sy. sy. sy. sy. ∼ ≈
≈ sy. sy. sy. sy. sy. ≈

Fig. 7. Abstraction of binary addition and multiplication functions (sy. = symmetric).

Abstract Domain & Relations. We are interested in capturing the differences
between pairs of nonnegative real numbers (u, u′) ∈ R2

≥0. We distinguish the
cases where u > u′, u < u′, and u = u′, and in addition those cases where
u or u′ are equal to 0. More formally, we define the following set of difference
relations:

∆ = {↑, ↓,∼,⇑,⇓,≈} ⊆ R2
≥0

such that the following properties hold for all u, u′ ∈ R≥0:

u ↑u′ ⇔ 0 < u < u′ u⇑u′ ⇔ 0 = u < u′

u ↓u′ ⇔ u > u′ > 0 u⇓u′ ⇔ u > u′ = 0
u∼u′ ⇔ u = u′ > 0 u≈u′ ⇔ u = u′ = 0

Lemma 1. For any (u, u′) ∈ R2
≥0, there exists a unique δ ∈ ∆ such that

(u, u′) ∈ δ.

Given an arithmetic relation p ⊆ Rn≥0, we next define an abstract relation
pα ⊆ ∆n, such that for all difference relations (δ1, . . . , δn) ∈ ∆n:

(δ1, . . . , δn) ∈ pα ⇔ ∃(u1, . . . , un) ∈ p ∃(u′1, . . . , u′n) ∈ p.
∧n
i=1(ui, u

′
i) ∈ δi

In particular, we define abstract multiplication and addition functions ·α,+α ∈
∆3 from binary multiplication and addition functions, seen as ternary relations.
The tables of these two relations are spelled out in Fig. 7.

Abstract Constraints. Abstract constraints are finite domain table constraints,
whose variables have values in ∆, subject to constraints based on the abstract
relations +α and ·α. We consider the following language of abstract constraints
where x, y, z ∈ V and ∆′ ⊆ ∆:

ψ ::= +α(x, y, z) | ·α(x, y, z) | x ∈ ∆′ | ψ ∧ ψ′

We first show who to compile objectives to abstract constraints:

Jinc(r)K = xr ∈ {↑,⇑} Jon(r)K = xonr
∈ {∼}

Jdec(r)K = xr ∈ {↓,⇓} JO ∧O′K = JOK ∧ JO′K

9



The condition that initially all reactions are on is expressed by:∧
r∈R

xonr
∈ ∆ \ {≈,⇑}

We next use abstract interpretation in order to map arithmetic constraints
to abstract constraints:

Jx+ y = zK = +α(x, y, z) Jx · y = zK = ·α(x, y, z)
Jx = cK = x ∈ {∼},with c > 0 Jx ∈ {0, 1}K = x ∈ ∆ \ {↑, ↓}
Jx = cK = x ∈ {≈},with c = 0 Jφ ∧ φ′K = JφK ∧ Jφ′K
J∃x.φK = ∃x.JφK

Consider the constraint x = c which means that x is a constant that cannot be
changed. Therefore, it is interpreted as x ∈ {∼}, if c > 0 or x ∈ {≈}, else. Or
consider the constraint x+y = z∧y = 0. This is expressed by the corresponding
abstract constraint +α(x, y, z) ∧ y ∈ {≈}.

A pair (ν, ν′) of two variable assignments into R≥0 induces a variable assign-
ment µ into ∆, such that µ(x) is the difference relation between ν(x) and ν′(x)
which is unique by Lemma 1. That is for all δ ∈ ∆ and x ∈ V :

µ(x) = δ ⇔ (ν(x), ν′(x)) ∈ δ

We say that a pair (ν, ν′) satisfies ψ if and only if µ is a solution of ψ.
We are now able to compile knockout constraint satisfaction problems into

abstract domains. Reconsider the example in Figure 4 with the objective to
increase the rate of reaction r4. Our objective is compiled by xr4 ∈ {↑,⇑} and the

condition that initially all reactions are on is expressed by
∧5
i=1 xoni

∈ ∆\{≈,⇑}.
Furthermore, the constraint

∧5
i=1 xoni ∈ {0, 1} is mapped to

∧5
i=1 xoni ∈ ∆ \

{↑, ↓}, such that it holds
∧5
i=1 xoni

∈ {∼,⇓}. To complete the translation, it
only remains to replace arithmetic relations by their abstract interpretation.
Solving the resulting constraint, we obtain that xr1 ∈ {∼,⇓}, such that for
any solution µ also satisfying our objective it holds that µ(xr1) = ∼. Thus,
there exist only two solutions, either a knockout of r3 alone (µ(xon3) = ⇓) or of
both reactions r3 and r5. As for the real domain constraints, a knockout of only
reaction r5 does not give any solution, since we analogously obtain contradiction
xr1 = ∼ = xr2 + xr3 = ⇓.

Correctness. We now show that the abstract interpretation is correct in that
every solution of the real domain problem is reflected by the solutions of the
abstract domain problem.

Proposition 1 (Correctness of abstract interpretation). Let φ be an arith-
metic constraint and ν, ν′ variable assignments into R≥0. It holds that if ν, ν′

satisfy φ then (ν, ν′) satisfies JφK.

Proof. By induction on the definition of arithmetic constraints.
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φ = x+ y = z Let ν and ν′ be both solutions of x + y = z. Then we have
ν(x) + ν(y) = ν(z) and ν′(x) + ν′(y) = ν′(z). It follows from the definitions
of µ and +α that (µ(x), µ(y), µ(z)) ∈ +α, i.e., µ is a solution of the abstract
constraint +α(x, y, z), i.e. of JφK

φ = x · y = z analogous to +.
φ = (x = c) If c > 0 then ν(x) = c = ν′(x) and thus µ(x) = ∼, i.e., µ satisfies

JφK = x. The case of φ being x = 0 is analogous.
φ = x ∈ {0, 1} It holds that ν(x) and ν′(x) belong to {0, 1}. There are 4 possible

cases, showing that the difference relation µ(x) between ν(x) and ν′(x) must
be either of {⇑,⇓,∼,≈} and thus µ satisfies JφK = x ∈ {⇑,⇓,∼,≈}.

φ = ∃x.φ′ We obtain that JφK = ∃x.Jφ′K. Since ν, ν′ satisfy φ, there exist x and
u, u′ ∈ R≥0, such that ν ∪ (x, u), ν′ ∪ (x, u′) satisfy φ′. Thus, by induction
hypothesis, it holds that (ν ∪ (x, u), ν′ ∪ (x, u′)) satisfy Jφ′K and thus that
(ν, ν′) satisfies JφK.

φ = φ1 ∧ φ2 Since ν, ν′ satisfy both φ1 and φ2, the induction hypothesis provides
that (ν, ν′) satisfies Jφ1K and Jφ2K. Thus, (ν, ν′) also satisfies Jφ1K ∧ Jφ2K,
which equals JφK.

Proposition 1 states that every solution of a model in the real domain is
reflected by its abstract interpretation. However, the converse does not hold.
Consider, e.g., the constraint φ = φ1 ∧ φ2, with φ1 = (x1 = x2) and φ2 =
(x1 = x2 + x3). For all ν that satisfy φ ∧ φ′, we obtain that ν(x3) = 0.
However, with our abstraction interpretation, µ satisfies JφK ∧ Jφ′K, even with
µ(x1) = µ(x2) = µ(x3) = ↑. This is a correct approximation, since there exist
pairs (ν1, ν

′
1), (ν2, ν

′
2), such that ν1, ν

′
1 satisfy φ1 and ν2, ν

′
2 satisfy φ2, and that,

although differing, correspond both to µ. For example:

ν1 = {(x1, 1), (x2, 1)} ν2 = {(x1, 2), (x2, 1), (x3, 1)}
ν′1 = {(x1, 2), (x2, 2)} ν′2 = {(x1, 4), (x2, 2), (x3, 2)}

ν1(xi) ↑ ν′1(xi), i ∈ {1, 2} ν2(xi) ↑ ν′2(xi), i ∈ {1, 2, 3}

Such a constraint results, e.g., from applying rule (substcon) to species A and
B, considering the following cyclic reaction network:

(r1) A
ma1−−−→ B (r2) B

ma1−−−→ A (r3) B
ma1−−−→

To this end, our approach, can be improved in different ways. On one hand, addi-
tional abstract relations could be defined, e.g. for commonly occurring patterns
in reaction sets, like cycles of certain length. On the other hand, different meth-
ods could be applied to simplify equations. For example, one could use Gaussian
elimination to symbolically solve the system of linear equations given by φ1, φ2
and account for the fact that x3 = 0 by adding the constraint x3 ∈ {≈}. We
leave such improvements as subject to future work.

5 Abstract Kinetics Functions

In the following, we extend our approach to more general kinetics. That is,
we introduce properties of kinetics functions and show how kinetics functions
fulfilling these properties are treated in our abstract interpretation.
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The three properties of kinetics functions we consider are continuity, strict
monotonicity, and conjunctiveness. Rates following strictly monotonic kinetics
increase in the concentration of any reactant or enzyme. More formally, we call
a kinetics function κ : Rn≥0 → R≥0 strictly monotonic if and only if for all
x1, . . . , xn, x ∈ R≥0 and all i ∈ {1, . . . , n} it holds:

xi < x⇒ κ(x1, . . . , xn) < κ(x1, . . . , xi−1, x, xi+1, . . . , xn)

Reactions that come with conjunctive kinetics can only perform if all its reactants
and enzymes are present. More precisely, a kinetics function κ : Rn≥0 → R≥0 is
called conjunctive if and only of for all i ∈ {1, . . . , n} it holds:

n∧
i=1

xi 6= 0⇔ κ(x1, . . . , xn) 6= 0

In fact, the most widely used kinetics, mass action and Michaelis-Menten, are
continuous, strictly monotonic, and conjunctive.

Lemma 2. Any mass action function mac (with c > 0) is strictly monotonic,
continuous, and conjunctive.

Proof. Clear, since, by definition, we obtain mac(x1, . . . , xn) = c ∗
∏n
i=1 xi for a

reactions with order n. ut

Lemma 3. The Michaelis-Menten function mmc,c′ (with c, c′ > 0) is strictly
monotonic, continuous, and conjunctive.

Proof. By definition, we obtain mmc,c′(x1, x2) = c ∗ x1 ∗ x2/(c′ + x1). Strictly
monotonic in x2, continuous, and conjunctive clear. Strictly monotonic in x1
becomes obvious by:

c ∗ x1 ∗ x2
c′ + x1

=
c ∗ x1 ∗ x2
x1 ∗ ( c

′

x1
+ 1)

=
c ∗ x2
c′

x1
+ 1

ut

We obtain that in our abstract interpretation any two kinetics functions of
the same arity provide the same results.

Proposition 2. Let κ1, κ2 ⊆ Rn≥0 → R≥0 be strictly monotonic, continuous,
and conjunctive kinetics functions. It holds that κα1 = κα2 .

The proof is elaborated in the Appendix of the extended version of this paper.
Since also mass action defines a strictly monotonic, continuous, and conjunc-

tive kinetics function, we can represent any kinetics function by mass action in
our abstract interpretation. In this way, we obtain complete independence from
any kinetics information, except the three rather general properties listed above.

Corollary 1. Every strictly monotonic, continuous, and conjunctive, n-ary ki-
netics function can be abstracted as abstract mass action kinetics maαc of reac-
tions with order n, with any c.

Proof. By Lemma 2 and Proposition 2. ut
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6 Constraint Solving

We apply the usual strategy of constraint programming to first propagate ex-
haustively and then to distribute. We use the common constraint propagation
rules for table constraints. Let p be either of the relations +α and ·α and assume
that we have a constraint p(x1, x2, x3). For all variables xi we maintain a finite
domain ∆i ⊆ ∆ of possible values. We can then reduce the domain of variables
xj as follows:

j ∈ {1, 2, 3}
xj ∈ {δj | (δ1, δ2, δ3) ∈ p, ∀i 6= j. δi ∈ ∆i}

The number of solutions would become huge if one tries to enumerate the values
of all variables of the constraints JφRK∧ JOK. The usual method to deal with this
problem is to impose a quality measure on solutions and to search only for high
quality solutions. First of all, the fewer reactions are knocked out the better,
since knockouts in the wet lab impose high costs. Second, the fewer impact the
modifications have on the input-output environment of the network, the better.
Which reactions are to be considered as inputs and outputs is to be specified
(and is usually evident in the applications). The speed of such reactions should
change only if required by the objectives, but as few as possible otherwise. This
objective can be imposed by giving smaller weights to solutions that assign
abstract values ∼ or ≈ to variables xr of reactions reactions r.

The performance of a constraint solver largely benefits from such optimality
considerations by the usual means of branch and bound. That is, one maintains
a lower bound for the quality of the current pre-solution and only searches for
solutions that are better or equally well as any solution found previously.

Further reduction of the solution set can be achieved by adding existential
quantifiers to the model. Indeed, we are only interested in optimal knockout
strategies, that is in the values of the variables xonr

of all reactions and the
values of variables xr of input and output reactions. All other variables define
internal fluxes, so that they can be considered as existentially quantified. That
is, for every choice of values for these variables we will only verify whether there
exists one possible choice for the values of the other variables. From this follows
that the performance of our constraint solver largely depends on the number of
variables that are considered as part of the optimality criterion.

7 Leucine Overproduction: A Case Study

In this section, we apply our approach to predict knockout strategies for the
overproduction of Leucine in B. subtilis. Our model forms the current status
of our work in progress to extend the efforts of modeling the metabolism of B.
subtilis as presented in [19].

The reaction network is given in Figure 8. Molecules types are notated by
ovals and reactions by boxes, respectively. A reaction’s products are denoted
by outgoing arrows, reactants by continuous, and enzymes by dashed lines. Red
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Fig. 8. A model of Leucine production in B. subtilis in graphical form. This model
forms the current status of our work in progress to extend the efforts of modeling
the metabolism of B. subtilis as presented in [19]. - Ovals graphically denote molecule
types, rectangles reactions, arrows products and continuous and dashed lines reactants
and enzymes, respectively. Red boxes mark reactions that may be knocked out. For im-
proved readability, reactions and species are grouped where possible, which is denoted
by overlapping boxes and ovals. For example the red overlapping boxes annotated by
(dc;1−4) on the left hand side denote reactions (dc;1)Aba :→ Dehc, (dc;2)Abb :→ Dehc,
(dc;3)Abc : Dehc, and (dc;4)Abd :→ Dehc. The objective is to increase the rate of reac-
tion (le2). Arrows in boxes of different colors represent different knockout strategies.

boxes mark reactions that may be knocked out. For improved readability, reac-
tions and species are grouped where possible, which is denoted by overlapping
boxes and ovals. For example the red overlapping boxes annotated by (dc;1−4)
on the left hand side denote reactions (dc;1)Aba :→ Dehc, (dc;2)Abb :→ Dehc,
(dc;3)Abc : Dehc, and (dc;4)Abd :→ Dehc. Our objective is to increase the rate
of the Leucine secreting reaction (le2). The reaction network in textual form
and a legend for abbreviated species names is provided in the Appendix of the
extended version of this paper.

In a first experiment, the goal was to find knockout strategies that are opti-
mized w.r.t. a minimal number of knockouts. Based on our implementation, we
could solve this task in about 5s on a Dell Latitude E6320 machine (Intel Core
i7-2640M CPU, 2.8 GHz, 8 GB of memory).
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Several single knockout solutions were proposed. Explanations for three of
them are graphically annotated in Figure 8 by orange, brown, and green boxed
arrows, respectively. The first one is to knock out one of the four reactions
(dc;1−4) (orange). This leads to the removal of species Dehc and therefore to a
stop of reaction (kc;2), i.e. the degradation of species Ketc. In this way the rate
of reaction (le1) increases and so do the concentration of species Leu and the
rate of reaction (le2).

Knocking out reaction (ra;1) (brown) leads to a total lack of Rega. Since this
is involved in the degradation of Aib and Aih (reactions (ib;4) and (ra;1)), the
concentrations of Aib and Aih increase. Consequently, reactions (sa;1) and (sa;2)
are accelerated, such that more Syna is produced. This leads to an increase in the
speed of reaction (kb;1), by this raising the concentrations of Ketb, Ketc, and Leu.
This knockout strategy confirms what is presented in literature (cf. [4], knockout
of gene codY ).

The deletion of reaction (da;1) (green) also leads to an acceleration of reac-
tion (kb;1). When disabling reaction (da;1), Deha is entirely removed from the
system, such that the transformation of Thr to Akb (reaction (ak2)) stops. Thus,
the concentration of Akb is decreased, such that reaction (ka;1) is slowed down.
Therefore, the concentration of Pyr is increased, augmenting the rate of reaction
(kb;1).

We performed a second experiment, where we were interested in optimizing
additionally subject to the number of side effects w.r.t. to species Thr,Akb,Pyr,Iso,
and Val. Therefore, we set reactions (th2), (ak3), (py2), (is2), and (va2) to be
output reactions. For example the green strategy is likely to have a side effect on
species Akb, because it decreases the rate of reaction (ak2). Since in steady state,
the sum of the rates of reactions (ak1) and (ak2) has to equal the sum of the rates
of reactions (ak3) and (ka;1), this may lead to a decrease of the speed of reaction
(ak3), which in return can only be achieved by lowering the concentration of
Akb. Alternatively, the rate of reaction (ka;1) could be decreased by reducing the
concentrations of Pyr or Syna. However, this may require additional knockouts,
e.g. in case of Syna, and again lead to different side effects.

The computation of the experiment took about 163s on the same machine.
We obtained that the orange strategy and the combination of the brown and the
green strategy are valuable candidates.

We further tested the obtained strategies on false solutions by mapping them
to finite integer domain problems. This was done based on the knockout seman-
tics in Figure 6 and by encoding the results into additional constraints. That is,
given the knockout constraint φ of our reaction network with variables x1, . . . , xn
and solution µ, we formulated the finite integer domain problem φ∧φ′∧

∧n
i=1 φxi

over variables x1, x
′
1, . . . , xn, x

′
n, where φ′ is the constraint φ but with variables

x′1 . . . , x
′
n and φxi is the encoding of the abstract value µ(xi) into a constraint

over the pair (xi, x
′
i) according to our abstract interpretation of real value pairs.

As a result, we obtained, with variable domains {1, . . . , 1000}, solutions for all
proposed strategies, providing that none of them denotes a false abstract solu-
tion.
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Although this supports the validness of our proposition, in practice the test
on false solutions can in general only be considered a side note. We expect the
relevance of proposed modification strategies to be more significantly impacted
by the validity of models which needs to be continuously improved and should
eventually lead to the integration of further available biological information,
such as gene expression or flux data [34] (see also Section 9). Currently, the
combination of the green and the brown strategy is tested in wet-lab experiments.

8 Related Work

Most existing approaches to solve reaction knockout problems formulate two-
level optimization problems [5, 27, 28, 26, 36, 23]. Thereby, the first level of opti-
mization bases on the idea of flux balance analysis [39, 29, 3, 9]. It captures only
the equations stating that for any species the sum of the rates of the producing
and the consuming reactions equal (Figure 2, rule (spec)). The constraints on
reaction rates (variables rateS,r) as introduced by rule (ratest) are omitted.
Since the resulting sets of equations are hopelessly underconstraint, determining
the values of variables rateS,r is considered to be an optimization problem with
different kinds of optimization goals, e.g. biomass production (optimal growth)
[38, 5] or ATP production (optimal energy) [30].

The intuition behind this first level of optimization is that, considering the
background of evolution, organisms are assumed to be trimmed in a way, such
that they always regulate their metabolism for optimal chances of survival. The
second level of optimization is then concerned with finding the gene knockout
strategy that yields the highest rate for the given target reaction, as determined
by the first optimization level. Such two-level optimization problems are then
solved by using e.g. integer linear programming approaches [5, 23] or evolutionary
algorithms [26].

Predicting knockout strategies by two-level optimization is appealing, since
it projets the problem to a well-founded mathematical domain. However, we see
several drawbacks of this approach. On one hand, by dropping the constraints
on reaction rates the relations between concentrations and reaction rates are
lost. For example, the increase in the rate of a reaction is usually caused by the
increase in the concentration of some reactant. If this reactant takes also part
in other reactions then it is likely to cause changes in their rates, too. When
not considering rate constraints such side effects will not show. This is critical,
since in particular negative feed-back loops that are a common theme in reaction
networks cannot be taken into account.

On the other hand, whether the assumptions used to define optimization goals
are appropriate is controversial [35, 31]. A major problem commonly listed is that
artificially created organisms did in fact not face evolutionary pressure, such
that they may control their metabolism in unexpected ways. To this end, on one
hand, a reasoning is presented in [31] that is based on the maximal and minimal
bounds of reaction rates. These are then obtained by a separate optimization
procedure for each reaction. On the other hand, in [35], it is proposed to use the
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assumption of minimization of metabolic adjustment. This approach is similar to
ours in that it compares reaction rates values before and after modification. The
reaction rates before modifications are obtained by applying the optimal growth
assumption. The rate values resulting from modification are then optimized to
diverge as few as possible from their original value.

Finally, by using optimization approaches, it is not possible to apply a local
reasoning that considers parts of metabolic networks as in Section 7, where
only the production branched-chain amino acids (Leucine, Valine, Isoleucine)
is modeled. The reason is that optimization subjects apply to specific parts of
metabolisms that thus always need to be considered, such as the Glycolysis
pathway or the TCA cycle. This requires a reasoning on rather large models.
Different models that aim to capture the entire metabolism of micro-organisms
have been proposed so far [20, 25, 16]. However, with the size of models also their
uncertainty level increases which in general crucially hampers the application
of formal reasoning. Additionally, this approach may favour predictions which
apply to different parts of a metabolism and impact the reaction network in a
more global manner with unwanted side effects [15]. Furthermore, a more local
reasoning is favorable because resulting predictions are easier to explain (cf.
explanations given in Figure 8 by arrows in colored boxed that represent traces
of in-/decreases). Such kind of explanations are essential in order to communicate
prediction results to experts from the domain of biology and to convince them
of their validity.

With other methods in the field of analyzing chemical reaction networks
based on abstract interpretation [10, 12, 6], our approach has in common the
abstraction of value domains. This can be seen by lifting our abstraction to sets
of solutions: reconsider the knockout constraint semantics for reaction networks
as provided in Figure 6. Let ℘(A) be the power set of set A and let A → B be
the set of all functions from set A to set B. Given a constraint with variable
set V , the set of possible solutions of the corresponding knockout problem lies
in ℘((V → R≥0)2), where ℘ denotes the power set. Based on this idea and
the abstaction of real value pairs to abstract values as given in Section 4, we
can define the abstraction function α : ℘((V → R≥0)2) → ℘(V → ∆) and the
concretization function γ : ℘(V → ∆) → ℘((V → R≥0)2). From α, γ, and
the partial order given by set inclusion ⊆, we can then build the usual Galois
connection [7].

However, the major difference to other approaches denotes their focus on
dynamics, i.e. the consideration of changes in molecule amounts over time [10,
12, 6]. The idea is that vectors of species concentrations provide states and oc-
curences of reactions represent state transitions. In [12, 10], e.g., this state space
is understood to provide a small step semantics which is then usually abstracted
by a collecting semantics. By contrast, we only consider a single state change
(between two steady states) that is directly encoded into our abstract domain
and waive the idea of abstracting small step semantics.
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9 Conclusion and Future Work

We have introduced an approach for predicting knockout strategies in reaction
networks with partial kinetic information, based on abstract interpretation and
constraint solving. We showed that our approach is independent of any par-
ticular choice of kinetics functions, as long as these are continuous, strictly
monotonic and conjunctive. Our predictions remain candidates due to the over-
approximating nature of our abstraction.

A major subject for future work is to find ways to reduce the number of
false solutions. On one hand, we plan to integrate methods to simplify systems
of equation, linear and non-linear, as they result from our knockout semantics.
On the other hand, we would like to come up with less aggressive abstract
interpretations, so that one can predict weights of knockout effects. To this
end, sources for more detailed kinetic information shall be developed, e.g. gene
expression or flux data [34].

As a further subject, we also plan to integrate new optimization criteria for
solutions. For example, one could consider, instead of only one, sets of solutions
of the constraint satisfaction problem that correspond to the same knockout
strategy. As each solution possibly represents a pair of steady states that are
reached before and after a knockout is applied, it would make sense to favor, e.g.,
those knockout strategies that provide an optimal ratio between the numbers of
solutions that fulfill an objective and those that do not.

We hope that the provided methods will help us to obtain better knockout
results for wet-lab engineering. Concrete case studies are on the way. We also
hope that better prediction methods will increase the interest in improving the
quality of existing reactions networks in synthetic biology.
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