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Color Lens: Adaptive Color Scale
Optimization for Visual Exploration

Niklas Elmqvist, Member, IEEE, Pierre Dragicevic, and Jean-Daniel Fekete, Member, IEEE

Abstract—Visualization applications routinely map quantitative attributes to color using color scales. Although color is an
effective visualization channel, it is limited by both display hardware and the human visual system. We propose a new interaction
technique that overcomes these limitations by dynamically optimizing color scales based on a set of sampling lenses. The
technique inspects the lens contents in data space, optimizes the initial color scale, and then renders the contents of the lens to
the screen using the modified color scale. We present two prototype implementations of this pipeline and describe several case
studies involving both information visualization and image inspection applications. We validate our approach with two mutually
linked and complementary user studies comparing the Color Lens with explicit contrast control for visual search.

Index Terms—Color scales, visualization, interaction technique, Magic Lens.
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1 INTRODUCTION

COLOR is one of the most basic visual attributes
used by the human perceptual system [1]. For

this reason, mapping quantitative data values to color
is standard practice in visualization, and has been uti-
lized for a wide array of purposes such as education,
science, and medicine. Consider a doctor studying an
X-Ray image to look for fractures where tissue and
bone density are mapped to luminance using gray
scale colors (Figure 1), or an oceanographer studying
seasonal changes in the world’s oceans where temper-
ature is represented using a heat map.

Despite the universal use of color in visualiza-
tion, color mapping can introduce information loss,
due both to the limited color depth of conventional
computer screens (where, for example, a gray scale
typically only has 256 potential values) [2], as well
as the limited color acuity of human vision [3]. For
high-resolution data—data with important large-scale
and small-scale variations, such as the X-Ray image
in Figure 1—these limitations may lead to a loss of
visual features (e.g. not finding an existing fracture).

This article introduces the Color Lens, a new in-
teraction technique that addresses the limited color
resolution problem by interactively optimizing color
scales according to a sampling region controlled by
the user (Figure 1). To validate our design, we per-
formed two controlled experiments where we asked
participants to search for visual features hidden in
procedural noise and in photographs. We measured
search time when using a Color Lens and a contrast
slider. Our results show a significant time improve-
ment for the Color Lens over the slider.
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2 BACKGROUND

2.1 Motivation

Visualization uses interactive graphical representa-
tions of data to aid the user’s cognition when viewing,
interacting with, and reasoning about the data. In
general, this high-level cognitive process is known as
visual exploration: the use of visualization to form, test,
and validate hypotheses about data, where the goals
and tasks for the exploration may not be known in
advance [4]. Visual exploration is a high-level process
consisting of numerous lower-level cognitive, percep-
tual, and motor operations, such as visual feature
search [5], estimation, comparison, and interaction [6].

In this article, we mainly focus on perceptual is-
sues of visual exploration involving the use of color.
Clearly, visual exploration cannot be carried out effec-
tively if the above lower-level tasks are not properly
supported. For example, if colors cannot be discrim-
inated in a particular area of a visualization, one
cannot search for features or get any insight about
the data. More specifically, we focus on visual search,
a ubiquitous low-level user task in visual exploration.

Visual search is defined as the search for a particular
feature with a known appearance in a visual space.
We consider both guided and unguided search, i.e.,
whether or not the user has a priori knowledge about
the spatial location of the feature in the image.

Color can convey both categorical or quantitative
data—we focus on the latter here. In particular, our
work is mostly concerned with high-resolution quanti-
tative data: data with large-scale as well as small-scale
features that are important to the viewer. The basic
problem with this data is that the large data range
may cause small-scale details to be lost due to both
limited color scale resolution in the display hardware,
as well as limited color perception in the user.

High-resolution quantitative data of this nature is
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Fig. 1. A global Color Lens applied to an X-Ray image. The color scale dynamically adapts to the lens contents.

common in many domains. HDR photographs and
scientific simulation images are often encoded in 32
bits or more [7], [8], meaning that meaningful infor-
mation is contained in color variations whose magni-
tude is less than 1/1,000,000 of the whole data range.
In the visualization domain, examples are numerous
and include the power law in social networks (such
as co-citation networks, where a small set of authors
receive most citations), economic data (where the
Pareto rule says that 80% of sales often come from 20%
of the clients), or oceanographic temperature readings
(where the overall temperature range is large, but it
is the small variations that often matter the most).

2.2 Requirements
The performance of the visual search task depends on
the relative visibility of the features in the display [5].
Because we do not know which particular features are
of interest to the viewer, our work attempts to opti-
mize the visibility of all features through exploratory
interaction. Based on this discussion, and on the na-
ture of the visual exploration process [4], we impose
the following requirements on our new technique:

• General: The technique should work with any
visualization, and it should be informed by the
data and not be biased towards certain features.

• Interactive: The technique needs to be interactive
to support visual exploration and should not be
the result of a static query or off-line algorithm.

• Faithful: The visual presentation should be faith-
ful to the data and should not mislead users [9].

2.3 Visual Search
Supporting visual search is a common research theme
within cognitive psychology; Wolfe [5] gives a survey.
The theme has also been extensively investigated
in the HCI community, perhaps most prominently
by Halverson et al. [10], [11]. Although Halverson
and Hornof investigate how text color affects visual
search [12], no existing technique optimize color and
contrast to make features stand out better. They thus
do not support many low-level tasks [6].

2.4 Color Display and Perception
The amount of information that can be conveyed
through the color channel partly depends on the capa-
bilities of the display hardware. Current displays have
a limited color resolution, regardless of the resolution
of the data space. Modern LCD displays use 8 bits per
color component (or 6 bits with dithering). This only
allows for conveying 64 to 256 different values using
a gray scale visualization. In practice, this means that
data features whose magnitude is less than 1/256 of
the total data range are invisible. Some specialized
medical displays have 10-bit color per channel, allow-
ing for 1024 different shades of gray.

It has been argued that a color depth of 8 bits
is enough, because the human visual system cannot
distinguish more colors [13]. At the same time, it has
been shown that the human contrast sensitivity for si-
nusoidal gratings increases with the mean luminance
level [3], [14]. This partly justifies the recent efforts
in building high dynamic range (HDR) displays, i.e.,
displays that have a much wider range of luminance
and a higher color depth [13], [15].

However, because of the eye adaptation mecha-
nisms [3], the number of shades of gray that can be
distinguished does not increase linearly with average
luminance. Current models predict only about 1,200
just noticeable difference (JND) steps for a monitor
300 times brighter than a conventional computer dis-
play [13], which is still far from enough for displaying
high-resolution data. Additionally, at a high lumi-
nance, light scattering in the cornea (glare) can nega-
tively contribute to the legibility of visualizations [16].

2.5 Color Scale Design and Optimization
Quantitative data is typically visualized using color
scales, i.e., functions that map scalar values to colors,
usually an interpolation between a discrete set of
colors. The most basic color scale is a linear transition
from black to white, i.e., a gray scale. Gray scales are
widely used because luminance is especially efficient
at faithfully conveying quantitative data [9]. However,
as discussed above, the amount of information that
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can be communicated through the luminance channel
is limited. One common approach to enhance a color
visualization is hence to vary hue and/or saturation
in addition to luminance, e.g., using pseudo-coloring.
However, pseudo-colors tend to produce unwanted
artifacts, such as artificial contours [9].

Some research has focused on designing color scales
that maximize the number of discriminable colors
while preserving perceptual uniformity and order-
ing [17]. ColorBrewer [18] provides a set of optimized
color scales commonly used for displaying quantita-
tive values, such as the LOCS [19] color scale. Com-
pared to gray scales, perceptually-optimized color
scales better show small differences while remaining
faithful to the data, but the gain is marginal.

2.6 Adaptive Color Scales and Tone Mapping

It is common practice to adapt color scales to the
data distribution (or post-process the data) in order
to convey more information. For example, logarithmic
color scales are often used when the data follows
a logarithmic distribution. General algorithms have
been proposed, such as density function mapping and
histogram equalization [20], as well as techniques for
enhancing the contrast of natural images [21].

A related theme within the computer graphics
community has been to faithfully reproduce high-
dynamic range (HDR) images, i.e., natural images
whose pixel intensity spans over several orders of
magnitude [7]. These images contain both large-scale
features (changes in illumination) and small-scale
features (changes in albedo) which are difficult to
reproduce on a regular computer screen. Solutions
are tone mapping or tone reproduction operators, that
can be either spatially uniform or locally adaptive [3],
[7], [22], [23]. Tone mapping has also recently been
applied to scientific visualization [8].

Although adapting color scales to the data distri-
bution often conveys more information, it does not
solve all problems. Spatially uniform techniques such
as histogram equalization can make better use of color
gamut and can suppress the impact of outliers on
contrast. However, they can misrepresent the data
distribution, and the gains are small when the distri-
bution is close to uniform (such as in X-Ray images).

Tone mapping techniques are more concerned with
perceptual faithfulness, but their goal is to produce
natural-looking images rather than conveying actual
quantities. In particular, locally adaptive techniques
filter out large-scale changes in illumination because
the eye is less sensitive to them. Even if the result
looks realistic, it is not equivalent to watching the
original scene [24]. In visualization, large scale color
variations can convey important information and los-
ing them can hide information such as global trends.

2.7 Interactive Control of Color Scales

Some of the limitations of color scales have been
addressed by adding interactivity. Many visualization
tools allow the user to try different color scales or
to build new ones [18], [25], [26], which is useful
because the appropriate color scale often depends on
the nature of the data and the task at hand [9]. Color
scales can also be parameterized by direct manipula-
tion. When the visualization is updated in real-time,
such techniques allow for searching for features in
the data [25], [27]. Similarly, commercial applications
such as Adobe Photoshop provide color-domain fil-
ters that can be tuned interactively to reveal near-
invisible details in images, especially within under-
or overexposed regions of photographs.

The interactive manipulation of color scales adds
a new dimension to data visualization by allowing
the user to navigate into the color space. However,
explicit color scale control techniques usually require
the user to haphazardly manipulate one or several de-
grees of freedom—e.g., brightness and contrast—until
the desired result is obtained. Such a process can be
tedious, especially when one just wants to enhance a
region of interest. In contrast, some visualizations cou-
ple 2D or 3D navigation techniques with an automatic
adaptation of the color scale to the viewport [17], [28].
Although highly natural, this implicit control of color
scales tightly links the color adaptation to the current
viewport, and is thus not flexible enough to decouple
the interactive visual exploration in space and color.

2.8 Focus+Context Techniques

Among existing navigation techniques for visualiza-
tion, focus+context [29] techniques have been widely
advocated in a variety of domains because they pre-
vent users from getting lost in data by providing
both local detail and global context. However, sur-
prisingly little work has been devoted to the use of fo-
cus+context techniques for color optimization. Among
the exceptions are an HDR painting application that
combines a global tone-mapped view of the image
with a local linearly-mapped view [30], and a screen
magnifier that can perform contrast adjustment [31].

The concept of Magic Lenses [32]—2D shapes that
can be moved over a visualization and locally affect
its representation—-is of direct relevance to our work.
We will describe this concept in more detail later.

3 THE COLOR LENS TECHNIQUE

The basic idea of the Color Lens is to adaptively
change the mapping from data space to color space
(i.e., the color scale) based on an analysis of the
contents of a subset of the dataset so that a maximum
amount of the available color precision can be devoted
to that subset. The subset is specified using one or
several lenses that the user can interactively move
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and resize on the visualization canvas to visually
explore the dataset. In this section we provide a brief
overview of the Color Lens technique from the user’s
perspective in order to illustrate its benefits and to
give an idea about the new possibilities it opens.

3.1 Basic Motivating Example

Suppose a user needs to study an X-Ray image. Using
standard tools, the user can zoom and pan the image,
and manipulate colors using brightness and contrast
controls. However, it is challenging to use these tools
to focus on specific parts of the image. Even when
the color scale is automatically adapted to the view-
port, the user has to switch back and forth between
different zoom levels and easily loses context.

In contrast, the Color Lens allows for easily exam-
ining different parts of the image. Figure 1 illustrates
the use of a Color Lens that automatically adapts the
contrast and brightness of an image given a region of
interest. By default, the image is shown in its true
colors. When the user drags a Color Lens on the
image, it adapts the contrast and brightness of the
display so that the image area inside the lens takes
up the whole display gamut: when the area inside
is bright, the whole image looks darker; when it is
dark, the whole image looks brighter. Deactivating the
Color Lens restores the image to its original color.

This mechanism obeys a “camera exposure”
metaphor similar to how digital cameras dynamically
adapt their exposure according to a small region in
the view finder. Image exposure will be optimized
for that region while the rest of the picture may be
partly underexposed or overexposed. Underexposed
and overexposed regions are visible in Figure 1, and
although data is temporarily lost as a result of this
process, it does give an indication that some regions
have higher values than those in the lens (saturated
white) and others have lower values (completely
black) without affecting the stability of the display.

Interestingly, clipping the brightness (see the right-
most image in Figure 1) is precisely what allows
the interior of the lens to be clearly visible, be-
cause otherwise—for example, on an HDR display—
legibility would be severely impeded by the extremely
bright surrounding light. The Color Lens smoothly
animates the changes in the color scale, which further
enforces the camera automatic exposure metaphor.

The key feature of the Color Lens is that it ensures
that the maximum amount of the available gamut is
devoted to displaying the data currently in focus. This
enables the user to detect even small features. In a
way, the technique allows users to navigate into color
space similar to the way zoomable user interfaces [33]
allow users to navigate in geometric space. How-
ever, the Color Lens is easier to use than traditional
methods of interactive color scale manipulation that
require explicit parameterization of color scales [25],

Fig. 2. Multiple local lenses used on a photograph.

Fig. 3. Decorations showing histogram and color scale.

[27] because it maps better to the data exploration
task and reduces the level of spatial indirection [34].
It also provides higher resolution than sophisticated
color maps [19] while using a simpler visual form.

Magic Lenses [32] use interactive lenses to change
visual representation, but our work is different:

• Magic Lenses have so far only been used to
manipulate images at the semantic and geometric
levels, not at the color scale level;

• Magic Lenses indicate the user’s interest and are
primarily designed for looking through, whereas
our approach is to use the lens as a sampling
region that may or may not be the user’s focus;

• No existing work on Magic Lenses discusses the
use of nested hierarchies of lenses which can
be used to zoom in space in order to explicitly
support a multiscale visual exploration process.

No Magic Lens automatically adapts contrast to
the lens focus, instead requiring manual tuning. They
hence share the drawbacks of direct manipulation
approaches discussed earlier. Furthermore, none of
these tools has been empirically evaluated, so their
actual benefit to visualization is unknown.

3.2 Interacting with Color Lenses
The Color Lens supports more sophisticated inter-
actions such as resizing lenses or creating multiple
lenses. Lenses can also have local or global effects
on the display. Global lenses, used in the previous
scenario, affect the whole image, so the lens itself
is mainly used for specifying a sampling area. Local
lenses, on the other hand, affect the image only inside
their bounds, like a Magic Lens [32].
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Fig. 4. Multiscale navigation in US Census data, involving successive zooms into both space and color domains.

It is possible to use several lenses in the same
visual space, but we currently define no method to
compose lenses together. Instead, when several global
lenses are present, the content of all lenses are used to
compute a color scale for the whole visual space. In
other words, the regions covered by each global lens is
combined using a union operation of the screen space
covered by each lens. The whole combiend space
is then used for adapting the display gamut. When
using multiple local lenses, they are independent of
each other, allowing different regions of the visual
space to be shown in different ways (Figure 2).

The above applies to the analysis component of
the Color Lens, not the visual representation. We also
maintain a configurable stacking order (Section 4.3). If
lenses overlap on the display, the color scale of the
topmost lens will be used for the overlapped region.

Color Lenses have different types that are controlled
by the user. Figure 3 shows three types. The first lens
uses a gray scale that is linearly optimized according
to the extrema of the data inside. Data extrema are
also shown on the top of the lens and dynamically
updated as the lens is dragged or resized. The color
scale is updated accordingly and is also shown on the
top of the lens (Figure 3), or on the top of the parent
lens when the lens is in global mode (Figure 1). We
can show the actual data values for the extrema on
top of the color scale, as a kind of graphical legend.

The second lens in Figure 3 is similar to the gray
scale lens, except it uses a different color scale. The
third lens enhances the contrast of color images by
analyzing the three color components separately, ex-
tracting their extrema and rescaling the color compo-
nents uniformly up to the saturation point.

3.3 Multiscale Color Navigation

Color Lenses are especially powerful when com-
bined with 2D navigation techniques. We have exper-
imented with the technique in a zoomable scatterplot

visualization of US Census data (Figure 4). In addition
to the continuous navigation tools, double-clicking
inside a lens automatically adjusts the viewport to
the lens through a smooth transition. Once a lens is
in focus, additional lenses can be recursively added
inside the parent, creating a nested hierarchy of lenses.

This navigation strategy is based on zooming in
color and geometry that is consistent with the Visual
Information Seeking mantra, “overview first, zoom and
filter, then details on demand.” [35] This is particularly
useful when searching for features in visualizations
that are dense both in space and in color.

Lens hierarchies also provide navigation history.
While navigating in high-resolution data, users can
backtrack by clicking outside the current lens to move
back to the parent lens. This allows users to progres-
sively build search trees for multiple lines of inquiry.

Parent lens

Value picker

Black = Same value

Red = Lower value

Green = Higher value

Fig. 5. A compound lens used to compare adjacent
cells in a treemap. The lens consists of a large con-
tainer lens with a red-black-green color scale and a
nested global lens that acts as a sampling region.

Finally, lens hierarchies can also be used to build
compound lenses. For example, lenses of different
types can be put side by side into the same compound
lens container to form a toolglass [32].

Another example, illustrated in Figure 5, involves
a value comparator. The treemap in the example uses
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color to encode the file size, but it can be difficult
to compare the color values, especially when the two
files are not side by side. The comparator lens is built
by putting a small global lens (no color scale of its
own) inside a bigger local lens that has been assigned
a ternary red-black-green color scale (i.e., three colors
only). The large lens acts as a container and uses the
region defined by the small global child lens as a
sampling region. This now means that every object
in the display that has the same quantity (i.e., file
size) as the object underneath the sampling region
will appear in black. In other words, black cells are
of the exact same file size as the sampled one. Lower-
valued objects (i.e., smaller files) appear in red and
higher-valued ones in green (i.e., larger files).

4 BASIC FRAMEWORK

Color Lens techniques can be specified in terms of an
abstract graphics pipeline where the data contents of
each lens is initially rendered to off-screen geometric
buffers (or G-buffers [36]), i.e., images whose pixels
hold abstract data instead of colors. This step is
followed by inspecting the distribution of the data,
adapting the color scale to optimize this distribution,
and then rendering the actual pixels of the lens to the
screen using the modified color scale.

4.1 Model
Consider a visualization that maps data to an im-
age on the screen [37]. Part of the data is mapped
to geometrical features, and the resulting spatial ar-
rangement of the data on the screen is called the
visual substrate. Another part of the data is mapped to
colors. Let us assume a mapping from n-dimensional
quantitative data—i.e., D ⊆ Rn—to a standard RGB
color space—i.e., C ⊆ I3 (or I4 for alpha channel),
where I denotes an intensity coordinate in RGB space,
usually I = [0, 1]. The transformation from data to
color is performed using a color scale cs : D → C that
is typically continuous and obeys some perceptual
ordering, such as monotonically increasing brightness.

In the Color Lens, a subset of the data l ⊆ D is
analyzed before the color transformation and the color
scale cs is modified to optimize the color precision for
that subset. The analysis typically consists in deriving
histograms for the data distribution of the subset l.

4.2 Abstract Rendering Pipeline
The rendering pipeline uses an initial rendering pass
to a geometrical buffer (G-buffer), followed by analy-
sis, adaptive modification of the color scale, and then
rendering to the screen. Only at the last stage do we
transform to the potentially limited color space (e.g.,
32 bits on standard computer screens), ensuring that
data precision is maintained during the analysis. The
last step also involves rendering metadata, such as

lens decorations, text annotations and labeling, and
user interface elements.

A G-buffer contains data that has been partially
rendered, i.e., pixels containing quantitative data val-
ues instead of colors. This is necessary in order to be
able to analyze complex visual substrates consisting
of multiple geometrical entities that may potentially
interfere with each other. The G-buffer is a subset of
the dataset sampled in the current viewport, and can
be analyzed before being rendered.

4.3 Lens Hierarchy
Color Lenses are organized in hierarchies, with a
single static Color Lens at the root containing the
whole visual substrate. This root lens is consistent
with the initial fitting of a color scale to a data domain
(typically by calibrating the endpoints of the color
scale to the extents of the data range) that is per-
formed for virtually all visualizations that make use
of color scales. Lenses may contain child lenses that
are specified in terms of the local coordinate system
defined by the parent and clipped to its bounds.

Lenses have flags for rendering and analysis. Ren-
dering controls whether the lens is drawing its own
representation, as opposed to delegating this to its
parent. Similarly, analyzing lenses use their own con-
tents when computing data histograms, whereas non-
analyzing ones use their children for this.

We define the following lens types:
• Analyzing lens. The contents of this lens are

taken into account for building histograms, and
the results are propagated upwards in the hierar-
chy (a global mode lens, see Figure 1).

• Rendering lens. This lens renders its own repre-
sentation using a color scale based on its analyz-
ing children (see the root lens on Figure 1). The
color scale used can be different from the parent.

• Analyzing renderer lens. This lens defines its
own color scale and analyze its own contents,
forming a local lens (Figure 2).

• Null lenses. This lens performs no analysis and
no rendering, but may be used as containers (cf.
toolglass in Section 3.3).

5 IMPLEMENTATIONS

We have implemented two prototypes of the
Color Lens technique: one using OpenGL and pro-
grammable graphical processing units (GPUs), and
the other as part of the InfoVis Toolkit [38]. Both are
built in Java and achieve real-time performance.

5.1 OpenGL Implementation
Our standalone implementation of the Color Lens
method—COLORLENSGL—is built in Java using the
JOGL1 bindings for OpenGL 2.0 and utilizes GLSL

1. http://jogl.dev.java.net/
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(the OpenGL shading language) and the OpenGL
ARB framebuffer object (FBO) extension for realizing
the G-buffers required by the abstract Color Lens
piepline. ColorLensGL is designed as a graphical
backend that can be used by any visualization applica-
tion that wants Color Lens support. It is based on the
GPU shader framework for information visualization
proposed by McDonnel and Elmqvist [37].

5.1.1 Data Precision
Modern GPUs use floating-point arithmetic in all
computations, but depending on the actual hard-
ware the precision may be 16-bit (half-precision) or
standard IEEE 754 32-bit (single-precision) floating
point values. By performing all computations using
floating-point arithmetic, ColorLensGL preserves the
full precision of the data space (up to 32 bits) and
minimizes data loss until the actual rendering of data
values to 8-bit color components on the screen.

5.1.2 Visual Substrate
The ColorLensGL visual substrate is represented by
a 2D scene graph consisting of simple 2D primitives
such as points, lines, triangles, rectangles, and convex
polygons. Instead of having a color or material associ-
ated with each node, as is common for standard scene
graphs, this scene graph represents a mapping from
the data domain to the spatial domain, independent
of the color mapping. Therefore, each node has an
associated data tuple in n-dimensional space instead.

To allow for GPU processing, data tuples are re-
alized as floating-point color components in RGBA
space. Additional data dimensions over four thus
require the use of multiple render targets using the
framebuffer object OpenGL extension. Most visualiza-
tions use only one or two dimensions, however.

To simplify the use of grid-based, space-filling vi-
sualizations, or volume visualizations [8], we also
support arrays of multidimensional data (data tensors)
that are mapped to scene graph shapes, the same way
image textures are mapped to 2D or 3D geometry.
Data tensors are implemented using 2D and 3D RGBA
floating-point textures, so each additional multiple of
four in data dimensions require the use of another
texture through OpenGL’s multitexturing mechanism.

5.1.3 Rendering
ColorLensGL uses a two-pass rendering pipeline that
relies on data being sampled in the current screen res-
olution into off-screen G-buffers, implemented using
the OpenGL framebuffer object (FBO) extension. In-
stead of rendering color components to the screen, we
render data values to the off-screen buffer. G-buffers
are written and stored in the video card memory,
speeding up the rendering process.

The rendering algorithm proceeds by first rendering
the visual substrate to the G-buffer, and then read-
ing back the resulting data from video into system

memory. This step only needs to be performed when
the viewport changes. After that, whenever the lens
is moved or resized, the contents of the lens will be
inspected. Given the results, we adapt the color scale
for the lens contents using a fragment shader.

5.1.4 Interaction
ColorLensGL has a zoomable user interface [33] sup-
porting basic pan and zoom operations for navigation.
Lens operations include creating, moving, resizing,
and deleting color lenses. Users can also change color
scale and toggle lens decorations.

5.1.5 Application: US Census Visualization
We have implemented the multiscale US Census visu-
alization application from Section 3.3 using the Col-
orLensGL framework. The application reads a subset
of the US Census 2000 dataset and draws a multiscale
geographical map of the United States showing pop-
ulation density. The user can navigate in the dataset
by panning and zooming, and the representation can
be changed to show the data at the different levels of
aggregation stored in the dataset. By iteratively build-
ing nested hierarchies of Color Lenses, the user is able
to visually explore the dataset and to discover small-
scale differences in population density that would
otherwise be indistinguishable to the naked eye.

5.1.6 Application: Image Inspection
We have implemented the image viewer from Sec-
tion 3.2 using the ColorLensGL framework. The user
can interactively change the global or local contrast of
a loaded image using a hierarchy of Color Lenses, and
can save the final output to a standard PNG or JPEG
file when satisfied with the result. The final output
image will only contain the influence of the lenses,
not their interface decorations.

5.2 Software-rendered Java2D Implementation
Color Lenses can be used in any visualization sup-
ported by the InfoVis Toolkit [38]. They have been
implemented using the multi-layering mechanism of
the toolkit, allowing for stacking lenses as visualiza-
tions on top of other visualizations without requiring
changes to existing visualization implementations.

The implementation uses two layers: one is the lens
layer, which manages the lens representation, and the
other one is a background layer located behind the vi-
sualization layers, which is used to compute the range
of attribute values inside the lens. This background
layer renders visualizations using a special mode to
compute the range of values of the attribute assigned
to the color using a software G-buffer.

Since the InfoVis Toolkit references object by index,
our G-buffer is actually an object buffer that uses a
standard Java RGBA image to encode integer values.
Reusing the standard Java image object saves us from
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re-implementing the Java Graphics2D class for ren-
dering in a G-buffer. In the special mode triggered by
the background layer, we render using object indices
instead of colors. When the rendering is finished, we
compute the minimum and maximum attribute values
for the indices contained in the G-buffer. The only
subtlety is undefined values: when the attribute value
of an object is undefined, the index of that object
should not be written to the G-buffer. Therefore, when
the attribute used to display colors is changed, the
G-buffer should be recomputed unless the attributes
used before and after contain no undefined values.

Compared with the OpenGL prototype, the soft-
ware pipeline offers more flexibility and an unlimited
precision but is slower for large lenses. The flexibility
allows us to compute several color ranges for different
layers. For example, in a node-link diagram, a Color
Lens can control the color of the link layer and the
node layer independently (Figure 6). Performance
degradation is noticeable with large lenses (more than
300 × 300 pixels) when the G-buffer needs to be
computed or when more than about 1000 objects are
visible. This is not a major issue with small lenses
(< 200 pixels), but for other situations, a hardware-
accelerated implementation may be required.

Fig. 6. Color Lens in a node-link graph visualization
implemented in the InfoVis Toolkit showing two color
scales, nodes and links. The lens magnifies the differ-
ence in the color mapping for nodes and edges.

6 EVALUATION

In order to assess the benefits of the Color Lens
technique to users, we compared Color Lens to di-
rect contrast control in two types of visual search
tasks. A first study involved searching for features
in randomly-generated noise, whereas the second in-
volved searching for hidden objects in photographs.
These two tasks were simple enough to be quickly
explained to our subjects, and they did not involve
value comparisons but only shape detection under
various noise conditions.

The explicit color scale manipulation tool was a
range slider (Figure 8) modeled after the histogram
manipulation tool provided in imaging applications

such as Adobe Photoshop. Shrinking the slider’s
thumb increases contrast, and dragging it allows for
quickly exploring dark or bright regions of the image.
This design is more efficient than having separate
controls for brightness and contrast.

Because we focus on interactive approaches, we
opted to not include any advanced color optimization
technique such as pseudo-colors, histogram equal-
ization, or tone mapping. Our two techniques only
employ linear rescaling of the color space, and are
hence faithful to the underlying data (see R3 in Sec-
tion 2.2). Automatic and interactive color optimiza-
tion techniques are however not incompatible, and
can be easily combined: since no color optimization
technique is able to convey arbitrarily small color
variations, it is still arguably useful for the analyst
to be able to manually specify a range of interest in
the data using either a Color Lens or a contrast slider.

The two studies were conducted using the same
participants and within the same session. However,
because their design differs in some ways, we present
them separately. Common aspects are presented here.

6.1 Hypotheses
Our general hypotheses were the following:
H1: Color Lens will be faster than explicit contrast control.
H2: Color Lens will be faster when the user has knowledge

of feature location. The lens will be particularly
efficient when users know where to search.

H3: Color Lens will be faster when searching in low-
contrast regions. Low-contrast image regions can
be easily enhanced using a Color Lens (high-
contrast regions tend to “saturate” the lens).

6.2 Participants
We recruited 16 unpaid participants from the uni-
versity student pool (3 female, 13 male), all of them
experienced computer users and screened to have
normal or corrected-to-normal vision with full color
perception. Ages ranged from 23 to 50 (mean 28.7,
median 27). Demographics were self-reported.

6.3 Apparatus
The experiment was conducted on a Dell laptop com-
puter. The computer had a 17-inch WUXGA LCD
display with a native 1920 × 1200 pixel resolution
and a color depth of 24 bits. Gamma correction was
performed prior to the first experiment session and
was maintained at 1.2. The experiment was conducted
in a room with standard artificial lighting (no natural
light) that was kept constant for all participants.

6.4 Task
In both studies, a trial consisted of a visual search
for for a feature in a gray scale image. Participants
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were first informed of which target to find and invited
to hit the space bar to display the image. They then
had a limited amount of time to identify the feature
in the image using the tool provided (Color Lens
or contrast slider). Participants were instructed to hit
the space bar as as soon as they spotted the feature
and then mark its approximate location on the screen.
When marking the position, the image was reset to its
original contrast settings and the tool was deactivated.
Participants were instructed to be as fast as possible.

The test platform measured completion time, cor-
rectness, and tool use. Completion time was defined
as the time difference between the two space bar
presses. Trials were either correct or incorrect. Tool use
was recorded as false when the participant completed
the trial without using the tool, typically because the
participant had already spotted the feature using the
naked eye, otherwise as true. When the time cap was
exceeded, the software aborted the trial and marked
it as incomplete. We derived the time cap from a
pilot study, striving to give enough time to detect the
feature while at the same time minimizing frustration
in case the task was too difficult for a particular trial.

6.5 Procedure
Both experiments consisted of a sequence of search
trials in a randomized order, grouped by the Method
factor. Individual trials were interleaved with instruc-
tion screens during which the participant could rest
from the previous trial and prepare for the next.

Prior to performing the studies, participants were
given an instruction sheet describing the tasks and
explaining the two techniques. Before each study, they
received training for both techniques using images
different from the ones used in the experiment.

Sessions typically lasted 45 minutes: 5 minutes of
training, 30 for the first study, and 10 for the second.

7 STUDY 1: SEARCH IN NOISE

The motivation for studying artificial images was to
provide a canonical example of the use of color scale
optimization, independent of specific data. Being in
control of the image generation allowed us to better
control the characteristics of the search task.

The images were generated using simplex noise, an
improved version of the classic Perlin noise [39]. This
type of procedural noise exhibits the combination of
large-scale and small-scale variations that is character-
istic of the high-resolution data that we study here.

7.1 Task
The task was to search for small circles buried in pro-
cedural noise. The images were generated by linearly
mapping a 10-octave simplex noise to a gray scale
image of resolution 800 × 800 pixels and color depth
of 8 bits (256 luminance values). The mapping was

Fig. 7. Above: a randomly generated image with two
different noise complexities (NC). Below: a magnified
and contrast-enhanced view of the feature’s neighbor-
hood, with two different feature strengths (FS).

normalized so that each image took up the whole
display gamut minus the luminance of the brightest
feature. The scale of the first octave was a function of
the Noise Complexity factor (see top of Figure 7).

The features were white, anti-aliased circles of 20
pixel radius and 2 pixel thickness blended into the
image at a random location. This was done using
alpha blending, with the opacity being a function of
the Feature Strength (see bottom of Figure 7).

Trials had a time cap of 20 seconds. In some trials, a
rectangle (spatial hint) indicated which quadrant con-
tained the feature. When found, the subject specified
the feature position by clicking a cell on a 8× 8 grid.
Features were placed to not intersect grid lines.

7.2 Experimental Conditions
Method. In order to test H1, we included a Method
(M) factor with the following two conditions:

• Contrast slider. Explicit control of contrast using
a 800 × 25 pixel range slider located below the
image (see Figure 8).

• Color Lens. Control of contrast using a 50 × 50
pixel global Color Lens (see Figure 1). Left drags
were used to move the lens, and the +/- keys for
resizing it. Other functions were disabled.

The same type of linear color-space transformation
was applied to the images in both method conditions,
i.e., brightness Bmin was mapped to black and bright-
ness Bmax was mapped to white. The difference was
in the way Bmin and Bmax were obtained: in the
contrast slider condition, they were obtained from the
location of the handles, whereas in the Color Lens
condition, they were sampled inside the lens.

Noise Complexity. In order to test H3, we added a
Noise Complexity (NC) factor. Noise complexity was
defined as the ratio between image size and the scale
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Fig. 8. Using the contrast slider to enhance an image.

(wavelength) of the first simplex noise octave [39].
In other words, this ratio represents the normalized
wavelength of the noise. The larger this value, the
stronger the high-spatial frequencies of the images
relative to low-spatial frequencies. This in turn affects
local image contrast, and allows us to approximate
cases that are likely problematic for the color lens,
such as the presence of low-contrast details near high-
contrast boundaries. We included two different values
for noise complexity: 0.125 and 2.00 (see Figure 7).

Feature Strength. The degree to which the visual
feature stands out from the background image is
likely to have an effect on search tasks. We used two
values: 1.5% and 3% of the full brightness range of the
images (Figure 7). The feature strength thus governs
the amplitude of the feature in the image. With 256
levels of brightness in a standard 8-bit gray scale,
this corresponded to about 4 and 8 brightness steps
between the feature and the background.

Spatial Hint. To test H2, we introduced a Spatial
Hint (SH) factor that controlled the display of a rect-
angle indicating which image quadrant contained the
feature. This reduced the search space by 75%.

7.3 Study Design

We included the following factors (within-subjects):
• Method (M): Contrast slider, Color Lens
• Noise Complexity (NC): 0.125, 2
• Feature Strength (FS): 1.5%, 3%
• Spatial Hint (SH): no, yes
We used a full factorial design for the experiment

based on the above factors, yielding M ×NC ×FS ×
SH = 2× 2× 2× 2 = 16 conditions.

Each of these 16 conditions was assigned 8 search
problems, a total of 128 trials. A problem consisted
of a random seed for producing the noise image and
a feature position. To control for task difficulty, we
randomly picked 8 different problems and used the
same 8 problems for all the 16 conditions.

A pilot study revealed that with only 8 different
problems, participants quickly learned the feature
positions. To avoid this, we applied 90-degree ro-
tations and symmetries (8 transformations in total)
to the problems. This preserves the difficulty while
preventing learning. Each NC × FS × SH condition

was hence assigned a unique transformation, and this
assignment was counterbalanced across subjects.

The 128 trials were grouped by method and their or-
der randomized within each method. The same order-
ing was applied so that both two methods saw exactly
the same series of trials. The order of presentation of
methods was counterbalanced across participants.

With 16 participants conducting 128 trials, we col-
lected time, correctness, and tool use measurements
for a total of 2048 individual trials.

8 STUDY 2: SEARCH IN PHOTOGRAPHS
In order to ground our work in a more realistic search
task, we complemented the previous study with a
shorter study involving finding visual features in
actual photographs (see Figure 9 for example task).

8.1 Task
The photographs were all collected from the online
photo sharing site Flickr.2 They were selected on the
criteria of containing over-exposed, under-exposed
or low-contrast regions (e.g., night scenes, back-lit
shots, fog, snow, underwater shots). A total of 32
“good” pictures were selected from a collection of
about 150 images on the basis of containing hidden vi-
sual features that could be unambiguously described
with a short sentence. Features were annotated with
invisible bounding boxes. With the exception of being
converted to gray scale, images were not altered from
their original appearance on Flickr.

Prior to starting each trial, a sentence told the
participants what to look for, e.g., “find a framed
photo” or “find the guy on the bicycle.” Participants
were instructed to ask the experimenter in case they
did not understand the sentence. Upon hitting the
space bar, they had a maximum of 60 seconds to find
the feature. The trial was counted as correct if the
participant clicked inside the feature’s bounding box.

8.2 Experimental Conditions
Because of the limited scope of this study, we only
included the Method factor from the previous study.

8.3 Study Design
Given the existence of a dataset of 32 annotated pho-
tographs and the single Method factor, we constructed
the study as a one-factor within-subjects design. The
trials were balanced across participants so that half of
the participants first used the Color Lens for half of
the trials and the contrast slider for the remainder, and
the other half of the participants did the opposite. This
mechanism was designed to counter against certain
affinities between a technique and a specific image.

With 16 participants conducting 32 trials each, we
collected measurements from a total of 512 trials.

2. We do not have permission to reproduce all of the images we
collected from Flickr in this paper. Figure 9 gives a representative
portrayal of the style of the tasks, however.
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Fig. 9. Example task for Study 2: “find the sign with Asian characters.”

9 RESULTS

We analyzed the results using a repeated-measures
analysis of variance (RM-ANOVA) for Study 1, and
a paired (i.e., dependent samples) t-test for Study 2.
For Study 1, residuals were normal and a Mauchly
test showed that the sphericity assumption was not
violated. For Study 2, the data was checked for vio-
lations of assumptions for the t-test—residuals were
normal, and variances equal (Bartlett’s test, p = .479).

Table 1 gives the significant effects on search time
for Study 1. Figure 10 shows time for each condition.

Search time: The Color Lens was significantly faster
in both studies. In Study 1, the average search time
with the contrast slider was 8.57 seconds, versus 7.73
for the Color Lens, a 10% improvement over the
baseline. In Study 2, the average search time was 7.71
seconds with the contrast slider as opposed to 4.72
seconds for the Color Lens, a 43% improvement for
our new technique (significant, t = 5.605, p < .001).

As Figure 10 shows, the Color Lens was reliably
faster than the contrast slider. The spatial hint had a
significant impact on search time for the more difficult
conditions (high noise complexity and low feature
strength). For Study 2, the speedup gained from the
Color Lens technique was also significant.

Correctness: We found no significant main effect
of Method on correctness in any of the two studies
(Wilcoxon signed rank test, p = .090, and p = .060,
respectively). The average correctness for both Meth-
ods was high, 96% for Study 1 and 92% for Study 2,

Factors F df, den p
Method (M) 4.111 1, 15 *

Noise Complexity (NC) 339.825 1, 15 **
Feature Strength (FS) 215.220 1, 15 **

Spatial Hint (SH) 84.886 1, 15 **
NC * FS 63.620 1, 15 **
NC * SH 5.731 1, 15 *

* = p ≤ 0.05, ** = p ≤ 0.001.

TABLE 1
Significant effects of search time on factors for Study 1

(ANOVA). All other effects were non-significant.
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Fig. 10. Search time for each condition (both studies).

so we did not analyze this further.
Tool use: In Study 1, the contrast slider was used in

78.5% of the trials and the Color Lens in 81.4% of the
trials—the difference was only marginally significant
(Wilcoxon test, p = .085). In Study 2, the percentages
were 97.7% for the contrast slider and 99.6% for the
Color Lens, also only marginally significant (Wilcoxon
test, p = .073).

Capped trials: The percentage of capped trials in
Study 1 was 22.2% for the contrast slider and 20.0%
for the Color Lens. In Study 2, the percentage was
0.8% for the slider and 0.0% for the Color Lens.

It might be argued that in Study 1, the ceiling effects
caused by the capped trials affected the search time
analysis. Furthermore, some trials were clearly trivial
in that most participants could solve them without
the tool. For Study 2, no such effects were found on
the data and very few (16) trials were capped.

We re-analyzed Study 1 after removing conditions
where more than 50% of the trials were capped and
conditions where the tool was not used in more than
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Fig. 11. Comparison between Color Lens and alter-
native image manipulation techniques (one per row)
for an image from Study 1. a) original image, b) Color
Lens, c) histogram equalization, d) tone mapping, e)
local histogram equalization, and f) low pass filter.

50% of the trials. This led us to remove the four
difficult conditions NC = 2.00, FS = 1.5% and
the two trivial conditions NC = 0.125, FS = 3%,
SH = yes (see bars marked X in Figure 10).

We performed our analysis on the remaining eight
conditions, with unchanged main effects. There was
a significant main effect of Method on search time
(p < .01): 6.78 seconds for the contrast slider and 5.63
seconds for the Color Lens, a 17% speedup.

10 DISCUSSION
Our experiment yielded the following main findings:

• The Color Lens technique was significantly faster
overall than the contrast slider for visual search
(confirming H1);

• Better speed came at no extra cost in accuracy;
• We found no significant interaction between hint

and method in Study 1 (H2 inconclusive); and
• We found no significant interaction between com-

plexity and method in Study 1 (H3 inconclusive).

10.1 Explaining the Results

Our results confirmed that Color Lenses allow faster
detection of visual features without loss of accuracy.

One explanation behind this result is the lower
level of spatial indirection [34] of the Color Lens. The
slider (a) requires splitting one’s attention between
controlling contrast and observing the image, and
(b) does not allow for immediately interacting with
features of interest once they have been identified.
Although we tried not to measure (b) in our study
(we asked participants to press the space bar as soon
as they saw the feature), it might have played a role.

Furthermore, a special case where the Color Lens is
superior to the contrast slider is when one wants to
enhance a specific region of the image. This is because
the Color Lens has a more direct and thus more
predictable mode of operation—the user controls the
lens directly on the visual space to enhance. Using
the slider, one has to first estimate the color range of
the region, then set the range slider to that range. The
Color Lens only requires clicking on the image region.

One reason for this is that the contrast slider has
two degrees of freedom (1D position and width of
the contrast band), whereas the Color Lens has three
(2D position and size of the lens). This is perhaps yet
another testament to the power of direct manipula-
tion [40], where the general guideline is to minimize
indirection in the interface. In this light, it is perhaps
not so surprising that the Color Lens achieves better
performance than the indirect contrast slider.

Despite the lower level of spatial indirection of the
Color Lens, we did not confirm our hypothesis that
the Color Lens would be especially faster in guided
search, i.e., when the participant has prior knowledge
of feature location. In fact, the first study did not show
a significant interaction between Method and Spatial
hint. On the other hand, Color Lens outperformed the
slider by as much as 43% in Study 2, where a large
majority of tasks involved semantically guided search.

One explanation for us not being able to find a
main effect for the spatial hint in Study 1 might be
that the hint—a bounding box 1/4 the surface of the
image—did not restrict the search space enough to
produce observable effects. The other possibility is
that the type of semantic guidance given in the Study
2 is better suited to the Color Lens because it informs
the search more efficiently than the spatial guidance,
playing to the strengths of the Color Lens.

Our third hypothesis was also not confirmed by
Study 1: we observed no significant interaction be-
tween Method and Noise Complexity. On the other
hand, it is reasonable to assume that Color Lens was
so successful in Study 2 partly because features were
systematically hidden into low-contrast regions. Many
participants did seem to feel that Color Lens was
much more helpful when applied on smooth noise
or photographs than on high-density noise.
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A plausible explanation for the lack of significance
for high-density noise might be that raising the mag-
nitude of high frequencies increased the difficulty of
the search task across the board, and thus both tools
might have been perceived as being less helpful.

10.2 Generalizing the Results
In generalizing these results, we should note that the
contrast slider is actually not only a baseline condi-
tion, but an improvement of the baseline that exists
in most visualization applications. Adobe Photoshop
and similar tools use two or more independent control
points and thus do not allow for sweeping the contrast
range like in our work. Many medical imaging tools
do use window and level controls, however.

Furthermore, the acquisition time of the slider
should also be taken into account (in the study, par-
ticipants acquired the slider prior to starting trials),
whereas there is no such step needed for the Color
Lens. The Color Lens also supports more rapidly
acquiring a feature after it has been discovered.

Another important point is the ecological validity
of the tasks we used in our studies. We claim that
visual search—i.e., finding hidden features in data—
is a common task in visual exploration, and thus
that the tasks evaluated in our studies are indeed
representative. However, it would certainly be worth-
while to study images other than procedural noise
and photographs in the future, such as X-Ray images
or actual information visualization applications.

We should also note that the current evaluation only
studies the main functionality of the Color Lens, but
that many other features of the technique remain to
be investigated, such as comparing data values on
a visualization, finding value extrema, or perform-
ing multiscale visual exploration. Furthermore, many
search tasks may involve a priori knowledge of not
the location but instead the approximate data range
of the targets to find (i.e., an intensity hint instead of a
spatial hint). We have also not studied the use of local
or multiple lenses. However, this article was intended
to introduce the Color Lens technique, and we look to
future work to expand these issues in greater detail.

We should note that when optimizing for color per-
ception, interactive versus static techniques are two
different ways of approaching the problem, and they
are not necessarily incompatible. Our approach for
specifying ranges of interest in color space is indepen-
dent from the optimization technique—our prototype
currently uses a simple linear rescaling of the color
space. Although we advocate the use of interactivity
rather than automatic optimization, our approach can
be combined with pseudo-coloring and tone mapping
for more aggressive color discrimination.optimization.

10.3 Alternatives to Color Lenses
As alternatives to the Color Lens approach, image en-
hancement techniques such as histogram equalization

or tone mapping can be applied to the visualization.
Figure 11 shows a comparison of some of these al-
ternatives to our Color Lens implementation, for an
example image from the first study. 3 As can be seen
from the images, some methods fail to enhance the
feature of interest, while other methods clearly reveal
the feature but the manipulation process has intro-
duced severe visual artifacts that highly distort the
original image, hence reducing the context awareness
and violating our requirement R3. For the Color Lens,
the image is undistorted within and around the focus
of interest, while the context is rendered as under- and
overexposed regions of the image, providing a better
connection to the original image.

Given these images, we draw two conclusions: that
(1) the Color Lens technique certainly can hold its own
against static image enhancement techniques, and that
(2) our simple extents mapping adaptation seems
sufficient. Nevertheless, looking into more advanced
implementations of the actual color scale adaptation
is certainly interesting for future work. Again, the
general Color Lens technique does not specify the
method for how to adapt the color scale to the
lens contents, and state-of-the art image manipulation
techniques can certainly be integrated into the Color
Lens technique, such as frequency filters, histogram
equalization, and even tone mapping.

11 CONCLUSION
We have presented the Color Lens, a method for
dynamically optimizing color scales according to user-
specified regions of interest. This method addresses
a well-known bottleneck in visualization: the low
bandwidth and resolution that are intrinsic to the
color channel. The Color Lens technique allows for a
color perception gain of several orders of magnitude
in the local area indicated by the user.

Compared to previous interactive approaches, the
Color Lens does not require users to explicitly ma-
nipulate image parameters. Instead, users zoom into
color data simply by dragging over regions of interest.
Our two user studies confirmed the superiority of the
Color Lens when searching into noise or photographs.
We are considering investigating other tasks involving
color visualizations in the future.
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3. Image b) uses a Color Lens with a simple linear rescaling of
the color space; Image c) uses KamLex’s PhotoShop plugin for im-
age equalization www.kamlex.com; d) uses HDRSoft’s PhotoShop
plugin for tone mapping with default settings www.hdrsoft.com;
e) uses Alexander Belousov’s PhotoShop plugin for multiple his-
togram equalization with a tile size of 64 pixels www.unicontel.
com; f) uses Photoshop’s high-pass filter with a radius of 4 pixels
followed by automatic levels.
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Research Scientist (CR1) at INRIA Saclay -
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