A multiscale colloid transport model with anistropic degenerate diffusion

Abstract : We consider a weakly coupled semilinear parabolic-hyperbolic system with a degenerate and anisotropic diffusion. It arises to model the evolution of a chemical or biological tracer in a porous medium. We study the well-posed- ness of the system using a L^1 theory. Then, we establish the relaxation limit as the reaction constant becomes large. We prove that the system converges to a nonlinear parabolic-hyperbolic equation that generalizes the Stefan problem. Two specificities of this paper are (i) to deal with ill-prepared initial data and (ii) with unique entropy solutions based on a precise entropy inequality.
Type de document :
Article dans une revue
Asymptotic Analysis, IOS Press, 2003, 34 (1), pp.41-54. 〈http://iospress.metapress.com/content/rh5w4vft5cjf47n2/〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00694622
Contributeur : Jean-Frédéric Gerbeau <>
Soumis le : samedi 5 mai 2012 - 09:41:52
Dernière modification le : jeudi 13 décembre 2018 - 01:48:44

Identifiants

  • HAL Id : hal-00694622, version 1

Collections

Citation

Mohamed Belhadj, Jean-Frédéric Gerbeau, Benoît Perthame. A multiscale colloid transport model with anistropic degenerate diffusion. Asymptotic Analysis, IOS Press, 2003, 34 (1), pp.41-54. 〈http://iospress.metapress.com/content/rh5w4vft5cjf47n2/〉. 〈hal-00694622〉

Partager

Métriques

Consultations de la notice

607