B. Abramson, Expected-outcome: a general model of static evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.2, pp.182-193, 1990.
DOI : 10.1109/34.44404

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

R. Balla and A. Fern, UCT for tactical assault planning in real-time strategy games, Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), pp.40-45, 2009.

V. Berthier, H. Doghmen, and O. Teytaud, Consistency Modifications for Automatically Tuned Monte-Carlo Tree Search, Proceedings of Lion4, p.14, 2010.
DOI : 10.1007/978-3-642-13800-3_9

URL : https://hal.archives-ouvertes.fr/inria-00437146

R. Bjarnason, A. Fern, and P. Tadepalli, Lower bounding Klondike solitaire with Monte-Carlo planning, Proc. ICAPS, 2009.

A. Bourki, G. Chaslot, M. Coulm, V. Danjean, H. Doghmen et al., Scalability and Parallelization of Monte-Carlo Tree Search, Proc. Intl. Conf. on Computers and Games, 2010.
DOI : 10.1007/978-3-642-17928-0_5

URL : https://hal.archives-ouvertes.fr/inria-00512854

M. Boussard and J. Miura, Observation planning with on-line algorithms and GPU heuristic computation, ICAPS-10 Workshop on Planning and Scheduling Under Uncertainty, 2010.

B. Bouzy and G. Chaslot, Bayesian generation and integration of k-nearest-neighbor patterns for 19x19 go, CIG, 2005.

B. Bouzy and B. Helmstetter, Monte-Carlo Go Developments, 10th Advances in Computer Games, pp.159-174, 2003.
DOI : 10.1007/978-0-387-35706-5_11

B. Brügmann, Monte-Carlo Go, 1993.

S. Bubeck, R. Munos, and G. Stoltz, Pure Exploration in Multi-armed Bandits Problems, ALT 2009, pp.23-37, 2009.
DOI : 10.1090/S0002-9904-1952-09620-8

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, Online optimization in X-armed bandits, pp.21-201, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00329797

T. Cazenave, F. Balbo, and S. Pinson, Monte-Carlo bus regulation, 12th International IEEE Conference on Intelligent Transportation Systems, pp.340-345, 2009.

G. Chaslot, S. D. Jong, J. Saito, and J. Uiterwijk, Monte-Carlo tree search in production management problems, Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, pp.91-98, 2006.

J. Chevelu, G. Putois, and Y. Lepage, The true score of statistical paraphrase generation, Coling 2010: Poster Volume, pp.144-152, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01066835

P. Coquelin and R. Munos, Bandit algorithms for tree search, Proceedings of 23rd Conference on Uncertainty in Artificial Intelligence, pp.67-74, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00150207

R. Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, Proceedings of the 5th International Conference on Computers and Games, 2006.
DOI : 10.1007/978-3-540-75538-8_7

URL : https://hal.archives-ouvertes.fr/inria-00116992

E. Even-dar, S. Mannor, and Y. Mansour, Action elimination and stopping conditions for the multi-armed bandit and reinforcement problems, Journal of Machine Learning Research, vol.7, pp.1079-1105, 2006.

H. Finnsson and Y. Björnsson, Simulation-based approach to general game playing, 23rd Conference on Artificial Intelligence, pp.259-264, 2008.

R. Gaudel and M. Sebag, Feature Selection as a one-player game, Proceedings of the 27th Annual International Conference on Machine Learning, pp.359-366, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00484049

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007.
DOI : 10.1145/1273496.1273531

URL : https://hal.archives-ouvertes.fr/inria-00164003

S. Gelly, Y. Wang, R. Munos, and O. Teytaud, Modification of UCT with patterns in Monte-Carlo Go, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00117266

F. Hsu, Behind Deep Blue: Building the Computer that Defeated the World Chess Champion, 2002.

L. Kocsis and C. Szepesvari, Bandit Based Monte-Carlo Planning, 15th European Conference on Machine Learning (ECML), pp.282-293, 2006.
DOI : 10.1007/11871842_29

R. Korf, Real-time heuristic search, Artificial Intelligence, vol.42, issue.2-3, pp.189-211, 1990.
DOI : 10.1016/0004-3702(90)90054-4

G. Kronberger and R. Braune, Bandit-based Monte-Carlo planning for the single-machine total weighted tardiness scheduling problem. Computer Aided Systems Theory ? EUROCAST, pp.837-844, 2007.

T. L. Lai and H. Robbins, Asymptotically efficient adaptive allocation rules, Advances in Applied Mathematics, vol.6, issue.1, pp.4-22, 1985.
DOI : 10.1016/0196-8858(85)90002-8

K. Laviers and G. Sukthankar, A Monte Carlo approach for football play generation, Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-10), 2010.

B. Marthi, Navigation in partially observed dynamic roadmaps, POMDP Practioners Workshop, International Conference on Automated Planning and Scheduling, 2010.

S. Matsumoto, N. Hirosue, K. Itonaga, N. Ueno, and H. Ishii, Monte-Carlo Tree Search for a reentrant scheduling problem, The 40th International Conference on Computers & Indutrial Engineering, 2010.
DOI : 10.1109/ICCIE.2010.5668320

V. Mnih, C. Szepesvári, and J. Audibert, Empirical Bernstein stopping, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.672-679, 2008.
DOI : 10.1145/1390156.1390241

URL : https://hal.archives-ouvertes.fr/hal-00834983

H. Nakhost and M. Müller, Monte-Carlo exploration for deterministic planning, IJCAI, pp.1766-1771, 2009.

M. Newborn, Computer Chess Comes of Age, 1996.

H. Robbins, Some aspects of the sequential design of experiments, Bulletin of the American Mathematical Society, vol.58, issue.5, pp.527-535, 1952.
DOI : 10.1090/S0002-9904-1952-09620-8

P. Rolet, M. Sebag, and O. Teytaud, Boosting Active Learning to Optimality: A Tractable Monte-Carlo, Billiard-Based Algorithm, Proc. of Eur. Conf. on Machine Learning, number 5781 in LNAI, pp.302-317, 2009.
DOI : 10.1007/978-3-642-04174-7_20

URL : https://hal.archives-ouvertes.fr/inria-00433866

M. Schadd, M. Winands, H. Van-den-herik, and H. Aldewereld, Addressing np-complete puzzles with monte-carlo methods, Proceedings of the AISB 2008 Symposium on Logic and the Simulation of Interaction and Reasoning, pp.55-61, 2008.

J. Schaeffer, The games computers (and people) play Advances in Computers, pp.190-268, 2000.

D. Silver and J. Veness, Monte-Carlo planning in large POMDPs, Advances in Neural Information Processing Systems, pp.2164-2172, 2010.

Y. Tanabe, K. Yoshizoe, and H. Imai, A study on security evaluation methodology for image-based biometrics authentication systems, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp.258-263, 2009.
DOI : 10.1109/BTAS.2009.5339016

G. Tesauro, Temporal difference learning and TD-Gammon, Communications of the ACM, vol.38, issue.3, pp.58-68, 1995.
DOI : 10.1145/203330.203343

F. Teytaud and O. Teytaud, Creating an Upper-Confidence-Tree Program for Havannah, ACG 12, 2009.
DOI : 10.1007/978-3-642-12993-3_7

URL : https://hal.archives-ouvertes.fr/inria-00380539

G. N. Widrow, B. , and S. Maitra, Punish/Reward: Learning with a Critic in Adaptive Threshold Systems, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.5, pp.455-465, 1973.
DOI : 10.1109/TSMC.1973.4309272

M. Zinkevich, M. Bowling, N. Bard, M. Kan, and D. Billings, Optimal unbiased estimators for evaluating agent performance, American Association of Artificial Intelligence National Conference, AAAI, pp.573-578, 2006.