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ABSTRACT
In the context of turbulent fluid motion measure-

ment from image sequences, we propose in this paper
to reverse the traditional point of view of wavelets per-
ceived as an analyzing tool: wavelets and their proper-
ties are now considered as prior regularization models
for the motion estimation problem, in order to exhibit
some well-known turbulence regularities and multifrac-
tal behaviors on the reconstructed motion field.

1 INTRODUCTION AND MOTIVATION ON
WAVELETS AND TURBULENT MOTIONS
The fractal nature of turbulent motion fields may

be derived from A. Kolmogorov statistical theory. More
recently, Frisch (1995) showed how multifractal models
are adapted to the description of intermittency phe-
nomena in turbulence. These notions may be char-
acterized by the Lipschitz regularity α or the singu-
larity spectrum D(α) of a signal, resp. In this con-
text, wavelets are known to constitute a simple yet ef-
ficient tool for regularity measurement. Given a sig-
nal, the asymptotic decay across scales of the ampli-
tude of its wavelet coefficients can be linked to its Lip-
schitz regularity, under simple constraints on the ana-
lyzing wavelet. In the following, we consider a wavelet
with n vanishing moments1 and n fast-decay deriva-
tives. Then, considering wavelet coefficients2 {dj,p}j,p
of given function f ∈ L

2(R) uniformly Lipschitz α ≤ n
over the support [0,1], there exist A such that (Mallat,
2008):

|dj,p|= |
〈
f , ψj,p

〉
L2
| ∼A(2j)α+1/2 (1)

∗Authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant MSDAG

(ANR-08-SYSC-014) “Multiscale Data Assimilation for Geo-
physics”.

1The notion of vanishing moments (VM) is simply or-

thogonality to polynomials up to a certain order.
2See Sect. 2.2 for an introduction to wavelet formalism.

Conversely, a bounded signal whose coefficients verify
(1) for α /∈ N is uniformly Lipschitz α over ]0,1[. Simi-
larly, the singularity spectrum may be estimated from
the computation of the partition functions of the co-
efficients and an inverse Legendre transform (Mallat,
2008). It has been used to exhibit the multifractal na-
ture of turbulent velocity fields (Bacry et al., 1993).

Fractality of signals is also known to reveal a
power-law behavior in the power spectrum. Applied
to turbulent motion, it rises up the famous -5/3 de-
cay predicted by Kolmogorov theory. Using continuous
wavelet transform (CWT), Perrier et al. (1995) define a
(continuous) wavelet power spectrum (CWPS) from the
energy conservation property and the multiscale nature
of the CWT. At a given scale, this CWPS is proportion-
nal to the L

2 norm of the wavelet coefficients. More-
over, it is related to the usual Fourier power spectrum
(FPS) for a finite-energy signal. In particular, consider-
ing a power-law behavior at small scales (wavenumber
k→∞) of the Fourier spectrum E(k):

E(k)∼ k−γ

then a sufficient condition for the CWPS to exhibit the
same behavior as the FPS is to use a wavelet with n >
γ−1

2 VM.

Aside from their use in turbulence analysis,
wavelets have been employed to design motion estima-
tors from fluid flow image sequences. Indeed, method-
ological advances in correlation-based or model-based
measurement techniques have enhanced the accuracy
of the computer-vision approach to fluid motion mea-
surement (particle image velocimetry (Adrian, 1991),
scalar imagery, meteorological or oceanographical satel-
lite imagery (Heitz et al., 2010), . . . ). In order to mea-
sure motion from an image sequence, any motion esti-
mation method needs to impose either explicitly (e.g.
optical flow) or implicitly (e.g. correlation) smooth-
ness assumption on the solution through smoothness
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functions (so-called regularizers) or implicit paramet-
ric spatial constraints (constant, affine, etc.). Contrary
to correlation-based methods, model-based techniques
known as optical flow approaches present the advan-
tage of offering a wide range of observation models
(Liu & Shen, 2008) and regularizers, which may be
chosen accordingly to the specificities of the observed
flow. Authors in Heas et al. (2009) have designed an
efficient regularization model based on statistical prop-
erties of turbulence, using the velocity increment func-
tion. More recently, a wavelet-based observation model,
taking advantage of the intrinsic multiscale nature of
wavelet bases, was proposed in (Dérian et al., 2011).
In the continuation of those works, the idea developed
in this paper is to design wavelet-based regularizers to
reconstruct the motion field with some desired phys-
ical properties such as fractality. Since Dérian et al.
(2011) wavelet-based observation model relates directly
wavelet coefficients of the sought motion field to im-
age intensity variations, fractal properties on the solu-
tion can be imposed simply by constraining its wavelet
coefficients decay trough scales. The wavelet frame-
work therefore enables a much simpler and more effi-
cient implementation of fractal regularization, and is in
the same time well-adapted to optical flow estimation.

2 WAVELET-BASED OPTICAL FLOW
When addressing fluid motion estimation, one

has to deal with continuous complex motion, involv-
ing a wide range of scales and velocity magnitudes.
Correlation-based methods have been used successfully,
especially in the context of experiments featuring flows
seeded with particles (PIV). Those methods use a single
data model, namely Digital Image Correlations (DIC),
which is notably adapted to PIV. However, they have
the drawbacks of producing sparse velocity fields, while
their regularization scheme (i.e. blockwise constant
fields) imposes an erroneous regularity to the recon-
structed motion field. On the opposite, optical flow
methods reconstruct dense motion field (i.e. one veloc-
ity vector per pixel) and offer a wide range of data mod-
els and regularizers, which can be chosen in adequacy
with the specific nature of the problem. Fluid-motion-
dedicated regularization schemes preserving rotational
and/or divergence quantities, or built upon statistical
properties of the turbulence, have been proposed. They
have similar accuracy to correlations methods on PIV
and outperform them on scalar transport images.

2.1 Optical Flow Problem
Optical flow aims at estimating the apparent mo-

tion field v(x) = (v1(x),v2(x))T transforming an image
I0 = I(t) of the sequence into the next one I1 = I(t+1),
∀x ∈ Ω, where Ω ⊂ R

2 denotes image domain. This
problem is classically solved through the minimization
of a functional J(v). This functional J includes a data
model linking observed images to the sought motion
fields. The simplest assumption used is the luminance

consistency along a point trajectory:
dI(x(t),t)
dt = 0,

which constitutes an exact physical model in the case
of non-diffusive transport by bi-dimensional turbulent
flows (Liu & Shen, 2008). The data model used here-
after, so-called the Displaced Frame Difference (DFD),
is obtained by time-integration along the motion tra-
jectories of the previous assumption:

∀x ∈ Ω, I0(x)− I1(x+v(x)) = 0 (2)

The velocity field estimate v̂ is finally obtained by min-
imizing quadratic discrepancies to the data model (2):






v̂ = argmin
v

JDFD(v)

JDFD(v) =
1

2

∫

Ω

[I0(x)− I1(x+v(x))]2 dx.
(3)

This problem is ill-posed, as there are twice as much
unknowns as equations. Moreover, this data model
does not provide any information when image spatial
or temporal gradients vanish. Regularization schemes
are needed to circumvent those limitations.

2.2 Projection on Orthogonal Wavelet Bases
We consider the projection of each scalar compo-

nent v1, v2 of the velocity field v onto multi-resolution
approximation spaces exhibited by the wavelet formal-
ism. Let us introduce briefly this context for real 1D
scalar signals - see Mallat (2008) for more details. We
consider a multi-resolution approximation of L

2(R) as
a sequence {Vj}j∈Z of closed subspaces, so-called ap-
proximation spaces, notably verifying:

Vj+1 ⊂ Vj ; lim
j→+∞

Vj =

+∞⋂

j=−∞

Vj = {0}

lim
j→−∞

Vj = Closure




+∞⋃

j=−∞

Vj



= L
2(R)

Since approximation spaces are sequentially included
within each other, they can be decomposed as Vj−1 =
Vj ⊕Wj . The Wj are the orthogonal complements of
approximation spaces, they are called detail spaces.

Practically, scalar 1D signals being finite, they be-
long to a given approximation space according to their
resolution, i.e. number of samples. Writing Nj =

2−j ∀j ≤ 0 hereafter, let w be a 1D signal of NF−1 sam-
ples. Then, w ∈ VF−1 = VC⊕WC⊕WC−1⊕·· ·⊕WF ⊂
L

2([0,1]), where F ≤C ≤ 0. The projection of w on this
multiscale basis writes:

w(x) =

NC−1∑

k=0

〈w,φC,k〉L2 φC,k(x)

+

F∑

j=C

Nj−1∑

k=0

〈w,ψj,k〉L2 ψj,k(k)

(4)
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Here, {φC,k}k and {ψj,k}k are orthonormal bases of
VC and Wj , respectively. They are defined by dilata-

tions and translations3 of the so-called scaling func-
tion φ and its associated wavelet function ψ . Finally,
the representation of a signal projected onto the mul-
tiscale orthonormal wavelet basis is given by the set
of coefficients appearing in (4): aC,k , 〈w,φC,k〉L2 and

dj,k , 〈w,ψj,k〉L2 are approximation and detail coeffi-
cients, respectively. Those results are extended to the
case of 2D signals, in order to obtain separable multi-
scale orthonormal bases of L

2([0,1]2).

2.3 Wavelet-Based Problem Formulation
In this work, we consider the wavelet expansion of

each component vi of the sought motion field v; Θi is
the set of coefficients representing vi on the considered
wavelet basis. Writing Θ = (Θ1,Θ2)T the superset of
all coefficients, we have:

v(x) =

(
v1(x)
v2(x)

)
=

(
Φ(x)Θ1

Φ(x)Θ2

)
, Φ(x)Θ (5)

Supplementing (3), the optical flow problem becomes






v̂ = Φ

(
argmin

Θ

JDFD(Θ)

)

JDFD(Θ) =
1

2

∫

Ω

[I0(x)− I1(x+ Φ(x)Θ)]2 dx

(6)

This wavelet-based motion estimator has proven
to be efficient in the context of fluid motion estimation
(Dérian et al., 2011), using simple regularizers (basis
truncation) or more elaborate high-order regularizers.

3 RECONSTRUCTION OF TURBULENCE
MULTIFRACTALS

3.1 Lipschitz Regularity
Singularity spectrum D(α), with α the Lipschitz

regularity of a turbulent process, is related to the decay
across scales of the pth order partition function (PF) of
the wavelet coefficients, which is given by the p-norm
of coefficients vector at a given scale. Because of the
correspondence with wavelet spectrum, we consider the
2nd order PF defined as:

Z(2j) =

Nj−1∑

p=0

∣∣dj,p
∣∣2 (7)

For a 2D multifractal signal, Legendre transform relates
the scaling exponent of the 2nd order PF (power-law be-
havior) to its singularity spectrum - see Mallat (2008):

ζ2 = lim
j→−∞

log2Z(2j)

log2 2j
= min
α∈[αmin,αmax]

(2(α+ 1)−D(α))

(8)

3Written in a general form ψj,p(x) = 2−j/2ψ(2−jx−p).

In the case of a monofractal signal, ζ2 = 2α.

3.2 Discrete Wavelet Spectrum
Similarly to relations involving continuous Fourier

and wavelet spectra (Sect. 1), it is also possible to
link discrete wavelet power spectrum (DWPS) to the
Fourier one. For 1D signal f ∈ L

2([0,1]), we define the
Fourier (9) and mean wavelet (10) spectra:

E(k) =
1

NF

∣∣f̂ [k]
∣∣2 , ∀k ∈ [0 · · ·NF −1] (9)

Ẽ(Nj) =
1

2

Nj−1∑

p=0

∣∣dj,p
∣∣2 , ∀j ∈ [−(F −1) · · ·0] (10)

where {f̂ [k]}k and {dj,p}j,p are Fourier and wavelet
coefficients, resp. Derivation of the following relation
between the two spectra can be found in App. A.

Ẽ(Nj) =
1

(NF )2

∑

k

E(k)

∣∣∣∣∣∣

Nj−1∑

p=0

ψ̂∗[(k+p)/Nj ]

∣∣∣∣∣∣

2

(11)

Considering a power-law behavior k−γ at small scales
of FPS, it is shown in App. B that, under simple condi-
tions on the VM of chosen wavelet, we obtain a bound
on DWPS decay :

E(k)∼ k−γ and ψ with m>
γ+ 1

2
VM

⇒ Ẽ(k)∼ k−(γ−1)
(12)

In the 2D case, the bias is of 2:

E(k)∼ k−γ ⇒ Ẽ(k)∼ k−(γ−2) (13)

A notable difference with the CWPS relation (Sect. 1)
is the apparition, in the last sum of (11), of wavelet
spectrum foldings. A consequence in (12) is the bias
between decays of FPS and DWPS.

3.3 Regularization Scheme
Using properties (8) and (13), we now define ad-

equate smoothing functions for the optical flow prob-
lem exhibiting particular fractal behavior or FPS de-
cay. Since expressions of the 2nd order PF (7) and the
DWPS (10) are very similar, the following derivation
of the regularization scheme is presented for the spec-
trum only. In 2D, from the hypothesis of a power-law
behavior at small scales:

Ẽ(Nj) =A(2−j)−(γ−2), ∀F ≤ j ≤ L≪ 0
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We obtain
d log2 Ẽ

dj
(Nj) = −(γ − 2), which is ap-

proached by a finite difference. At scale 2j , the power-
law behavior finally corresponds to:

−1

γ−2

(
log2 Ẽ(Nj)− log2 Ẽ(Nj+1)

)
−1 = 0 (14)

Then the constrained estimation problem writes:

{
Θ̂ = argmin

Θ

JDFD(Θ)

s.t. cj(Θ) = (14) ∀F ≤ j ≤ L
(15)

In order to exhibit a power-law of slope −γ to
the FPS, one has to pick constraints with −(γ − 2)
in 2D (13). Considering a Lipschitz regularity α
for the reconstructed motion, since in 2D we have
ζ2 = γ − 2, constraints (14) write for a monofractal
with γ − 2 = 2α whereas for a multifractal γ − 2 =
minα (2(α+ 1)−D(α)) (Sect. 3.1). Note that in the
latter case, we known that the minimizer is lower than
argmaxαD(α) - see (Mallat, 2008). Therefore, con-
straints apply on a point located on the left part of
singularity spectrum.

3.4 Optimization
The proposed wavelet-based estimation is opti-

mized using fast filter-banks (Dérian et al., 2011).
Daubechies wavelets are chosen since they have the
shortest support for a given number of VM, hence min-
imizing computations. The algorithm processes as fol-
lows:

1. coarser (unconstrained) scales are estimated first,
scale by scale, using L-BFGS (Nocedal & Wright,
1999) to achieve minimization of DFD functional;

2. to exhibit the desired property (regularity or spec-
trum decay), involved fine scales are also estimated,
enabling constraints. Minimization of the DFD
functional under constraints (15) is achieved using
augmented Lagrangian method (App. C) which is
appropriate here since it does not require the ini-
tialization point to respect constraints.

4 RESULTS
4.1 Synthetic PIV Dataset

Following results were obtained from a synthetic
PIV image sequence generated from a 2D turbulence
simulation at Re = 3000, using vorticity conservation
equation and Lagrangian equation for non-heavy par-
ticle transported by the flow – details can be found in
Carlier & Wieneke (2005). Ground truth velocity fields
were thus available for evaluating the reconstruction er-
ror reduction brought by the method. Figure 1 presents
an example of synthetic PIV picture, along with vortic-
ity of the underlying simulated and estimated velocity
fields. Figure 2 shows the evolution of the DWPS decay

(a) (b) (c)

Figure 1: Synthetic PIV picture (left) used for mo-
tion estimation, along with vorticity of the underlying
ground-truth motion field (middle) and of the recon-
structed motion with proposed spectrum prior (right).

Figure 2: Analyze of ground-truth velocity field: evolu-
tion of the WPS slope (continuous blue) and dominant
Lipschitz regularity α0 (continuous red), as functions of
the wavelet VM. WPS (compensated) slope of ground-
truth converges towards the FPS slope −γ = −5.05,
α0 converges towards a median value of 1.85. Re-
sults from motion estimation with different VM and
the proposed power-law/Lipschitz regularizations, us-
ing ground-truth values as priors: Lipschitz regularity
rapidly converge towards the expected value (dashed
red), whereas the convergence slows down with the FPS
slope (dashed blue).

slope and dominant Lipschitz regularity, as functions
of the wavelet number of VM. Slope converges towards
the FPS slope of −5.05 when the analyzing wavelet has
enough VM. Similarly, the estimated dominant Lips-
chitz regularity α0 converges towards a median value of
1.85. Figures 3 and 4 compare power and singularity
spectra, resp., of one ground-truth velocity field, of an
estimate with proposed power-law regularization and
of another estimate using 2nd order regularization as
introduced in Dérian et al. (2011). Note that because
of the bias (13), all DWPS graphs are compensated
by k−2 to facilitate comparisons with FPS. DWPS at
scale range 2−5 to 2−7 has been constrained to de-
cay according to a power-law of (compensated) slope
−ζ = −5.05, in adequacy with the slope observed on
ground-truth spectra. The reconstructed FPS oscillate
at finer scales, inducing a slightly lower slope decay for
sufficient VM – as expected from the bound given in
App. B. Root Mean Square (RMS) error on estimated
motion obtained with power-law regularization is 0.086,
which is to be compared with the RMS of 0.083 ob-
tained with 2nd order regularization, keeping in mind
that the objective of this work is the reconstruction of
statistical properties rather than RMS reduction.
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Figure 3: Comparison of FPS (continuous) and DWPS
(dashed lines) obtained with a 9 VM wavelet. Graphs
have been shifted vertically by 3 decades relatively so
as to enhance visualization. Red graphs are ground-
truth spectra exhibiting a power-law behavior of slope
−α = −5.05; FPS and DWPS are in good agreement.
Blue spectra are obtained by proposed estimator with
spectrum slope regularization. Pink graphs are ob-
tained with 2nd order regularization as presented in
Dérian et al. (2011). Both WPS and FPS are better
reconstructed by the power-law regularization (blue)
compared to the 2nd order one (pink), although FPS
slightly oscillate at finest scales.

Figure 4: Comparison of singularity spectra. Red is
obtained from ground-truth field, analyzed with a 7
VM wavelet. Blue results from motion estimation us-
ing ground-truth prior. Pink gives for comparison the
spectrum of the estimate with 2nd order regularization.

4.2 Scalar Diffusion
The second dataset consists in pictures of a pas-

sive scalar diffused by an electromagnetically-forced 2D
turbulent motion field, investigated in Jullien et al.
(2000). The flow features a direct enstrophy cascade,
with a power-law energy spectrum E(k) = k−3. Figure
5 shows an input image, along with the vorticity field
obtained by motion estimation with a prior on the spec-
trum slope. Figure 6 superimposes FPS and DWPS of
the estimated motion file, where PF of scales 2−4 to
2−8 are constrained to decay according to a power-law
of slope −ζ =−3.

CONCLUSION
An extension of wavelet-based optical flow algo-

rithm dedicated to turbulent fluid motion estimation
has been presented. Using wavelet properties, it en-
ables the reconstruction of turbulence multifractals or
power-law spectrum by controlling decay across scales
of coefficients amplitude. Results on synthetic PIV as

(a) (b)

Figure 5: Passive tracer diffusion picture (left), along
with vorticity of estimated motion by optical flow with
spectrum slope regularization (right).

Figure 6: Comparison of FPS (continuous line) and
DWPS (dashed line) of the estimated motion field ob-
tained with a 9 VM wavelet, with a power-law behavior
of slope −α=−3 (blue). The vertical shift of 3 decades
between blue and pink graphs has been introduced for
visualization purpose. DWPS (compensated) slope is
exactly −3, while FPS slope slightly deviates by ∼ 3%
In pink are given, for comparison, spectra correspond-
ing to motion estimated using 2nd order regularization,
showing clearly an erroneous behavior at medium and
fine scales.

well as on experimental scalar diffusion images show
enhancement brought by the proposed methodology, in
terms of spectral reconstruction, in comparison to pre-
viously introduced high-order regularizers.
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A Discrete Wavelet Spectrum Derivation
Let f be a signal of ΩF , i.e. with NF = 2−F sam-

ples. We consider its Fourier and Wavelet transforms:

f [n] =
1

NF

NF−1∑

k=0

f̂ [k] expikn =
∑

−F<j≤0

Nj−1∑

p=0

dj,pψj,p[n]

For simplicity we here considered f with a zero mean,
i.e. its coarser approximation in the wavelet transform
vanishes. The wavelet coefficients can be linked to the
signal and wavelet Fourier coefficients:

dj,p =
1√
NF

(
f ⋆ ψ̄j

)
[2j−F p]

=
1

NF
√
NF

NF−1∑

k=0

f̂ [k]̂̄ψj [k] expi2πkp/Nj (16)

Then it is possible to link DWPS (10) to FPS (9).
Wavelet coefficients are replaced by (16), then Fubini
theorem allows to swap sums order.

Ẽ(Nj) =
1

2

Nj−1∑

p=0

|dj,p|2

=
∑

k1,k2

f̂ [k1]f̂∗[k2]̂̄ψj [k1]̂̄ψj
∗
[k2]

Njδ[k1−k2]

2(NF
√
NF )2

=
Nj

(NF )2

∑

k

E(k)
∣∣∣̂̄ψj [k]

∣∣∣
2

(17)

Spectrum of the scaled wavelet ψ̄j can be expressed

in terms of mother wavelet spectrum. Since ψj [n] ,
1√
2j
ψ[n/2j ], j ≤ 0, using the following leads to (11).

̂̄ψj [k] =
1√
Nj

Nj−1∑

p=0

ψ̂∗[(k+p)/Nj ] (18)

B Power-Law Behavior
Similarly to what is done in Perrier et al. (1995)

with continuous transforms, we consider a power-law
behavior of the Fourier spectrum at large wavenumbers:

E(k) = k−γ , ∀k > k0 (19)

and a wavelet with m VM, which implies the existence
of a continuous and bounded function φ such that:

ψ̂[k] = kmφ[k] and φ[0] = 1 (20)

Using (19), the wavelet spectrum (17) is split in two
terms at k= k0, and (20) is used to replace E(k) where
k > k0. In the limit of infinite signals (F →−∞), us-
ing Cauchy–Schwarz inequality, then Fubini theorem to
swap sums and finally bounding one of the sums by its
analogous continuous integral, we obtain:

k ≤ k0 : Ẽ(Nj)≤ (Nj)
−2m

Nj−1∑

p=0

k0+p∑

k=p

k2mE(k−p)
∣∣∣∣φ(

k

Nj
)

∣∣∣∣
2

∼ (Nj)
−2m+1

k > k0 : Ẽ(Nj)≤ (Nj)
−γ
Nj−1∑

p=0

∫ +∞

k0+p

J

(
y−p
J

)−γ
y2m |φ(y)|2 dy

∼ (Nj)
−γ+1 if γ < 2m+ 1

Thus, the second term dominates when Nj→∞ if m>
γ
2 . Finally, a signal whose FPS is a power-law of slope
−γ will give a DWPS of slope steeper or equal to −(γ−
1), if previous condition on the wavelet VM is verified.
Extension to the case of 2D signals gives a DWPS decay
bound of −(γ−2) for a −γ FPS slope.

C Augmented Lagrangian
Augmented Lagrangian (AL) is related to

quadratic penalty, but avoid ill-conditioning by in-
troducing explicit Lagrange multipliers (Nocedal &
Wright, 1999). From (15), AL writes at iteration k:

LA(Θk,λk,µk) =JDFD(Θk) (21)

−
F∑

j=L

λkj cj(Θ
k) +

F∑

j=L

1

2µkj
(cj(Θ))2

Here {λkj }j and {µkj }jare respectively Lagrange multi-
pliers and penalization factors associated to constrained

scales F ≤ j ≤ L. At iteration k, minimizer Θ̂
k

of
functional (21) is obtained using L-BFGS method. Af-
ter convergence, multipliers are updated according to

λk+1
j = λkj −

cj(Θ̂
k

)
µk

, whereas penalization factors decay

according to µk+1
j ∈ [0;µkj ]; here we used µk+1

j = 1
3µ
k
j .
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