D. V. Arnold and D. Brauer, On the Behaviour of the (1+1)-ES for a Simple Constrained Problem, Parallel Problem Solving from Nature ? PPSN X, pp.1-10, 2008.
DOI : 10.1007/978-3-540-87700-4_1

D. V. Arnold and N. Hansen, Active covariance matrix adaptation for the (1+1)-CMA-ES, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pp.385-392, 2010.
DOI : 10.1145/1830483.1830556

URL : https://hal.archives-ouvertes.fr/hal-00503250

G. Collange, N. Delattre, N. Hansen, I. Quinquis, and M. Schoenauer, Multidisciplinary optimisation in the design of future space launchers, Multidisciplinary Design Optimization in Computational Mechanics, pp.487-496, 2010.

C. Floudas and P. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms, 1987.
DOI : 10.1007/3-540-53032-0

N. Hansen, Adaptive Encoding: How to Render Search Coordinate System Invariant, Parallel Problem Solving from Nature ? PPSN X, pp.205-214, 2008.
DOI : 10.1007/978-3-540-87700-4_21

URL : https://hal.archives-ouvertes.fr/inria-00287351

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Po?ík, Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009, Proceedings of the 12th annual conference comp on Genetic and evolutionary computation, GECCO '10, pp.1689-1696, 2010.
DOI : 10.1145/1830761.1830790

URL : https://hal.archives-ouvertes.fr/hal-00545727

N. Hansen, R. Ros, N. Mauny, M. Schoenauer, and A. Auger, Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems, Applied Soft Computing, vol.11, issue.8, pp.5755-5769, 2011.
DOI : 10.1016/j.asoc.2011.03.001

URL : https://hal.archives-ouvertes.fr/inria-00583669

D. M. Himmelblau, Applied Nonlinear Programming, 1972.

W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, 1981.

C. Igel, T. Suttorp, and N. Hansen, A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.453-460, 2006.
DOI : 10.1145/1143997.1144082

G. A. Jastrebski and D. V. Arnold, Improving Evolution Strategies through Active Covariance Matrix Adaptation, 2006 IEEE International Conference on Evolutionary Computation, pp.9719-9726, 2006.
DOI : 10.1109/CEC.2006.1688662

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Kramer, A. Barthelmes, and G. Rudolph, Surrogate Constraint Functions for CMA Evolution Strategies, KI 2009: Advances in Artificial Intelligence, pp.169-176
DOI : 10.1162/evco.1994.2.4.369

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Kramer and H. Schwefel, On three new approaches to handle constraints within evolution strategies, Natural Computing, vol.9, issue.4, pp.363-385, 2006.
DOI : 10.1007/s11047-006-0001-x

O. Kramer, C. Ting, and H. K. Büning, A New Mutation Operator for Evolution Strategies for Constrained Problems, 2005 IEEE Congress on Evolutionary Computation, pp.2600-2606, 2005.
DOI : 10.1109/CEC.2005.1555020

E. Mezura-montes and C. A. Coello, Constraint-handling in nature-inspired numerical optimization: Past, present and future, Swarm and Evolutionary Computation, vol.1, issue.4, pp.173-194, 2011.
DOI : 10.1016/j.swevo.2011.10.001

Z. Michalewicz and M. Schoenauer, Evolutionary Algorithms for Constrained Parameter Optimization Problems, Evolutionary Computation, vol.13, issue.1, pp.1-32, 1996.
DOI : 10.1162/evco.1996.4.1.1

A. I. Oyman, K. Deb, and H. Beyer, An alternative constraint handling method for evolution strategies, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), pp.612-619, 1999.
DOI : 10.1109/CEC.1999.781989

T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Transactions on Evolutionary Computation, vol.4, issue.3, pp.274-283, 2000.
DOI : 10.1109/4235.873238

H. Schwefel, Evolution and Optimum Seeking, 1995.

T. Suttorp, N. Hansen, and C. Igel, Efficient covariance matrix update for variable metric evolution strategies, Machine Learning, pp.167-197, 2009.
DOI : 10.1007/s10994-009-5102-1

URL : https://hal.archives-ouvertes.fr/inria-00369468

T. Takahama and S. Sakai, Constrained optimization by the ? constrained differential evolution with gradient-based mutation and feasible elites, IEEE World Congress on Computational Intelligence ? WCCI 2006, pp.308-315, 2006.

T. Takahama and S. Sakai, Efficient constrained optimization by the ? constrained adaptive differential evolution, IEEE World Congress on Computational Intelligence ? WCCI 2010, pp.2052-2059, 2010.