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Abstract

We propose an event learning approach for video, based on concept formation models. This approach incrementally learnson-line
a hierarchy of states and event by aggregating the attributevalues of tracked objects in the scene. The model can aggregate both
numerical and symbolic values.

The utilisation of symbolic attributes gives high �exibility to the approach. The approach also proposes the integration of
attributes as a doublet value-reliability, for considering the e� ect in the event learning process of the uncertainty inherited from
previous phases of the video analysis process.

Simultaneously, the approach recognises the states and events of the tracked objects, giving a multi-level description the object
situation.

The approach has been evaluated for an elderly care application and a rat behaviour analysis application. The results show that
the approach is capable of learning and recognising meaningful events occurring in the scene, and to build a rich model ofthe
objects behaviour. The results also show that the approach can give a description of the activities of a person (e.g. approaching to a
table, crouching), and to detect abnormal events based on the frequency of occurrence.

Keywords: incremental event learning, hierarchical event model, human behaviour, reliability measures, symbolic attribute

1. Introduction

Video event learning presents relevant applications related to
abnormal behaviour detection, as elderly health care [19],[11],
and tra� c monitoring [8]. In this sense, the utilisation of in-
cremental models for event learning should be the natural step
further real-time applications for handling unexpected events.
Apart from being well-suited for real-time applications because
of the inexpensive learning process, this incremental character-
istic learning allows the systems to easily adapt their response
to di� erent situations. Also, the dependence on enormous data-
sets for each particular application is reduced.

The focus of this work is in applications for incremental
event learning, where several objects of diverse type can in-
teract in the scene (e.g. persons, vehicles). The events of inter-
est are also diverse (e.g. events related to trajectories, human
posture) as the focus of interest is learning events in general.
The objects simultaneously evolving in the scene can be many,
but the interest is centred in objects which can be individually
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Monique.Thonnat@sophia.inria.fr (Monique Thonnat)

URL: http://profesores.elo.utfsm.cl/~mzuniga (Marcos D
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tracked in order to be able of recognising the events each object
is participating.

We propose anew event learning approach, which ag-
gregates on-line theattributes andreliability information of
tracked objects (e.g. people) tolearn a hierarchy of concepts
corresponding tostatesandevents. Reliability measures are
used to focus the learning process on the most valuable infor-
mation. Simultaneously, the approachrecognisesnew occur-
rences ofstatesand eventspreviously learnt. The only hy-
pothesis of the approach is the availability of tracked object
attributes, which are the needed input for the approach. This
approach is able to learnstates and events in general, sono
limitation is imposed on thenature or number of attributes to
be utilised in the learning process.

As previously described, the hierarchical model of the pro-
posed approach can be incrementally updated. This feature is
based onincremental concept formation models[4]. These
concept formation models evaluate the goodness of the con-
cepts represented by the formed clusters in a hierarchical
model, with the added constraint that learning must be incre-
mental. The main contributions of the proposed learning ap-
proach, with respect to incremental concept formation models,
are:

� The capability of the hierarchical model tolearn events,
as an explicit transition between two states (described in
Sections 3.1 and 4.4).

� The utilisation ofreliability measures for weighting the
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contribution of data according to their quality, as a way to
focus learning on meaningful information (for details, see
Section 4.3).

� The extended utilisation of the concept ofacuity to repre-
sent di� erentnormalisation scales and units associated to
di� erent attributes, and also represent the interest of users
for di� erent applications (see Section 3.2, for details).

� The incorporation of theacuity to thenumerical category
utility , in order to balance the contribution of numerical
and symbolic attributes to the category utility. (see Section
4.2).

In a step further to bridge the gap between image-level data
and high-level semantic information, this work extends previ-
ous work presented in [21] and [22] by integrating symbolic at-
tribute information to the hierarchical model in a way that both
numerical andsymbolic attribute values can be in a common
state model. The utilisation of symbolic attributes gives high
�exibility to the approach, allowing the user to add signi�cantly
semantic attributes for assisting on scene interpretation.

Also, the approach can simultaneously learn di� erent hier-
archies representing di� erent learning contexts (i.e. di� erent
states and events of interest). We propose a general represen-
tation for the context of each learning process and extend the
analysis of each involved process for an easier implementation.
The source code of the algorithm is publicly available1.

The approach has been extensively veri�ed over both sim-
ulated and real data-sets. The real data-sets has been utilised
for speci�c events for home-care (e.g. approaching to a table,
crouching) and rat behaviour learning (position and velocity
events).

This paper is organised as follows. In Section 2 the state-of-
the-art on incremental event learning approaches is presented.
Section 3 describes the proposed event learning approach in
general, and Section 4 focuses on describing the learning pro-
cess in detail. Finally, Section 5 presents the experimentsper-
formed on simulated and real data-sets.

2. State-of-the-Art

Most of video event learning approaches for abnormal be-
haviour recognition are supervised, requesting annotatedvideos
representative of the events to be learnt in a training phase[7],
[6], [2]. As well described in [17], these approaches normally
use general techniques as Hidden Markov Models (HMM) [13].
Some authors use hierarchical models, as they facilitate learn-
ing and generalisation. HMMs are robust, but require hierar-
chical (HHMM) and time-duration modelling for representing
events with varying temporal and spatial scales, increasing the
complexity of these approaches.

Generalisation is one of the keys to simplify the process of
semantic interpretation. In [10], the authors propose an ap-
proach for abnormal behaviour detection, using unsupervised

1The algorithm has been developed with C++, using QT libraries, and is
available athttp://profesores.elo.utfsm.cl/ ~mzuniga/MILES.zip

learning for two hierarchical representations, one for descrip-
tion of the observation and the other for temporal description.
In [15], the authors proposed a fall detection algorithm that
uses HHMM, hand designed and operating on an observation
sequence of recti�ed angles.

Few approaches can learn events in an unsupervised way us-
ing clustering techniques. For instance, [18] use the clusters of
attributes obtained with a Gaussian Mixture Model to represent
the states of an HMM, [14] learn events using spatial relation-
ships between objects in an unsupervised way, but performed
o� -line, and [16] apply unsupervised learning of composite
events using the APRIORI clustering algorithm. However,
these unsupervised clustering techniques request to (re)process
o� -line (not real-time) the whole cluster distribution.

Some other techniques can learn on-line the event model by
taking advantage of speci�c event distributions. For example,
[12] propose a method for incremental trajectory clustering by
mapping the trajectories into the ground plane decomposed in a
zone partition. Their approach performs learning only on spa-
tial information, it cannot take into account time information,
and do not handle noisy data.

In conclusion, few work has been found on hierarchical and
incremental approaches for abnormal behaviour detection.A
critical aspect not considered in the current approaches isthe
uncertainty of mobile object attributes present in real applica-
tions and how this uncertainty can a� ect the model construc-
tion.

Following these directions, the current work is based onin-
cremental concept formation models[4]. The knowledge is rep-
resented by a hierarchy of concepts partially ordered by gener-
ality. A category utilityfunction is used to evaluate the quality
of the obtained concept hierarchies [9].

The proposed approach takes pro�t of this hierarchical struc-
ture, extending it to represent events, incorporate the e� ect of
uncertainty in data, and to manage symbolic attributes which
facilitate semantic interpretation.

3. Incremental state and event learning approach

As previously stated, the proposed approach is an extension
of incremental concept formation models[4, 1] for learning
video events. The approach uses as input a set of attributes from
the tracked objects in the scene. Hence, the only hypothesisof
the approach is the availability of tracked object attributes (e.g.
position, posture, class, speed).

The proposed approach has been calledMILES, acronym
standing forMethod forIncrementalLearning ofEvents and
States. The approach has received its name since its �rst ver-
sion, presented in [21]. MILES state hierarchy construction
is mostly based on COBWEB [3] algorithm, but also consid-
ering ideas from other existing incremental concept formation
approaches, as CLASSIT [4] algorithm.

3.1. The hierarchy of states and events

MILES builds ahierarchy of state and event conceptsH,
based on thestate and event instancesextracted on-line from
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the tracked object attributes. It is desirable (but not necessary)
that the input data contains an estimate of the reliability on
information. This hierarchy is formed by two building blocks:

State concept: It is the modelling of a state, as previously
de�ned. A state conceptS(c), in a hierarchyH, is modelled as:

� its number of occurrencesN(S(c)) and itsprobability of
occurrence P(S(c)) = N(S(c))=N(S(p)). (S(p) is the root
state concept ofH),

� the number of event occurrencesNE(S(c)), correspond-
ing to the number of times that the stateS(c) passed to
another state, generating an event.

� a set of numerical attribute models fnig, with i 2
f1; ::;Tg, whereni is modelled as a random variableNi

which follows a Gaussian distributionNi � N (� ni ; � ni ),

� aset of symbolic attribute modelsfsjg, with j 2 f1; ::;Sg,
where sj is represented by every possible value for the
attribute, and conditional probabilitiesP(V(k)

sj jS(c)) repre-
senting the frequency of occurrence of a thek-th valueV(k)

sj

for sj , givenS(c).

Event concept: It is the modelling of the transition between
two state concepts. Anevent conceptE(c) is de�ned as the
change from a starting state conceptS(c)

a to the arriving state
conceptS(c)

b in a hierarchyH. An event conceptE(c), in a hier-
archyH, is modelled as:

� its number of occurrencesN(E(c)) and itsprobability of
occurrenceP(E(c)) = N(E(c))=NE(S(c)

a ) (with S(c)
a its start-

ing state concept).

The state concepts are hierarchically organised by generality,
with the children of each state representing speci�cationsof
their parent. In the hierarchy, an event concept is represented
as a unidirectional link between two state concepts. An exam-
ple of a hierarchy of states and events is presented in Figure
1. In the example, the stateS1 is a more general state concept
than statesS1:1 andS1:2, and so on. Each pair of state concepts
(S1:1 ; S1:2) and (S3:2 ; S3:3), is linked by two events concepts,
representing the occurrence of events in both directions.

3.2. The Learning Contexts

The learning process associated to a particular hierarchyH
is guided by alearning context Z. A learning context corre-
sponds to the description of a particular scope of the eventsof
interest for the user. Multiple learning contexts can be de�ned
and simultaneously processed, according to user interests. Each
learning context requires the de�nition of:

� the moving object classes involved in the particular learn-
ing process, de�ning a list of the object classes of interest
or stating thatany class is of interest.

� the attributes of interest (numerical or symbolic). Nor-
mally, there is an intermediate step for obtaining these

attributes from involved objects, as these attributes can
be derived from other object attributes (e.g. symbolic at-
tribute de�ning a zone in the scene, derived from object
position).

� Particularly, for eachnumerical attribute of interestni , a
normalisation valueAni must be also de�ned.Ani repre-
sents the lower bound for the numerical attribute change
to be considered as meaningful. In other words, the dif-
ference between the mean value for a numerical attribute
n and the value of the attribute for a new instance will be
considered as signi�cant and noticeable when this di� er-
ence is higher thanAni .

This normalisation value corresponds to the concept of
acuity, utilised by [4] and described as a system param-
eter that speci�es the minimum value for attributes� in
the CLASSIT algorithm for incremental concept forma-
tion. In psycho-physics, theacuity corresponds to the no-
tion of ajust noticeable di� erence, the lower limit on the
human perception ability.

This concept is used for the same purpose in MILES, but
the main di� erence with its utilisation in CLASSIT is that
theacuity was used as a single parameter, whileAni acuity
values are de�ned for each numerical attribute to be learnt
for a given context. This improvement allows to represent
the di� erent normalisation scales and units associated to
di� erent attributes, and can also represent the interest of
users for di� erent applications. For instance, a trajectory
position attributex could have an acuity of 50centimetres
for an application with a camera in an o� ce environment,
while for the same attribute, the acuity could betwo metres
for a parking lot application with a camera far from the
objects, where the user is not interested in little details on
position change.

� In particular, for eachsymbolic attribute sj , it is neces-
sary to list the associated values of interest.

As an example, for aPosition-Posturelearning context, as
shown in Figure 2, the user can be interested in learning the
events associated to a Person position (x; y), together with the
human posture in an o� ce environment. As an o� ce is a small
closed area, appropriate normalisation values for position at-
tributes can be50 centimetres. Then, this context mixes nu-
merical position attribute information, with symbolic posture
attribute information.

Learning Context Position Posturef
Involved Objects: Person
Attributes:

Numerical x : 50 [cm]
Numerical y : 50 [cm]
Symbolic Posture :f Standing, Crouching, Sitting, Lyingg

g

Figure 2: De�nition of a Position-Posture learning contextfor Person class in
an o� ce environment.
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S0

S1 S2 S3

S1.1 S1.2 S3.1 S3.2 S3.3

e1.2-1.1

e1.1-1.2

e1-2

e1.2-2

e2-3

e2-3.2

e3.2-3.1 e3.2-3.3

e3.3-3.2

Figure 1: Example of a hierarchical event structure resultingfrom the proposed event learning approach. Rectangles represent states, while circles represent events.

It is worthy to notice that the purpose of learning contexts is
to increase the possibilities of the users to customise the learn-
ing process according to the information of interest to an appli-
cation. In other words, nothing limits a user to de�ne a learn-
ing context with all the available attributes. All these possi-
bilities of customisation by the user, give a high �exibility to
the proposed approach for adapting to a wide variety of appli-
cations and typical issues present in the video understanding
domain. Also, symbolic attributes allow the user to de�ne at-
tributes which help in the semantic interpretation, bridging the
gap between image-level data and high-level information.

3.3. Contextualised Objects and State Instances

According to the learning context, pertinent attributes ofa
tracked object have to be extracted (or generated). In the con-
text of MILES, each mobile object must also store information
related to their position in the hierarchy tree, for each learning
context in which it participates. Then, a contextualised object
o will be an extended representation of a tracked object. This
objecto, for each learning contextZ it participates, must then
contain:

� a state instance, which is an instantiation of a state con-
cept, associated to the objecto. The state instanceS(o)

is represented as the set attribute-value-measure triplets
To = f(vi ; Vi ; Ri)g, with i 2 f1; : : : ;T0 + S0g, whereRi is
the reliability measure associated to the obtained valueVi

for the attributevi . T0 andS0 are the number of pertinent
numerical and symbolic attributes, respectively, according
to learning contextZ. The measureRi 2 [0;1] is 1 if asso-
ciated data is totally reliable, and 0 if totally unreliable, al-
lowing to control the learning process according to quality
of information. Attributevi can be numerical or symbolic.

� For each level in the hierarchyH, associated toZ:

– Last detectedevent conceptE(c) for objecto.

– Previously detectedstate conceptS(c)
a . Corresponds

to a matching betweenstate conceptS(c)
a and astate

instanceS(o) previously extracted from objecto.

– Currently detectedstate conceptS(c)
b . Corresponds

to a matching betweenstate conceptS(c)
b and the

state instanceS(o) currently extracted from object
o.

Now, with all these elements and their interactions properly
described, details on the event learning process can be pre-
sented in next Section 4.

4. MILES Learning Process

MILES needs that the objects are tracked in order to detect
the occurrence ofevents. There is no constraint on the num-
ber and nature of attributes, as MILES has been conceived for
learning state and event concepts in general, as discussed in
section 3.2.

Initially, before the �rst execution of MILES, and for each
de�ned learning contextZ, a hierarchyH is initialised as an
empty tree. If MILES has been previously executed, the incre-
mental nature of MILES learning process allows that the hier-
archyH resulting from this previous execution can be utilised
as the initial hierarchy of a new one.

The input of MILES corresponds to a list of contextualised
mobile objectsO, according to the de�ned learning contexts.
At each video frame, MILES utilisesO for updating each hi-
erarchyH. Considering a particular learning contextZ and its
corresponding hierarchyH, MILES �rst gets the set of triplets
To, equivalent to astate instance(see section 3.3), for each ob-
ject o in O, pertinent toZ. These triplets will be the input for
the state concept updating process ofH. This updating process
is described in Section 4.1. The updating process returns a list
Lo of the current state concepts recognised for the objecto at
each level ofH.

Then, the event conceptsE(c) of the hierarchyH are updated
comparing the new state concept listLo with the list of state
concepts recognised for the objecto at the previous frame.

Finally, MILES gives as output for each video frame, the up-
dated hierarchyH and the list of the currently recognised state
and event concepts for each learning context for which an ob-
ject o in O is pertinent.
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Figure 3: Scheme of the state concept updating algorithm.

4.1. States Updating Algorithm

State concept updating is a recursive process, as depicted in
Figure 3.

The algorithm starts by accessing the analysed stateC from
hierarchyH (with rootOf returning the root state ofH). Notice
that, in the context of the algorithm, a hierarchy not necessar-
ily corresponds to the complete tree, as the algorithm recur-
sively utilises sub-branches of the hierarchy. The initialisation
of H is performed by creating a state with the tripletsT, for the
�rst processed object. Remember thatT represents thestate
instancefor objecto, given a learning contextZ.

Then, for the case thatC corresponds to a terminal state (state
with no children), acuto� test is performed. Thecuto� is a
criteria utilised for stopping the creation (i.e. specialisation) of
children states. It is de�ned in

cuto� =

8
>>><
>>>:

true if f� (C)
ni � Vni � Ani j8i 2 f1; ::;T0gg

^ fP (Vsj jsj
(C)) = 1j8 j 2 f1; ::;S0gg

false else
; (1)

whereVni is the value of a numerical attributeni , andVsj is the
value of the symbolic attributesj . � (C)

ni is the mean value ofni

for C. P(Vsj jsj
(C)) is the conditional probability of the valueVsj ,

given sj of C. T0 andS0 are the number of pertinent numerical
and symbolic attributes forZ, respectively.

This equation means that the learning process will stop atC
if no meaningful di� erence exists between a numerical attribute

value atT and the mean value of the attribute forC (usingacu-
ity Ani criteria), or if every symbolic attribute value inT is to-
tally represented inC (probability equal to one for the attribute
value). This means that the learning process will stop ifno
noticeable di� erence between the attribute values is found.

If the cuto� test is passed (noticeable di� erence found), the
function insertTerminalgenerates two children forC, one ini-
tialised withT and the other as a copy ofC. Then,T is incor-
porated toC (process described in Section 4.3). In this terminal
state case, the updating process then stops.

If C has children, �rstT is immediately incorporated toC.
In order to determine in which state concept the triplets list T is
next incorporated (i.e. the state concept is recognised), aqual-
ity measure for state concepts calledcategory utility (CU) is
utilised, which is discussed in detail on Section 4.2. Then,the
di� erent alternatives for the incorporation ofT are:

1. IncorporatingT to an existing stateP gives the bestCU
score. In this case,updateStatesis recursively called, con-
sideringP as root.

2. The generation of a new state conceptQ from T gives the
bestCU score. In this case,Q is inserted as child ofC,
and the updating process stops.

3. ConsiderM as the resulting state from merging the best
stateP and the second best stateR. Also, considery as
the CU score of replacingP and R with M. If y is the
best score,H is modi�ed by themerge operator. Then,
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updateStatesis recursively called, using the sub-tree from
stateM as the tree to be analysed. Themerge operatoris
described in detail in Section 4.5.

4. Considerz as theCU score of replacing stateP with its
children. If z is the best score,H is modi�ed by thesplit
operator. This process implies to suppress the state con-
cept P together with all the events in which the state is
involved, as depicted in Figure 4. Then,updateStatesis
called, using the sub-tree from the current stateC again.

0S

S3.1 S3.2 S3.3S1.2S1.1

S2 3SS1

0S

S3.1 S3.2 S3.3

S1.2S1.1

S2S1
Split

Figure 4: Split operator in MILES algorithm. The blue box represents the state
to be split. Red dashed lines represent events. Notice that the split operator
suppresses the stateS3 and its arriving and leaving events, and ascends the
children ofS3 in the hierarchy.

At the end of functionupdateStates, each current stateC for
the di� erent levels of the hierarchy is stored in the listL of
current state concepts for objecto, by the functioninsertCur-
rentState.

4.2. The Category Utility

As previously discussed, thecategory utility measures how
well the state instancesare represented by a givenstate con-
cept. This function has been derived by Gluck and Corter [5].
Category utility attempts to maximise intra-class similarity and
inter-class di� erences, and it also provides a principled trade-
o� between predictiveness and predictability [3]. A measure
similar to the category utility function from COBWEB/3 [9] al-
gorithm has been considered.

For the set of numerical attributes, the numerical category
utility CUk(num), for a given state conceptSk, is de�ned as:

CUk(num) =

P(Sk)
T0X

i=1

0
BBBBB@

Ani

� (k)
ni

�
Ani

� (p)
ni

1
CCCCCA

2� T0�
p

�
; (2)

where� (k)
ni is the standard deviation for the numerical attribute

ni in Sk, and� (p)
ni is the standard deviation forni in the parent

or root nodeSp. The valueAni corresponds to theacuity for ni .
The incorporation of the acuity termAni to the equation 2 es-

tablishes a di� erence with the preceding versions of numerical
category utility in the state-of-the-art. This is done to balance
the contribution of numerical and symbolic attributes to the cat-
egory utility. The obtained attribute contribution value always
belongs to the interval [0; 1], asAni is the lower bound for� (k)

ni .

Also, the acuity is useful to normalise the contributions ofnu-
merical attributes representing di� erent metric units (e.g. po-
sition and velocity) and scales (e.g. a position in metres and a
distance in centimetres).

For the set of symbolic attributes, the symbolic category util-
ity CUk(sym), for Sk, is de�ned as:

CUk(sym) =

P(Sk)
S0X

i=1

JiX

j=1

�
P(si = V( j)

si
jSk)2 � P (si = V( j)

si
jSp)2

�

S0
; (3)

whereP(si = V( j)
si jSk) is the conditional probability that the

symbolic attributesi has a valueV( j)
si in Sk, while P(si =

V( j)
si jSp) is the conditional probability thatsi has a valueV( j)

si ,
in the parent or root nodeSp.

Then, for a set of mixed symbolic and numerical attributes,
the overall category utilityCUk, given a state conceptSk, is the
sum of the contributions of both sets of features:

CUk = CUk(sym) + CUk(num): (4)

Finally, the category utilityCU for a class partition ofK state
concepts is de�ned as:

CU =
KX

k=1

CUk

K
(5)

4.3. Incorporation of New Object Attribute Values

Upon the arrival of a newstate instance, the attribute in-
formation of the instance must be used to update the state and
event concept information. According to the type of attribute
the information updating process di� ers.

For the case of a numerical attributen, the information about
the mean value� n and the standard deviation� n must be up-
dated. The proposed updating functions are incremental in
order to improve the processing time performance of the ap-
proach. For� n, the function is presented in Equation (6).

� n(i) =
Vn� Rn + � n(i � 1)� S umn(i � 1)

S umn(i)
; (6)

with

S umn(i) = Rn + S umn(i � 1); (7)

whereVn is the value in the new instance forn andRn corre-
sponds to its reliability. Hence, the reliabilityRn weights the
contribution ofVn to � n. S umn is the accumulation of reliabil-
ity valuesRn for n.

The updating function for� n is presented in Equation (8).

� n(i) =

s
S umn(i � 1)

S umn(i)
�
 
� n(i � 1)2 +

Rn� (Vn � � n(i � 1))2

S umn(i)

!
: (8)

In the case that a new state concept is generated from the
attribute information of the instance, the initial values taken for
Equations (6), (7), and (8) withi = 0 correspond to� n(0) = Vn,
S umn(0) = Rn, and� n(0) = An, whereAn is theacuity for the
attributen, as de�ned in Section 3.2.

6



In case that, after updating� n(i), its value is lower than the
acuity An, � n(i) becomes equal toAn. This way, the acuity value
establishes a lower bound for the standard deviation, avoiding
the possibility of zero division.

For a symbolic attributes it is necessary to update the con-
ditional probabilityP(s = V( j)

s jS) of each possible valueV( j)
s of

s, givenS. For this purpose, reliability measuresRs are utilised
in order to weight the quality of new incoming information, as
presented in Equations (9), (10), and (11).

P(s = V( j)
s jS)[i] =

8
>>>>>>>>>><
>>>>>>>>>>:

S um( j)
Vs

(i)

S ums(i)
i f Vs = V( j)

s

S um( j)
Vs

(i � 1)

S ums(i)
else

(9)

with

S um( j)
Vs

(i) = Rs + S um( j)
Vs

(i � 1); (10)

and

S ums(i) = Rs + S ums(i � 1); (11)

whereVs is the value in the new instance fors, andRs corre-
sponds to its reliability.V( j)

s is the j-th possible values. The
functionsS um( j)

Vs
(i) correspond to the accumulated reliability

for eachs valueVs, while the functionS ums(i) is the overall
accumulated reliability fors.

4.4. Events Updating Algorithm
After the states updating phase (see Section 4.1). the changes

of state conceptoccurred for an objectomust update the events
information according to the change of state. The occurrence of
a state transition updates all the events representing the combi-
nations between the analysed state concept from the stored list,
where the possible combinations are:

� All the states of a lower level in the new list, if the state at
its same level in the new list is di� erent than the analysed
state.

� The state at its same level in the new list if it is di� erent
than the analysed state.

� All the states at a higher level in the new list which do not
have akinship relation(de�ned below) with the analysed
state.

A kinship relationbetween two states Sm and Sn in the hier-
archy exists if Sm is (directly or indirectly) the ascendant or one
of the descendants of the state Sn in the hierarchy. This means
that the one state is related to the other as parent, or son, or
grand-parent, or grand-son, and so on.

Examples of these state combinations can be found in Figure
5.

If an eventE corresponds to a �rst detected event, a new
event representation is created and associated to the generating
stateSa and the arriving stateSb.

Then, the updated list of current states at di� erent levels in
the hierarchy is utilised to update the current states information
of the objecto.

0S

S1.1 S1.2 S1.3

S1 S2

1.1.1S S1.1.3 S1.3.1 S1.3.21.1.2S

(a)

0S

S1.1 S1.2 S1.3

S1 S2

1.1.1S S1.1.3 S1.3.1 S1.3.21.1.2S

(b)

Figure 5: Examples of list comparisons for determining the events to update.
Blue elements represent the previously stored states for a tracked object. Green
elements represent the updated states obtained with the function updateStates.
The red box represents the state concept which is common to bothlists. The
dashed red lines represent the events to update for two di� erent cases (a) and
(b).

4.5. Merge Operator

The merge operator consists in merging two state concepts
Sp andSq into one stateSM, while Sp andSq become the chil-
dren ofSM, and the parent ofSp andSq becomes the parent
SM, as depicted in Figure 6.

0S

S4

S1

S2

3S

S3.1 S3.2

SM

0S

S4S1 S2 3S

S3.1 S3.2

Merge

Figure 6: Merging states and events in MILES algorithm. Blue boxes represent
the states to be merged, and the green box represents the resulting merged state.
Red dashed lines represent events, while the green dashed lines are the new
events appearing from the merging process.

In order to generate the stateSM several considerations must
be made:

� N(SM) = N(Sp) + N(Sq).

� P (SM) = N(SM)=N(Sr ), with Sr the root node of the hier-
archy.

� NE(SM) corresponds to the number of eventsE having a
starting stateSa(E) = Sp or Sq, and as an ending state
Sb(E) a state not having akinship relationwith SM.

� Each numerical attributenM for SM can be updated using
the Equations (12), and (13) for mean and standard devia-
tion of nM, respectively.

� nM =
S umnp� � np + S umnq� � nq

S umnp + S umnq

; (12)

� 2
nM

=
S umnp� (�

2
Mp + � 2

np
) + S umnq� (�

2
Mq + � 2

nq
)

S umnp + S umnq

; (13)
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whereS umnp and S umnq correspond to the accumulated
reliability values for numerical attributesnp and nq, re-
spectively.� Mp = (� nM � � np) and� Mq = (� nM � � nq) were
added to adjust the value of� nM , considering the drift be-
tween the new mean� nM , and the mean values� np and� nq.

� Each symbolic attributesM for SM can be updated using
the Equation (14), for the conditional probabilityP(sM)( j),
for the j-th value of the symbolic attributesM.

P(sM = V( j)
sM jSM)[i] =

S um( j)
Vsp

+ S um( j)
Vsq

S umsp + S umsq

; (14)

whereS um( j)
Vsp

andS um( j)
Vsq

correspond to the accumulated
reliability values of thej-th value for symbolic attributesp

and sq, respectively. In the same way,S umsp andS umsq

are the overall reliability values accumulation forsp and
sq, respectively.

The last task for the merging operator is to represent the events
incoming and leaving statesSp andSq (green dashed lines in
Figure 6) by generating new events which generalise the tran-
sitions as the events incoming and leaving the stateSM. For
the incoming eventsto these states the event merge process is
described as follows:

� If a stateSn is the starting state for an eventEn! x arriving
to only one stateSx of the merging statesSp andSq (as
eventES2! S3 between statesS2 andS3 in Figure 6), a new
eventEn! M must be generated with the same information
as eventEn! x, except for the arriving state that becomes
the stateSM.

� If a stateSn is the starting state for the eventsEn! p and
En! q arriving to both statesSp andSq (as eventsES4! S1

andES4! S3 in Figure 6), a new eventEn! M must be gen-
erated with:

– N(En! M) = N(En! p) + N(En! q)

– P(En! M) = N(En! M)=NE(Sn).

Finally, events leavingthe statesSp andSq must be merged,
with:

� N(EM! n) = N(Ep! n) + N(Eq! n)

� P (EM! n) = N(EM! n)=NE(SM)

5. Experiments and Results

5.1. Illustration of MILES State and Event Representation

In order to better understand the learning process, an illustra-
tion example is presented in this section. The example consists
in ten persons evolving in a metro scene, starting at di� erent
positions and time instants. A top view of the scene is depicted
in Figure 7. The evolution of the persons in the scene is repre-
sented by ten hand-crafted trajectories (T0 - T9) of eight coor-
dinate points (x,y) in the ground plane of the scene.
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D

Figure 7: Top view of the metro scene illustration example. Theten hand-
crafted trajectories (T0-T9) are displayed.

The scene consists of three Access/Exit zones (referenced in
the Figure 7 asA, C andD), and a ticket vending machine zone
B, represented as a red box in Figure 7. The ten persons evolve
in the scene over 13 time instants.

The idea is to utilise a simple learning context consisting in
the (x,y) person positions, with an acuity of 200[cm] . Then,
the evolution of the hierarchy of states and events in time can
be analysed to understand the event learning process. Also,
the relations between the obtained states and events and the
trajectories of the persons can be studied to understand howthe
hierarchy represents the situations occurring in this scene.

Learning up to Time instant 1:

At this instant two persons (represented by T0 and T1) arrive
from the zoneD and two other persons (represented by T2 and
T3) arrive from the zoneA. This situation is represented by two
di� erent states of the hierarchy, because the person positions
entering at the two di� erent zones were similar enough to be
represented in the same state concept. The positions of T0 and
T1 are then represented by the State 1, while the positions of
T2 and T3 by the State 2.

Figure 8(a) shows a top view of the scene where these
the two new states are represented. Figure 8(b) depicts the
maximal marginal probability for each point in the scene, given
the current two states of the hierarchy.

Learning up to Time instant 3:

The evolution of the hierarchy until this instant is depicted
in Figure 9. T4 starts walking in the direction of the zoneD,
while T5 goes in the direction of the zoneC. The position of
T4 and T5 is not di� erent enough yet to generate a new state.
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Figure 8: Hierarchy at instant 1. (a) Terminal states positionin a top view of the scene. The oval surrounding the mean position of a state represents the standard
deviation of this position. A state in the �rst level of the hierarchy is represented in blue. (b) Maximal marginal probability of a state. A darker colour represents a
higher probability.

Then the probability of the State 2 is still reinforced. T0 and T1
walk in the direction of the zoneA, but their position is similar
enough to the position represented in the State 1, reinforcing its
probability. Also, T7 arrives from the zoneD, reinforcing the
probability of the State 1 even more.

T2 and T3 walk to the ticket vending machineB. Now, their
position is di� erent enough to the one represented by the State
2, to induce the creation of two children states. One state (State
3) represents the position near the zoneA, and the other repre-
sents the new created State 4 near the zoneB. The new positions
of T2 and T3 have also induced a change of state, represented
by the �rst event in the hierarchy between States 3 and 4. This
event is depicted in Figure 9, and graphically represented by an
arrow between States 3 and 4, in Figure10(a).

Notice in Figure 10(b) that the new created state does not
have a strong probability, compared with the other states ofthe
hierarchy.

Learning up to Time instant 5:

The new position of T4 produces an adjustment of the posi-
tion of State 8, while the new position of T5 induces the cre-
ation of a new event between States 8 and 9, as depicted in
Figure 11(a). T5 walks in the direction of zoneC. Then, the
transition between States 8 and 9 seems imprecise, but this is
one of the costs of considering a coarse value for the acuity of
position attributes x and y. Also, T9 arrives to the scene from
the zoneC, reinforcing the probability of State 10.

Notice in Figure 11(b) that the permanence of T2 and T3 at
the zoneB has reinforced the probability of the State S9 near
this zone. Also notice that the reposition of State 8, induced by
person T4, has also reinforced the probability of occurrence of
the State 8.

Learning up to Time instant 7:
At this time instant, the hierarchy has arrived to a stable num-

ber of states. The new position of T6 induces a new event be-
tween States 12 and 9. At the same time, the position of T2

P = 1.0
N = 2

 = 1.5T

Figure 9: Hierarchy obtained up to instant 3. Events are coloured in red.

induces a new event between States 9 and 12 (in that order),
as depicted in Figure 12(a). Figure 12(b) shows that even the
probability map has arrived to a quite stable state, where only
slight di� erences can be observed.

From this time instant and until the end of the illustration
example, the hierarchy is very stable, only showing some new
events and updates in the states probability.

Learning up to Final time instant 13:
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Figure 13: Final hierarchy associated to the position learning context, at instant 13. Figure (a) shows the position of the terminal states and the events. Figure (b)
depicts the maximal marginal probability of a state of the hierarchy.
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Figure 10: Graphical representation up to instant 3. Figure(a) now also shows
the events occurring between the states (arrows with a transition probability).
States in blue and magenta represent the �rst and second levelin the hierarchy,
respectively. Figure (b) depicts the maximal marginal probability of a state.
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Figure 11: Graphical representation up to instant 5. Figure(a) shows the posi-
tion of the terminal states and the events. Cyan colour a stateon the third level.
Figure (b) depicts the maximal marginal probability of a state.
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Figure 12: Graphical representation up to instant 7. Figure(a) shows the po-
sition of the terminal states and the events. Yellow colour a state on the fourth
level. Figure (b) depicts the maximal marginal probability of astate.

The �nal result for the hierarchy of this illustration example
is depicted in Figure 14. This �gure shows that the hierarchy
has arrived to a stable state since time instant 7. In Figure 13
only slight di� erences can be observed, with some few new
events and slight modi�cations in the probability map.

This illustration has served to show the incremental natureof
the proposed event learning approach. The hierarchy of states
and events has shown a consistent behaviour on representing
the frequency of states and events induced by the persons of the
illustration example.

5.2. Exploiting the Hierarchy and the E� ect of Acuity

The hierarchy learnt by MILES concentrates rich informa-
tion, which can vary according to the attributes selected for the
learning process. Figure 15 shows three di� erent types of infor-
mation extracted from the hierarchy, for an application to study
the behaviour of a rat, consisting in 4850 frames. The utilised
learning context considers three numerical attributes: 2Dpo-
sition attributesX andY, and also 2D velocity magnitude at-
tributeV2D. A video showing the evolution of the incremental
learning process is available2

2MILES information video available at:
http://profesores.elo.utfsm.cl/ ~mzuniga/milesX4.mp4

State 0
P = 1.0
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Figure 14: Final hierarchy obtained up to instant 13. For simplicity, only events
between terminal states are displayed.
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(a) Tracking. (b) States probability.

(c) State recognition and events. (d) V2D attribute pro�le.

Figure 15: Di� erent information extracted from MILES hierarchy. Image (a) image represents the input from tracking. Image (b) shows the maximal probability
for each point, using likely states from the hierarchy (red to blue, for highest to lowest probability). Image (c) shows the same likely states from the hierarchy, only
showing their peak probability, and also the events connecting these states. The events are represented with a triangleopening from the starting state to the arriving
state (yellow to green, for highest to lowest probability).Recognised states are presented with a white ring. Finally,image (d) shows the behaviour of theV2D
attribute according to the position (yellow to green, for highest to lowest velocity magnitude). Note that it can be easily inferred that the rat stops at corners and
accelerates the most through the widest part of the experimental zone.

We have chosen position and velocity attributes because they
can be more easily represented in the input video, but nothing
limits the number or nature of the attributes to be learnt. The
input information is obtained from a multi-hypothesis tracking
approach which is able to compute reliability measures for ob-
ject attributes, and is described in detail in [20]. It is impor-
tant to notice that the presence of one or many objects in the
video sequence is not relevant for MILES learning process to
properly work, as the attributes are learnt each frame from any
mobile object which matches with any of the classes de�ned in
the learning context.

There must be certainly many ways of extracting information
from the hierarchy. In this particular case, the states are selected
searching for the deepest state with a probability higher than a
threshold, to obtain relevant states according to the application.
There are also many ways to consider the state probability to
select the states. For example, we can just consider the prob-
ability of the state only, or the conditional probability consid-
ering attributes of interest, or even considering these attributes

probability weighted by their reliability. In the presented case,
we use a conditional probability considering the probabilities
of X andY attributes, so that likely states with low intra-class
similarity are not considered.

The extracted information can then serve, for instance: to
determine the more likely (or unlikely) zones according to their
probability (�gure 15, upper right), which is useful for abnor-
mal behaviour detection and tra� c frequency analysis, among
many other applications; to determine the likely (or unlikely)
behaviours through chains of events (�gure 15, lower left),cer-
tainly useful for behaviour analysis; and understanding the re-
lations between attributes as, for example, estimating which are
the zones where the rat is static or moves quicker (�gure 15,
lower right).

Other element that has a notorious e� ect on the results is the
acuity of each numerical attribute. As previously discussed, the
acuity allows the users to de�ne their interest on an attribute.
Then, there is no ideal value for this parameter, as it depends
on the application. Figure 16 depicts the e� ect of di� erent val-
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(a) Acuity: 5:0 � 5:0. (b) Acuity: 10:0 � 10:0.

(c) Acuity: 15:0 � 15:0. (d) Acuity: 20:0 � 20:0.

Figure 16: Figures show the state probability map results, considering di� erent acuity values (5.0, 10.0, 15.0, and 20.0) for image coordinate attributesX andY.

ues of acuity on the probability map. A video showing the in-
cremental evolution of the probability map, for di� erent acuity
values, is also available3

The �gure shows how the state probabilities are a� ected with
lower probability peaks and more plain probability distributions
when acuity increases. This is the expected behaviour as, when
an user de�nes a higher acuity, is implicitly saying that higher
di� erences are not signi�cant to the application so that the re-
lated instances can be clustered in the same state.

If acuity is increased, also the number of instances similarto
a state. Then, the number of states and events is decreased, as
shown in Figure 17.

5.3. Symbolic Attributes and Recognition Capabilities

The capability of MILES for automatically learning and
recognising real world situations has been evaluated, using two
videos for elderly care at home. The video scene corresponds
to an apartment with a table, a sofa, and a kitchen, as shown
in Figure 18. The videos correspond to an elderly man (Figure
18(a)) and an elderly woman (Figure 18(b)), both performing

3MILES acuity video available at:
http://profesores.elo.utfsm.cl/ ~mzuniga/acuityX4.mp4

tasks of everyday life as cooking, resting, and having lunch.
The lengths of the sequences are 40000 frames (approximately
67 minutes) and 28000 frames (approximately 46 minutes).

The input information is obtained from the same tracking
method, previously described, and presented in [22]. A learn-
ing context for the classPerson, combining both numerical
and symbolic attributes, was tested considering the following
attributes: 3D position (x; y); symbolic Posture, with val-
ues forStanding or Crouching posture; and interaction sym-
bolic attributesS ymDtable, S ymDso f a, andS ymDkitchenbetween
the person and three objects present in the scene (table, sofa,
and kitchen table). The possible symbolic values are:FAR :
distance� 100[cm], NEAR: 50[cm] < distance< 100[cm],
andVERYNEAR: distance� 50[cm]. The contextual objects
in the video scene (sofa, table, and kitchen) have been mod-
elled with 3D polygons. All the attributes are automatically
computed by a tracking method, which is able to calculate the
reliability measures of the attributes [22].

The learning process applied over the 68000 frames have re-
sulted in a hierarchy of 670 state concepts and 28884 event con-
cepts. From the 670 states, 338 state concepts correspond toter-
minal states (50:4%). From the 28884 events, 1554 event con-
cepts correspond to events occurring between terminal states
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