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Models

Marcos D Zifige?, Frangois Bemond, Monique Thonndt

8Electronics Department - UTFSM, Av. Espafia 1680, ValgaraChile
PINRIA - Projet PULSAR, 2004 rte. des Lucioles, Sophia Anisp&tance

Abstract

We propose an event learning approach for video, based aepboformation models. This approach incrementally leam$ine
a hierarchy of states and event by aggregating the attrilaltees of tracked objects in the scene. The model can aggrbgth
numerical and symbolic values.

The utilisation of symbolic attributes gives high exiliifi to the approach. The approach also proposes the integrafi
attributes as a doublet value-reliability, for considgrthe e ect in the event learning process of the uncertainty inderitom
previous phases of the video analysis process.

Simultaneously, the approach recognises the states antbefehe tracked objects, giving a multi-level descripttbe object
situation.

The approach has been evaluated for an elderly care apptiGatd a rat behaviour analysis application. The resuttgghat
the approach is capable of learning and recognising mefutiegents occurring in the scene, and to build a rich modehef
objects behaviour. The results also show that the appraatigiee a description of the activities of a person (e.g. aggrng to a
table, crouching), and to detect abnormal events basededneiuency of occurrence.

Keywords: incremental event learning, hierarchical event model, dnutvehaviour, reliability measures, symbolic attribute

1. Introduction tracked in order to be able of recognising the events eacltiobje
is participating.
Video event learning presents relevant applications reate We propose anew event learning approach which ag-
abnormal behaviour detection, as elderly health care [12],  gregates on-line thattributes andreliability information of
and tra ¢ monitoring [8]. In this sense, the utilisation of in- tracked objects (e.g. people) learn a hierarchy of concepts
cremental models for event learning should be the natueal st corresponding tstatesand events Reliability measures are
further real-time applications for handling unexpectedrés.  used to focus the learning process on the most valuable- infor
Apart from being well-suited for real-time applicationscheise  mation. Simultaneously, the approaeitognisesnew occur-
of the inexpensive learning process, this incrementaladiar-  rences ofstatesand eventspreviously learnt. The only hy-
istic learning allows the systems to easily adapt theiroesp  pothesis of the approach is the availability of tracked obje
todi erent situations. Also, the dependence on enormous datattributes, which are the needed input for the approachs Thi
sets for each particular application is reduced. approach is able to leastates and events in generalsono
The focus of this work is in applications for incremental limitation is imposed on theature or number of attributes to
event learning, where several objects of diverse type can irbe utilised in the learning process.
teract in the scene (e.g. persons, vehicles). The event$arf i As previously described, the hierarchical model of the pro-
est are also diverse (e.g. events related to trajectori@sah  posed approach can be incrementally updated. This feaure i
posture) as the focus of interest is learning events in generébased orincremental concept formation models[4]. These
The objects simultaneously evolving in the scene can be mangoncept formation models evaluate the goodness of the con-
but the interest is centred in objects which can be indiMigiua cepts represented by the formed clusters in a hierarchical
model, with the added constraint that learning must be incre
mental. The main contributions of the proposed learning ap-

Email addressesmarcos.zuniga@usm.cl (Marcos D Zifiiga), proach, with respect to incremental concept formation rtspde
Francois.Bremond@sophia.inria.fr (Francois Bemond),
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contribution of data according to their quality, as a way tolearning for two hierarchical representations, one for dpsc
focus learning on meaningful information (for details, seetion of the observation and the other for temporal desanipti
Section 4.3). In [15], the authors proposed a fall detection algorithmt tha
uses HHMM, hand designed and operating on an observation
sequence of recti ed angles.

Few approaches can learn events in an unsupervised way us-
ﬁg clustering techniques. For instance, [18] use the etasif
attributes obtained with a Gaussian Mixture Model to repnés

The incorporation of thacuity to thenumerical category ~ the states of an HMM, [14] learn events using spatial reftio
utility , in order to balance the contribution of numerical Ships between objects in an unsupervised way, but performed

and symbolic attributes to the category utility. (see Secti 0 -line, and [16] apply unsupervised learning of composite
4.2). events using the APRIORI clustering algorithm. However,

these unsupervised clustering techniques request tageegs

In a step further to bridge the gap between image-level datg _|ine (not real-time) the whole cluster distribution.
and high-level semantic information, this work extendsvjre Some other techniques can learn on-line the event model by
ous work presented in [21] and [22] by integrating symbalic a aking advantage of speci ¢ event distributions. For exé&Emp
tribute information to the hierarchical model in a way thatib [12] propose a method for incremental trajectory clustpby
numerical andsymbolic attribute values can be in a common mapping the trajectories into the ground plane decompasad i
state model. The utilisation of symbolic attributes giveghh ;e partition. Their approach performs learning only o sp
exibility to the approach, allowing the user to add signantly  ig| information, it cannot take into account time inforiioa,
semantic attributes for assisting on scene interpretation and do not handle noisy data.

Also, the approach can simultaneously learnedent hier- In conclusion, few work has been found on hierarchical and
archies representing dérent learning contexts (i.e. drent jncremental approaches for abnormal behaviour detectfon.
states and events of interest). We propose a general represgyitical aspect not considered in the current approachéseis
tation for the context of each learning process and extead thuncertainty of mobile object attributes present in realliapp
analysis of each involved process for an easier implementat tions and how this uncertainty can ect the model construc-
The source code of the algorithm is publicly availahle tion.

The approach has been extensively veri ed over both sim- | 16wing these directions, the current work is basedren
ulated and real data-sets. The real data-sets has beaeditili remental concept formation mod@s. The knowledge is rep-
for speci ¢ events for home-care (e.g. approaching to aetabl resented by a hierarchy of concepts partially ordered bggen
crouching) and rat behaviour learning (position and véjoci ity A category utilityfunction is used to evaluate the quality
events). _ _ _ of the obtained concept hierarchies [9].

This paper is organised as follows. In Section 2 the state-of e broposed approach takes pro t of this hierarchicalestru
the-art on incremental event learning approaches is preSen , e extending it to represent events, incorporate theeeof

Section 3 describes the proposed event learning approach ifcertainty in data, and to manage symbolic attributes hvhic
general, and Section 4 focuses on describing the learning pre.qijitate semantic interpretation.

cess in detail. Finally, Section 5 presents the experimesits
formed on simulated and real data-sets.

The extended utilisation of the conceptaafuity to repre-

sent di erentnormalisation scales and units associated to
di erent attributes, and also represent the interest of usey,
for di erent applications (see Section 3.2, for details).

3. Incremental state and event learning approach

2. State-of-the-Art As previously stated, the proposed approach is an extension

Most of video event learning approaches for abnormal be®f incremental concept formation models{4, 1] for learning
haviour recognition are supervised, requesting annotadens video events. The approach uses as input a set of attnbn'aa\s?c
representative of the events to be learnt in a training p[igse the tracked objects in the scene. Hence, the only hypotbésis
[6], [2]. As well described in [17], these approaches norgnall the _a'pproach is the availability of tracked object attrésue.g.
use general technigues as Hidden Markov Models (HMM) [13] POSition, posture, class, speed).

Some authors use hierarchical models, as they facilitarede ~ The proposed approach has been callES, acronym

ing and generalisation. HMMs are robust, but require hierarStanding forMethod forincremental earning ofEvents and
chical (HHMM) and time-duration modelling for represefin States. The apprpach has received its name since its rst ver-
events with varying temporal and spatial scales, incregtsia ~ SION; presented in [21]. MILES state hierarchy construrctio
complexity of these approaches. is mostly based on COBWEB [3] algorithm, but also consid-

Generalisation is one of the keys to simplify the process ofN9 ideas from other existing mclremental concept foiomat
semantic interpretation. In [10], the authors propose an agPProaches, as CLASSIT [4] algorithm.

proach for abnormal behaviour detection, using unsupeavis
3.1. The hierarchy of states and events

1The algorithm has been developed with+G using QT libraries, and is MILES builds ahierarchy pf state and event Cohceﬂﬂi
available atttp:/profesores.elo.utfsm.cl/ ~mzuniga/MILES.zip based on thetate and event instancesxtracted on-line from




the tracked object attributes. It is desirable (but not ssaey)
that the input data contains an estimate of the reliability o
information. This hierarchy is formed by two building blasck

State concept: It is the modelling of a state, as previously
de ned. A state conceptS(©@, in a hierarchyH, is modelled as:

its number of occurrencesN(S(©) and itsprobability of
occurrence P(S©@) = N(S©)=N(S®). (S is the root
state concept dfl),

the number of event occurrencesNg(S©), correspond-
ing to the number of times that the ste8&) passed to
another state, generating an event.

a set of numerical attribute models fnjg with i 2
f1;::;;Tg wheren; is modelled as a random variabig
which follows a Gaussian distributidd N ( n; n),

aset of symbolic attribute modelsfs;g with j 2 f1;::;Sg
wheres; is represented by every possible value for the
attribute, and conditional probabilitiea(VS©) repre-
senting the frequency of occurrence of akité valuevg.()

for s;, givenS©.

Event concept: It is the modelling of the transition between
two state concepts. Amvent conceptE®© is de ned as the
change from a starting state concéi,’g‘i) to the arriving state
concepiS? in a hierarchyH. An event conceptE®, in a hier-
archyH, is modelled as:

its number of occurrencesN(E() and itsprobability of
occurrenceP (E©) = N(E©)=Ng(SY) (with S© its start-
ing state concept).

The state concepts are hierarchically organised by geterali
with the children of each state representing speci catiohs
their parent. In the hierarchy, an event concept is repteden
as a unidirectional link between two state concepts. An exam
ple of a hierarchy of states and events is presented in Figure
1. In the example, the staf is a more general state concept

attributes from involved objects, as these attributes can
be derived from other object attributes (e.g. symbolic at-
tribute de ning a zone in the scene, derived from object
position).

Particularly, for eaclmumerical attribute of interestn;, a
normalisation value\, must be also de ned.A, repre-
sents the lower bound for the numerical attribute change
to be considered as meaningful. In other words, the dif-
ference between the mean value for a numerical attribute
n and the value of the attribute for a new instance will be
considered as signi cant and noticeable when thisedi
ence is higher thah,.

This normalisation value corresponds to the concept of
acuity, utilised by [4] and described as a system param-
eter that speci es the minimum value for attributesn

the CLASSIT algorithm for incremental concept forma-
tion. In psycho-physics, thecuity corresponds to the no-
tion of ajust noticeable di erence the lower limit on the
human perception ability.

This concept is used for the same purpose in MILES, but
the main di erence with its utilisation in CLASSIT is that
theacuity was used as a single parameter, whileacuity
values are de ned for each numerical attribute to be learnt
for a given context. This improvement allows to represent
the di erent normalisation scales and units associated to
di erent attributes, and can also represent the interest of
users for di erent applications. For instance, a trajectory
position attributex could have an acuity of 5€entimetres

for an application with a camera in an ge environment,
while for the same attribute, the acuity couldtbh® metres

for a parking lot application with a camera far from the
objects, where the user is not interested in little details o
position change.

In particular, for eaclsymbolic attribute s;, it is neces-
sary to list the associated values of interest.

than state$;.; andS;.,, and so on. Each pair of state concepts As an example, for @osition-Posturdearning context, as

(S11; S12) and 32 ; Ss3), is linked by two events concepts, shown in Figure 2, the user can be interested in learning the
representing the occurrence of events in both directions. events associated to a Person positigy), together with the
human posture in an oce environment. As an oce is a small
closed area, appropriate normalisation values for posiit
tributes can b&0 centimetres Then, this context mixes nu-
merical position attribute information, with symbolic pose
attribute information.

3.2. The Learning Contexts

The learning process associated to a particular hieradrchy
is guided by dearning context Z. A learning context corre-
sponds to the description of a particular scope of the ewants
interest for the user. Multiple learning contexts can berdel
and simultaneously processed, according to user intefeath
learning context requires the de nition of:

Learning Context PositionPosturef
Involved Objects: Person
Attributes:
Numerical x: 50 [cm]
Numerical y : 50 [cm]

the moving object classes involved in the particular learn-
Symbolic Posture f Standing, Crouching, Sitting, Lying

ing process, de ning a list of the object classes of interestg
or stating thatiny class is of interest.

the attribUteS. of int_ereSt (ngmerical or symbo_lif:). NOI- Figure 2: De nition of a Position-Posture learning contéat Person class in
mally, there is an intermediate step for obtaining theseno ce environment.

3



Figure 1: Example of a hierarchical event structure resuftiogn the proposed event learning approach. Rectanglesgenpt states, while circles represent events.

It is worthy to notice that the purpose of learning contegts i — Currently detectedtate conceptSEf). Corresponds
to increase the possibilities of the users to customisecihuet to a matching betweestate conceptSff) and the
ing process according to the information of interest to guliap state instanceS®© currently extracted from object
cation. In other words, nothing limits a user to de ne a learn o.
ing context with all the available attributes. All these gios
bilities of customisation by the user, give a high exibjlito Now, with all these elements and their interactions prgperl

the proposed approach for adapting to a wide Variety of app”described, details on the event Iearning process can be pre-
cations and typical issues present in the video understgndi sented in next Section 4.
domain. Also, symbolic attributes allow the user to de ne at
tributes which_ help in the semantic ir)terpretat_ion, brrinjgihe 4. MILES Learning Process
gap between image-level data and high-level information.

MILES needs that the objects are tracked in order to detect
3.3. Contextualised Objects and State Instances the occurrence oévents There is no constraint on the num-
ber and nature of attributes, as MILES has been conceived for
learning state and event concepts in general, as discussed i
section 3.2.

Initially, before the rst execution of MILES, and for each
de ned learning contexZ, a hierarchyH is initialised as an
gmpty tree. If MILES has been previously executed, the incre
mental nature of MILES learning process allows that the-hier
archyH resulting from this previous execution can be utilised
as the initial hierarchy of a new one.

a state instance which is an instantiation of a state con- ~ The input of MILES corresponds to a list of contextualised
cept, associated to the objext The state instancg© mobile objectsO, according to the de ned learning contexts.
is represented as the set attribute-value-measure triplefs each video frame, MILES utilise® for updating each hi-
To = f(vi;Vi;R)g with i 2 f1;:::;T%+ S% whereR is erarchyH. Considering a particular learning contekiand its
the reliability measure associated to the obtained vsjue corresponding hierarchid, MILES rst gets the set of triplets
for the attributev;. T°andSP are the number of pertinent To, €quivalent to atate instancgsee section 3.3), for each ob-
numerical and symbolic attributes, respectively, accaydin jecto in O, pertinent toZ. These triplets will be the input for
to learning contexZ. The measur® 2 [0;1]is 1 if asso-  the state concept updating processofThis updating process
ciated data is totally reliable, and 0 if totally unreliatdé-  is described in Section 4.1. The updating process returiss a |
lowing to control the learning process according to qualityLo Of the current state concepts recognised for the olgjezt

of information. Attributev; can be numerical or symbolic. €ach level oH.
Then, the event concepE® of the hierarchyH are updated

For each level in the hierarchy, associated t&: comparing the new state concept lisf with the list of state
concepts recognised for the objecit the previous frame.
Finally, MILES gives as output for each video frame, the up-
— Previously detectestate conceplsgc). Corresponds dated hierarchyd and the list of the currently recognised state
to a matching betweestate conceplsgc) and astate  and event concepts for each learning context for which an ob-
instanceS© previously extracted from objeot jectoin O is pertinent.

According to the learning context, pertinent attributesaof
tracked object have to be extracted (or generated). In the co
text of MILES, each mobile object must also store informatio
related to their position in the hierarchy tree, for eachrieay
context in which it participates. Then, a contextualisefect
o will be an extended representation of a tracked object. Thi
objecto, for each learning contex it participates, must then
contain:

— Last detecte@vent conceptE(© for objecto.



Figure 3: Scheme of the state concept updating algorithm.

4.1. States Updating Algorithm

State concept updating is a recursive process, as depicted
Figure 3.

The algorithm starts by accessing the analysed §dtem
hierarchyH (with rootOf returning the root state dfl). Notice
that, in the context of the algorithm, a hierarchy not neaess
ily corresponds to the complete tree, as the algorithm recu
sively utilises sub-branches of the hierarchy. The ingétlion
of H is performed by creating a state with the tripl&tgor the
rst processed object. Remember thHRtrepresents thetate
instancefor objecto, given a learning context.

Then, for the case th& corresponds to a terminal state (state
with no children), acuto test is performed. Theuto is a
criteria utilised for stopping the creation (i.e. speaation) of
children states. Itis de ned in

8
true if f O v, Aj8i2f1:;T%g
cuto = NP (Vs jsi©) = 1j8j 2 f1;:;8%g; (1)
* false else

whereV,, is the value of a numerical attributg, andVsy; is the
value of the symbolic attributs;. ffl:) is the mean value af
for C. P(Vs,jsj(®) is the conditional probability of the valug, ,
givens; of C. T9andSPare the number of pertinent numerical
and symbolic attributes faf, respectively.

This equation means that the learning process will stap at

if no meaningful di erence exists between a numerical attribute

5

value afT and the mean value of the attribute f@(usingacu-

it

! Ay, criteria), or if every symbolic attribute value ihis to-

tally represented i€ (probability equal to one for the attribute
value). This means that the learning process will stopaf

noticeable di erence between the attribute values is found
If the cuto test is passed (noticeable éirence found), the

rIunction insertTerminalgenerates two children fag, one ini-

tialised withT and the other as a copy &. Then,T is incor-
porated taC (process described in Section 4.3). In this terminal
state case, the updating process then stops.

If C has children, rstT is immediately incorporated tG.
In order to determine in which state concept the tripletsTlis
next incorporated (i.e. the state concept is recognisegiiak
ity measure for state concepts calleategory utility (CU) is
utilised, which is discussed in detail on Section 4.2. Ttika,
di erent alternatives for the incorporationDfare:

1. IncorporatingT to an existing stat® gives the besCU
score. In this caseipdateStates recursively called, con-
sideringP as root.

The generation of a new state conc@drom T gives the
bestCU score. In this case is inserted as child o€,
and the updating process stops.

ConsiderM as the resulting state from merging the best
stateP and the second best std®e Also, considery as
the CU score of replacind® and R with M. If y is the
best scoreH is modi ed by themerge operator. Then,

2.

3.



updateStatets recursively called, using the sub-tree from Also, the acuity is useful to normalise the contributionsof
stateM as the tree to be analysed. Tinerge operatoris ~ merical attributes representing @rent metric units (e.g. po-

described in detail in Section 4.5. sition and velocity) and scales (e.g. a position in metresan
4. Considerz as theCU score of replacing state with its  distance in centimetres).

children. Ifz is the best scored is modi ed by thesplit ~ For the set of sympolic attributes, the symbolic categoity ut

operator. This process implies to suppress the state conly CUk(Sym), for S, is de ned as:

cept P together with all the events in which the state is 30 X

involved, as depicted in Figure 4. ThempdateStat.eis P(Sw) P(s = VIis)? P (s = V{isp)?

called, using the sub-tree from the current s@tagain. CU(syn) = i=1 j=1 - . @3)

whereP(s = V{jS) is the conditional probability that the
symbolic attributes has a vaIueVéJ) in Sk, while P(s =
viis,) is the conditional probability thag has a valua/{’,
in the parent or root nod®,.

Then, for a set of mixed symbolic and numerical attributes,
the overall category utilitfC Uy, given a state concefl, is the
sum of the contributions of both sets of features:

CUy = CUg(sym) + CUg(num): 4)
Figure 4: Split operator in MILES algorithm. The blue box regents the state . . .

to be split. Red dashed lines represent events. Notice hiasplit operator ~ Finally, the category utilityCU for a class partition oK state
suppresses the staB3 and its arriving and leaving events, and ascends theconcepts is de ned as:

children ofS3 in the hierarchy.

X
At the end of functiorupdateStateseach current stat€ for 1 K
the di erent levels of the hierarchy is stored in the listof
current state concepts for objeztby the functioninsertCur- ~ 4-3. Incorporation of New Object Attribute Values
rentState Upon the arrival of a nevstate instance the attribute in-
formation of the instance must be used to update the state and
4.2. The Category Utility event concept information. According to the type of atttébu

the information updating process dirs.
As previously discussed, tleategory utility measures how  For the case of a numerical attributgthe information about
well the state instancesare represented by a givetate con-  the mean value, and the standard deviatior, must be up-
cept This function has been derived by Gluck and Corter [S].dated. The proposed updating functions are incremental in
Category utility attempts to maximise intra-class simtlasind  order to improve the processing time performance of the ap-
inter-class dierences, and it also provides a principled tradeproach. For ,, the function is presented in Equation (6).
o0 between predictiveness and predictability [3]. A measure ) )
Vi Rt n(i 1) Sum(i 1)

similar to the category utility function from COBWEBI[9] al- n(i) = : : (6)
gorithm has been considered. S um(i)
For the set of numerical attributes, the numerical categoryyith
utility CUx(num), for a given state concef, is de ned as:
Sum(i) = Ry + Sum(i 1), (7
T A A i i i -
P(Sy) &7' i whereV, is the value in the new instance forand R, corre
S sponds to its reliability. Hence, the reliabilig, weights the
CUk(num = 2 70 P= ; ) contribution ofV, to ,,. Sum is the accumulation of reliabil-

ity valuesR, for n.
The updating function for  is presented in Equation (8).
S

where ﬂf) is the standard deviation for the numerical attribute

n; in Sy, and ﬁp) is the standard deviation fax in the parent sumi 1) R, (V ( 1))25
or root nodeS,,. The valueA,, corresponds to thacuity for n;. n(i) = “Sum() n(i 12+ nSUI’T;(i) :(8)

The incorporation of the acuity terd, to the equation 2 es-
tablishes a dierence with the preceding versions of numerical In the case that a new state concept is generated from the
category utility in the state-of-the-art. This is done tdalpge  attribute information of the instance, the initial valuaken for
the contribution of numerical and symbolic attributes tetiat-  Equations (6), (7), and (8) with= 0 correspond to ,(0) = Vp,
egory utility. The obtained attribute contribution valuevays  Sum(0) = R,, and ,(0) = A,, whereA,, is theacuityfor the
belongs to the interval [d], asA,, is the lower bound for ﬁi). attributen, as de ned in Section 3.2.




In case that, after updating,(i), its value is lower than the
acuity A,, (i) becomes equal t8,. This way, the acuity value
establishes a lower bound for the standard deviation, agid
the possibility of zero division.

For a symbolic attributes |t is necessary to update the con-
ditional probabilityP (s = V{jS) of each possible valug!? of
s, givenS. For this purpose, reliability measur@sare utilised
in order to weight the quality of new incoming informatiors, a
presented in Equations (9), (10), and (11).

8 :
S urﬁl)(i) ) Figure 5: Examples of list comparisons for determining the evemupdate.
—VS_ if Vg= ng) Blue elements represent the previously stored states facketd object. Green
(icrrs S umy(i) elements represent the updated states obtained with thiéclunpdateStates
P(s= V¢j9)[i] = (9)  The red box represents the state concept which is common tdibtsth The
IS ur‘rﬁj)(i 1) dashed red lines represent the events to update for twerelt cases (a) and
Vs (b).
————— else
Sumy(i)
with
) ) 4.5. Merge Operator
sun)(i) = R+ Sun)(i 1), (10) The merge operator consists in merging two state concepts
and Sp andSg into one stat&Sy, while S, andSq become the chil-
. : dren of Sy, and the parent 0§, and S, becomes the parent
Sum(i) = Ro+ Sum(i 1), (11) M P p ANt g P

Sw, as depicted in Figure 6.
whereVs is the value in the new instance ferandRs corre-
sponds to its rellab|I|tyV O s the j-th possible values. The
functlonsSurﬁ' (|) correspond to the accumulated reliability
for eachs vaIueVS, while the functionS umy(i) is the overall
accumulated reliability fos.

Merge

4.4. Events Updating Algorithm

After the states updating phase (see Section 4.1). the ebang
of state concepbccurred for an objed must update the events
information according to the change of state. The occugefic
a state transition updates all the events representingotinbie

nations between the analysed state concept from the steted IiF_ 6 Meraing stat g s in MILES aldorithim. Blogds t
Where the pOSSible Combinations are: igure 6. iMerging states ana events In algorithm. bla: represen

the states to be merged, and the green box represents thengemérged state.

All the states of a lower level in the new list, if the state at Red dashed lines represent events, while the green dastesddie the new
events appearing from the merging process.

its same level in the new list is derent than the analysed ppearing angp

state.

In order to generate the steébg several considerations must

The state at its same level in the new list if it is drent ~ be made:

than the analysed state.
Y N(Sw) = N(Sp) + N(Sy).

All the states at a higher level in the new list which do not
have akinship relation(de ned below) with the analysed
state.

P (Sm) = N(Sm)AN(S,), with S, the root node of the hier-
archy.

Ne(Swm) corresponds to the number of evelidaving a
starting stateS,(E) = Sp or Sq, and as an ending state
Sp(E) a state not having kinship relationwith Sy,.

A kinship relation between two states,Sand S, in the hier-
archy exists if , is (directly or indirectly) the ascendant or one
of the descendants of the statgiB the hierarchy. This means
that the one state is related to the other as parent, or son, or
grand-parent, or grand-son, and so on.

Examples of these state combinations can be found in Figure

Each numerical attributey, for Sy can be updated using
the Equations (12), and (13) for mean and standard devia-
tion of ny, respectively.

5.
If an eventE cqrre§ponds to a rst detgcted event, a new Sum, o, +SUM, o
event representation is created and associated to theagjeger = ; (12)
- . Sum, + Sum,
stateS, and the arriving statg,. P q
Then, the updated list of current states atatent levels in ) 5 ) )
the hierarchy is utilised to update the current states inéion , _Sum, ((ypt ) TSum (gt R 13
of the object. o (13

Sum, +Sum,



whereSum, and Sum, correspond to the accumulated
reliability values for numerical attributes, and ng, re-
spectively. mp=(n, nJand wmg=(n, n)were
added to adjust the value of,,, considering the drift be-
tween the new mean,,,, and the mean values, and .

Each symbolic attributey for Sy can be updated using
the Equation (14), for the conditional probabilRsy)?,
for the j-th value of the symbolic attributgy.

) )
Sumy, +Suny, .
(14

P(sw = ng)jSM)[i] = m
P

whereS urr&,j) andS urﬁ}; correspond to the accumulated
Sp

reliability values of thej-th value for symbolic attributs,

ands;, respectively. In the same wag,um, andSum,

are the overall reliability values accumulation fgy and
Sy, respectively.

The last task for the merging operator is to represent thetsve
incoming and leaving states, andS, (green dashed lines in
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Figure 7: Top view of the metro scene illustration example. Trehand-

Figure 6) by generating new events which generalise the trargrafted trajectories (T0-T9) are displayed.

sitions as the events incoming and leaving the s&je For

theincoming eventsto these states the event merge process is

described as follows:

If a stateS,, is the starting state for an evelt « arriving
to only one stateS, of the merging stateS, andSy (as
eventEs, s, between stateS, andS; in Figure 6), a new

The scene consists of three Acd@sst zones (referenced in

the Figure 7 a&\, C andD), and a ticket vending machine zone

B, represented as a red box in Figure 7. The ten persons evolve
in the scene over 13 time instants.

The idea is to utilise a simple learning context consistimg i

eventE, y must be generated with the same informationthe (x,y) person positions, with an acuity of 200{ . Then,
as eventE, y, except for the arriving state that becomesthe evolution of the hierarchy of states and events in tinre ca

the stateSy.

If a stateS, is the starting state for the everfs , and
En q arriving to both state§, andSq (as eventEs, s,
andEs, s, in Figure 6), a new everiy, y must be gen-
erated with:

— N(En m) = N(En p) + N(En q)

— P(En m) = N(En m)=Ne(Sn).

Finally, events leavingthe state$S, andS, must be merged,
with:

N(Em: n) = N(Epi n) + N(Eq n)
P (Emi n) = N(Emt n)™Ne(Swm)

5. Experiments and Results

5.1. lllustration of MILES State and Event Representation

In order to better understand the learning process, anrdlus
tion example is presented in this section. The example stmsi
in ten persons evolving in a metro scene, starting aeint
positions and time instants. A top view of the scene is deict

be analysed to understand the event learning process. Also,
the relations between the obtained states and events and the
trajectories of the persons can be studied to understandhew
hierarchy represents the situations occurring in thisescen

Learning up to Time instant 1:

At this instant two persons (represented by TO and T1) arrive
from the zoneD and two other persons (represented by T2 and
T3) arrive from the zond.. This situation is represented by two
di erent states of the hierarchy, because the person positions
entering at the two dierent zones were similar enough to be
represented in the same state concept. The positions ofd’0 an
T1 are then represented by the State 1, while the positions of
T2 and T3 by the State 2.

Figure 8(a) shows a top view of the scene where these
the two new states are represented. Figure 8(b) depicts the
maximal marginal probability for each point in the scengegi
the current two states of the hierarchy.

Learning up to Time instant 3:

The evolution of the hierarchy until this instant is depitte

in Figure 7. The evolution of the persons in the scene is repran Figure 9. T4 starts walking in the direction of the zdbe

sented by ten hand-crafted trajectories (TO - T9) of eigbt-co
dinate points (x,y) in the ground plane of the scene.

while T5 goes in the direction of the zo® The position of
T4 and T5 is not dierent enough yet to generate a new state.
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Figure 8: Hierarchy at instant 1. (a) Terminal states positioa top view of the scene. The oval surrounding the mean pagiti a state represents the standard
deviation of this position. A state in the rst level of thednarchy is represented in blue. (b) Maximal marginal prolitgitof a state. A darker colour represents a
higher probability.

Then the probability of the State 2 is still reinforced. T@arl
walk in the direction of the zon&, but their position is similar
enough to the position represented in the State 1, reimgits
probability. Also, T7 arrives from the zori®, reinforcing the
probability of the State 1 even more.

T2 and T3 walk to the ticket vending machiBe Now, their
position is di erent enough to the one represented by the State
2, to induce the creation of two children states. One stdate€S
3) represents the position near the zénend the other repre-
sents the new created State 4 near the Boridne new positions
of T2 and T3 have also induced a change of state, represented
by the rst event in the hierarchy between States 3 and 4. This

event is depicted in Figure 9, and graphically represenyeahb
arrow between States 3 and 4, in Figure10(a). /\
Notice in Figure 10(b) that the new created state does not

have a strong probability, compared with the other statekenf
hierarchy.

Learning up to Time instant 5:

The new position of T4 produces an adjustment of the posi-
tion of State 8, while the new position of T5 induces the cre-
ation of a new event between States 8 and 9, as depicted in
Figure 11(a). T5 walks in the direction of zo@ Then, the
transition between State_s 8_and 9 seems IMprecise, but t_hIS ISFigure 9: Hierarchy obtained up to instant 3. Events areweldin red.
one of the costs of considering a coarse value for the actiity o
position attributes x and y. Also, T9 arrives to the scenenfro
the zoneC, reinforcing the probability of State 10. induces a new event between States 9 and 12 (in that order),
Notice in Figure 11(b) that the permanence of T2 and T3 ats depicted in Figure 12(a). Figure 12(b) shows that even the
the zoneB has reinforced the probability of the State S9 nearprobability map has arrived to a quite stable state, whehg on
this zone. Also notice that the reposition of State 8, induzg  slight di erences can be observed.

person T4, has also reinforced the probability of occureenfc From this time instant and until the end of the illustration
the State 8. example, the hierarchy is very stable, only showing some new
Learning up to Time instant 7: events and updates in the states probability.

At this time instant, the hierarchy has arrived to a stablanu
ber of states. The new position of T6 induces a new event be- Learning up to Final time instant 13:
tween States 12 and 9. At the same time, the position of T2

9
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only slight di erences can be observed, with some few new P =009 P=01
events and slight modi cations in the probability map. Ee_=72 Ee'fe

This illustration has served to show the incremental natéire
the proposed event learning approach. The hierarchy adsstat
and events has shown a consistent behaviour on representing
the frequency of states and events induced by the persohs of t
illustration example.

The nal result for the hierarchy of this illustration exatep
is depicted in Figure 14. This gure shows that the hierarchy
has arrived to a stable state since time instant 7. In Fig8re 1

Figure 14: Final hierarchy obtained up to instant 13. For §iitp, only events
5.2. Exploiting the Hierarchy and the Ect of Acuity between terminal states are displayed.

The hierarchy learnt by MILES concentrates rich informa-
tion, which can vary according to the attributes selectedHe
learning process. Figure 15 shows threeadlent types of infor-
mation extracted from the hierarchy, for an applicationttmlg
the behaviour of a rat, consisting in 4850 frames. The utllise
learning context considers three numerical attributes: p2b
sition attributesX andY, and also 2D velocity magnitude at-
tribute V2D. A video showing the evolution of the incremental
learning process is availaBle

2MILES information video available at:
http://profesores.elo.utfsm.cl/ ~mzuniga/milesX4.mp4
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(a) Tracking. (b) States probability.

(c) State recognition and events. (d) V2D attribute pro le.

Figure 15: Di erent information extracted from MILES hierarchy. Image (aage represents the input from tracking. Image (b) shows thénmahprobability
for each point, using likely states from the hierarchy (elue, for highest to lowest probability). Image (c) showes shme likely states from the hierarchy, only
showing their peak probability, and also the events commgthese states. The events are represented with a triapgféng from the starting state to the arriving
state (yellow to green, for highest to lowest probabilitijecognised states are presented with a white ring. Finaipge (d) shows the behaviour of tR@D
attribute according to the position (yellow to green, fogh®st to lowest velocity magnitude). Note that it can be gasferred that the rat stops at corners and
accelerates the most through the widest part of the experaieote.

We have chosen position and velocity attributes becauge thgrobability weighted by their reliability. In the presedtease,
can be more easily represented in the input video, but n@thinwe use a conditional probability considering the prob&bsi
limits the number or nature of the attributes to be learnte Th of X andY attributes, so that likely states with low intra-class
input information is obtained from a multi-hypothesis Wimg  similarity are not considered.

approach which is able to compute reliability measuresber o The extracted information can then serve, for instance: to
ject attributes, and is described in detail in [20]. Itis W  getermine the more likely (or unlikely) zones accordingteit
tant to notice that the presence of one or many objects in thﬁrobability (gure 15, upper right), which is useful for abr
video sequence is not relevant for MILES learning process tona| behaviour detection and tra frequency analysis, among
properly work, as the attributes are learnt each frame froyn & many other applications; to determine the likely (or urllke
mobile ol_)ject which matches with any of the classes de ned irhehaviours through chains of events ( gure 15, lower leféx-

the learning context. tainly useful for behaviour analysis; and understandiregrt

There must be certainly many ways of extracting informationlations between attributes as, for example, estimatinghvare
from the hierarchy. In this particular case, the states deetgel  the zones where the rat is static or moves quicker (gure 15,
searching for the deepest state with a probability highenta  lower right).
threshold, to obtain relevant states according to the egidin. Other element that has a notoriouseet on the results is the
There are also many ways to consider the state probability tacuity of each numerical attribute. As previously discussed, the
select the states. For example, we can just consider the probcuity allows the users to de ne their interest on an attgbu
ability of the state only, or the conditional probabilitynsad- ~ Then, there is no ideal value for this parameter, as it depend
ering attributes of interest, or even considering theséates  on the application. Figure 16 depicts theeet of di erent val-
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(a) Acuity: 50 5:0. (b) Acuity: 100 100.

(c) Acuity: 150 150. (d) Acuity: 200 20:0.

Figure 16: Figures show the state probability map resultssidering di erent acuity values (5.0, 10.0, 15.0, and 20.0) for imagedinate attributeX andY.

ues of acuity on the probability map. A video showing the in-tasks of everyday life as cooking, resting, and having lunch
cremental evolution of the probability map, for érent acuity  The lengths of the sequences are 40000 frames (approxymatel
values, is also availabfe 67 minutes) and 28000 frames (approximately 46 minutes).
The gure shows how the state probabilities aresated with
lower probability peaks and more plain probability distitibns
when acuity increases. This is the expected behaviour g wh
an user de nes a higher acuity, is implicitly saying thatheg

di erences are not signi cant to the application so that the rex . inutes: 3D position (x.y); symbolic Posture, with val-

lated instances can be clustered in the same state. o5 forStanding or Crouching posture; and interaction sym-

If acuity is increased, also the number of mstar_mes sitvlar i attributess YMDapier S YMDo(a aNdS YMQichen between
a state._ Th_en, the number of states and events is decreased“;‘ae person and three objects present in the scene (tabte, sof
shown in Figure 17. and kitchen table). The possible symbolic values &R :

i i . distance 100[cm], NEAR: 50[cm < distance< 100[cm,

5.3. Symbolic Attributes and Recognition Capabilities andVERYNEAR: distance 50[cni. The contextual objects

The capability of MILES for automatically learning and in the video scene (sofa, table, and kitchen) have been mod-
recognising real world situations has been evaluatedgugio  elled with 3D polygons. All the attributes are automatigall
videos for elderly care at home. The video scene correspondsmputed by a tracking method, which is able to calculate the
to an apartment with a table, a sofa, and a kitchen, as showliability measures of the attributes [22].
in Figure 18. The videos correspond to an elderly man (Figure
18(a)) and an elderly woman (Figure 18(b)), both performingS

The input information is obtained from the same tracking
method, previously described, and presented in [22]. A learn
ing context for the clas®erson combining both numerical
and symbolic attributes, was tested considering the fafigw

The learning process applied over the 68000 frames have re-
ulted in a hierarchy of 670 state concepts and 28884 evant co
cepts. From the 670 states, 338 state concepts corresptand to
3MILES acuity video available at: minal states (5@%). From the 28884 events, 1554 event con-
http://profesores.elo.utfsm.cl/ ~mzuniga/acuityX4.mp4 cepts correspond to events occurring between terminalsstate
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