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Abstract

Disjoint-access parallelism and wait-freedom are two desirable properties for implementations of con-
current objects. Disjoint-access parallelism guarantees that processes operating on different parts of an
implemented object do not interfere with each other by accessing common base objects. Thus, disjoint-
access parallel algorithms allow for increased parallelism. Wait-freedom guarantees progress for each
nonfaulty process, even when other processes run at arbitrary speeds or crash.

A universal construction provides a general mechanism for obtaining a concurrent implementation of
any object from its sequential code. We identify a natural property of universal constructions and prove
that there is no universal construction (with this property) that ensures both disjoint-access parallelism
and wait-freedom. This impossibility result also holds for transactional memory implementations that
require a process to re-execute its transaction if it has been aborted and guarantee each transaction is
aborted only a finite number of times.

Our proof is obtained by considering a dynamic object that can grow arbitrarily large during an
execution. In contrast, we present a universal construction which produces concurrent implementations
that are both wait-free and disjoint-access parallel, when applied to objects that have a bound on the
number of data items accessed by each operation they support.
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1 Introduction

Due to the recent proliferation of multicore machines, simplifying concurrent programming has become a
necessity, to exploit their computational power. A universal construction [20] is a methodology for auto-
matically executing pieces of sequential code in a concurrent environment, while ensuring correctness. Thus,
universal constructions provide functionality similar to Transactional Memory (TM) [22]. In particular, uni-
versal constructions provide concurrent implementations of any sequential data structure: Each operation
supported by the data structure is a piece of code that can be executed.

Many existing universal constructions [1, 12, 15, 16, 19, 20] restrict parallelism by executing each of the
desired operations one after the other. We are interested in universal constructions that allow for increased
parallelism by being disjoint-access parallel. Roughly speaking, an implementation is disjoint-access parallel
if two processes that operate on disjoint parts of the simulated state do not interfere with each other, i.e.,
they do not access the same base objects. Therefore, disjoint-access parallelism allows unrelated operations
to progress in parallel. We are also interested in ensuring strong progress guarantees: An implementation is
wait-free if, in every execution, each (non-faulty) process completes its operation within a finite number of
steps, even if other processes may fail (by crashing) or are very slow.

In this paper, we present both positive and negative results. We first identify a natural property of
universal constructions and prove that designing universal constructions (with this property) which ensure
both disjoint access parallelism and wait-freedom is not possible. We prove this impossibility result by
considering a dynamic data structure that can grow arbitrarily large during an execution. Specifically, we
consider a singly-linked unsorted list of integers that supports the operations Append(L, x), which appends
x to the end of the list L, and Search(L, x), which searches the list L for x starting from the first element
of the list. We show that, in any implementation resulting from the application of a universal construction
to this data structure, there is an execution of Search that never terminates.

Since the publication of the original definition of disjoint-access parallelism [24], many variants have been
proposed [2, 9, 18]. These definitions are usually stated in terms of a conflict graph. A conflict graph is a
graph whose nodes is a set of operations in an execution. An edge exists between each pair of operations that
conflict. Two operations conflict if they access the same data item. A data item is a piece of the sequential
data structure that is being simulated. For instance, in the linked list implementation discussed above, a data
item may be a list node or a pointer to the first or last node of the list. In a variant of this definition, an edge
between conflicting operations exists only if they are concurrent. Two processes contend on a base object,
if they both access this base object and one of these accesses is a non-trivial operation (i.e., it may modify
the state of the object). In a disjoint-access parallel implementation, two processes performing operations
op and op′ can contend on the same base object only if the conflict graph of the minimal execution interval
that contains both op and op′ satisfies a certain property. Different variants of disjoint-access parallelism
use different properties to restrict access to a base object by two processes performing operations. Note that
any data structure in which all operations access a common data item, for example, the root of a tree, is
trivially disjoint access parallel under all these definitions.

For the proof of the impossibility result, we introduce feeble disjoint-access parallelism, which is weaker
than all existing disjoint-access parallelism definitions. Thus, our impossibility result still holds if we replace
our disjoint-access parallelism definition with any existing definition of disjoint-access parallelism.

Next, we show how this impossibility result can be circumvented, by restricting attention to data struc-
tures whose operations can each only access a bounded number of different data items. Specifically, there
is a constant b such that any operation accesses at most b different data items when it is applied sequen-
tially to the data structure, starting from any (legal) state. Stacks and queues are examples of dynamic
data structures that have this property. We present a universal construction that ensures wait-freedom
and disjoint-access parallelism for such data structures. The resulting concurrent implementations are lin-
earizable [23] and satisfy a much stronger disjoint-access parallelism property than we used to prove the
impossibility result.

Disjoint-access parallelism and its variants were originally formalized in the context of fixed size data
structures, or when the data items that each operation accesses are known when the operation starts its
execution. Dealing with these cases is much simpler than considering an arbitrary dynamic data structure
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where the set of data items accessed by an operation may depend on the operations that have been previously
executed and on the operations that are performed concurrently.

The universal construction presented in this paper is the first that provably ensures both wait-freedom and
disjoint-access parallelism for dynamic data structures in which each operation accesses a bounded number
of data items. For other dynamic data structures, our universal construction still ensures linearizability and
disjoint-access parallelism. Instead of wait-freedom, it ensures that progress is non-blocking. This guarantees
that, in every execution, from every (legal) state, some process finishes its operation within a finite number
of steps.

2 Related Work

Some impossibility results, related to ours, have been provided for transactional memory algorithms. Trans-
actional Memory (TM) [22] is a mechanism that allows a programmer of a sequential program to identify
those parts of the sequential code that require synchronization as transactions. Thus, a transaction includes
a sequence of operations on data items. When the transaction is being executed in a concurrent environ-
ment, these data items can be accessed by several processes simultaneously. If the transaction commits, all
its changes become visible to other transactions and they appear as if they all take place at one point in
time during the execution of the transaction. Otherwise, the transaction can abort and none of its changes
are applied to the data items.

Universal constructions and transactional memory algorithms are closely related. They both have the
same goal of simplifying parallel programming by providing mechanisms to efficiently execute sequential code
in a concurrent environment. A transactional memory algorithm informs the external environment when a
transaction is aborted, so it can choose whether or not to re-execute the transaction. A call to a universal
construction returns only when the simulated code has been successfully applied to the simulated data
structure. This is the main difference between these two paradigms. However, it is common behavior of an
external environment to restart an aborted transaction until it eventually commits. Moreover, meaningful
progress conditions [11, 30] in transactional memory require that the number of times each transaction
aborts is finite. This property is similar to the wait-freedom property for universal constructions. In a recent
paper [11], this property is called local progress. Our impossibility result applies to transactional memory
algorithms that satisfy this progress property. Disjoint-access parallelism is defined for transactions in the
same way as for universal constructions.

Strict disjoint-access parallelism [18] requires that an edge exists between two operations (or transac-
tions) in the conflict graph of the minimal execution interval that contains both operations (transactions)
if the processes performing these operations (transactions) contend on a base object. A TM algorithm is
obstruction-free if a transaction can be aborted only when contention is encountered during the course of its
execution. In [18], Guerraoui and Kapalka proved that no obstruction-free TM can be strictly disjoint access
parallel. Obstruction-freedom is a weaker progress property than wait-freedom, so their impossibility result
also applies to wait-free implementations (or implementations that ensure local progress). However, it only
applies to this strict variant of disjoint-access parallelism, while we consider a much weaker disjoint-access
parallelism definition. It is worth-pointing out that several obstruction-free TM algorithms [17, 21, 25, 28]
satisfy a weaker version of disjoint-access parallelism than this strict variant. It is unclear whether helping,
which is the major technique for achieving strong progress guarantees, can be (easily) achieved assuming
strict disjoint-access parallelism. For instance, consider a scenario where transaction T1 accesses data items
x and y, transaction T2 accesses x, and T3 accesses y. Since T2 and T3 access disjoint data items, strict
disjoint-access parallelism says that they cannot contend on any common base objects. In particular, this
limits the help that each of them can provide to T1.

Bushkov et al. [11] prove that no TM algorithm (whether or not it is disjoint-access parallel) can ensure
local progress. However, they prove this impossibility result under the assumption that the TM algorithm
does not have access to the code of each transaction (and, as mentioned in their introduction, their impos-
sibility result does not hold without this restriction). In their model, the TM algorithm allows the external
environment to invoke actions for reading a data item, writing a data item, starting a transaction, and
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trying to commit or abort it. The TM algorithm is only aware of the sequence of invocations that have
been performed. Thus, a transaction can be helped only after the TM algorithm knows the entire set of
data items that the transaction should modify. However, there are TM algorithms that do allow threads to
have access to the code of transactions. For instance, RobuSTM [30] is a TM algorithm in which the code
of a transaction is made available to threads so that they can help one another to ensure strong progress
guarantees.

Proving impossibility results in a model in which the TM algorithm does not have access to the code
of transactions is usually done by considering certain high-level histories that contain only invocations and
responses of high-level operations on data items (and not on the base objects that are used to implement
these data items in a concurrent environment). Our model gives the universal construction access to the
code of an invoked operation. Consequently, to prove our impossibility result we had to work with low-level
histories, containing steps on base objects, which is technically more difficult.

Attiya et al. [9] proved that there is no disjoint-access parallel TM algorithm where read-only transactions
are wait-free and invisible (i.e., they do not apply non-trivial operations on base objects). This impossibil-
ity result is proved for the variant of disjoint-access parallelism where processes executing two operations
(transactions) concurrently contend on a base object only if there is a path between the two operations
(transactions) in the conflict graph. We prove our lower bound for a weaker definition of disjoint-access
parallelism and it applies even for implementations with visible reads. We remark that the impossibility
result in [9] does not contradict our algorithm, since our implementation employs visible reads.

In [26], the concept of MV-permissiveness was introduced. A TM algorithm satisfies this property if a
transaction aborts only when it is an update transaction that conflicts with another update transaction. An
update transaction contains updates to data items. The paper [26] proved that no transactional memory
algorithm satisfies both disjoint access parallelism (specifically, the variant of disjoint-access parallelism pre-
sented in [9]) and MV-permissiveness. However, the paper assumes that the TM algorithm does not have
access to the code of transactions and is based on the requirement that the code for creating, reading, or
writing data items terminates within a finite number of steps. This lower bound can be beaten if this require-
ment is violated. Attiya and Hillel [8] presented a strict disjoint-access parallel lock-based TM algorithm
that satisfies MV-permissiveness.

More constraining versions of disjoint-access parallelism are used when designing algorithms [5, 6, 24].
Specifically, two operations are allowed to access the same base object if they are connected by a path of
length at most d in the conflict graph [2, 5, 6]. This version of disjoint-access parallelism is known as the
d-local contention property [2, 5, 6]. The first wait-free disjoint-access parallel implementations [24, 29] had
O(n)-local contention, where n is the number of processes in the system, and assumed that each operation
accesses a fixed set of data items. Afek et al. [2] presented a wait-free, disjoint-access parallel universal
construction that has O(k + log∗n)-local contention, provided that each operation accesses at most k pre-
determined memory locations. It relies heavily on knowledge of k. This work extends the work of Attiya
and Dagan [5], who considered operations on pairs of locations, i.e. where k = 2. Afek et al. [2] leave as an
open question the problem of finding highly concurrent wait-free implementations of data structures that
support operations with no bounds on the number of data items they access. In this paper, we prove that,
in general, there are no solutions unless we relax some of these properties.

Attiya and Hillel [7] provide a k-local non-blocking implementation of k-read-modify-write objects. The
algorithm assumes that double-compare-and-swap (DCAS) primitives are available. A DCAS atomically ex-
ecutes CAS on two memory words. Combining the algorithm in [7] and the non-blocking implementation
of DCAS by Attiya and Dagan [5] results in a O(k + log∗n)-local non-blocking implementation of a k-read-
modify-write object that only relies on single-word CAS primitives. Their algorithm can be adapted to work
for operations whose data set is defined on the fly, but it only ensures that progress is non-blocking.

A number of wait-free universal constructions [1, 15, 16, 19, 20] work by copying the entire data structure
locally, applying the active operations sequentially on their local copy, and then changing a shared pointer
to point to this copy. The resulting algorithms are not disjoint access parallel, unless vacuously so.

Anderson and Moir [3] show how to implement a k-word atomic CAS using LL/SC. To ensure wait-
freedom, a process may help other processes after its operation has been completed, as well as during
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its execution. They employ their k-word CAS implementation to get a universal construction that produces
wait-free implementations of multi-object operations. Both the k-word CAS implementation and the universal
construction allow operations on different data items to proceed in parallel. However, they are not disjoint-
access parallel, because some operations contend on the same base objects even if there are no (direct or
transitive) conflicts between them. The helping technique that is employed by our algorithm combines and
extends the helping techniques presented in [3] to achieve both wait-freedom and disjoint-access parallelism.

Anderson and Moir [4] presented another universal construction that uses indirection to avoid copying
the entire data structure. They store the data structure in an array which is divided into a set of consecutive
data blocks. Those blocks are addressed by a set of pointers, all stored in one LL/SC object. An adaptive
version of this algorithm is presented in [15]. An algorithm is adaptive if its step complexity depends on the
maximum number of active processes at each point in time, rather than on the total number n of processes
in the system. Neither of these universal constructions is disjoint-access parallel.

Barnes [10] presented a disjoint-access parallel universal construction, but the algorithms that result from
this universal construction are only non-blocking. In Barnes’ algorithm, a process p executing an operation
op first simulates the execution of op locally, using a local dictionary where it stores the data items accessed
during the simulation of op and their new values. Once p completes the local simulation of op, it tries to
lock the data items stored in its dictionary. The data items are locked in a specific order to avoid deadlocks.
Then, p applies the modifications of op to shared memory and releases the locks. A process that requires a
lock which is not free, releases the locks it holds, helps the process that owns the lock to finish the operation it
executes, and then re-starts its execution. To enable this helping mechanism, a process shares its dictionary
immediately prior to its locking phase. The lock-free TM algorithm presented in [17] works in a similar way.

As in Barnes’ algorithm, a process executing an operation op in our algorithm, first locally simulates op
using a local dictionary, and then it tries to apply the changes. However, in our algorithm, a conflict between
two operations can be detected during the simulation phase, so helping may occur at an earlier stage of op’s
execution. More advanced helping techniques are required to ensure both wait-freedom and disjoint-access
parallelism.

Chuong et al. [12] presented a wait-free version of Barnes’ algorithm that is not disjoint-access parallel
and applies operations to the data structure one at a time. Their algorithm is transaction-friendly, i.e.,
it allows operations to be aborted. Helping in this algorithm is simpler than in our algorithm. Moreover,
the conflict detection and resolution mechanisms employed by our algorithm are more advanced to ensure
disjoint-access parallelism. The presentation of the pseudocode of our algorithm follows [12].

The first software transactional memory algorithm [27] was disjoint-access parallel, but it is only non-
blocking and is restricted to transactions that access a pre-determined set of memory locations. There are
other TM algorithms [14, 17, 21, 25, 28] without this restriction that are disjoint-access parallel. However,
all of them satisfy weaker progress properties than wait-freedom. TL [14] ensures strict disjoint access
parallelism, but it is blocking.

A hybrid approach between transactional memory and universal constructions has been presented by
Crain et al. [13]. Their universal construction takes, as input, sequential code that has been appropriately
annotated for processing by a TM algorithm. Each transaction is repeatedly invoked until it commits. They
use a linked list to store all committed transactions. A process helping a transaction to complete scans
the list to determine whether the transaction has already completed. Thus, their implementation is not
disjoint-access parallel. It also assumes that no failures occur.

3 Preliminaries

A data structure is a sequential implementation of an abstract data type. In particular, it provides a
representation for the objects specified by the abstract data type and the (sequential) code for each of
the operations it supports. As an example, we will consider an unsorted singly-linked list of integers that
supports the operations Append(v), which appends the element v to the end of the list (by accessing a
pointer end that points to the last element in the list, appending a node containing v to that element, and
updating the pointer to point to the newly appended node), and Search(v), which searches the list for v
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starting from the first element of the list.
A data item is a piece of the representation of an object implemented by the data structure. In our

example, the data items are the nodes of the singly-linked list and the pointers first and last that point to
the first and the last element of the list, respectively. The state of a data structure consists of the collection
of data items in the representation and a set of values, one for each of the data items. A static data item
is a data item that exists in the initial state. In our example, the pointers first and last are static data
items. When the data structure is dynamic, the data items accessed by an instance of an operation (in a
sequential execution α) may depend on the instances of operations that have been performed before it in α.
For example, the set of nodes accessed by an instance of Search depends on the sequence of nodes that
have been previously appended to the list.

An operation of a data structure is value oblivious if, in every (sequential) execution, the set of data items
that each instance of this operation accesses in any sequence of consecutive instances of this operation does
not depend on the values of the input parameters of these instances. In our example, Append is a value
oblivious operation, but Search is not.

We consider an asynchronous shared-memory system with n processes p1, . . . , pn that communicate by
accessing shared objects, such as registers and LL/SC objects. A register R stores a value from some set and
supports the operations read(R), which returns the value of R, and write(R, v), which writes the value v
in R. An LL/SC object R stores a value from some set and supports the operations LL, which returns the
current value of R, and SC. By executing SC(R, v), a process pi attempts to set the value of R to v. This
update occurs only if no process has changed the value of R (by executing SC) since pi last executed LL(R).
If the update occurs, true is returned and we say the SC is successful; otherwise, the value of R does not
change and false is returned.

A universal construction provides a general mechanism to automatically execute pieces of sequential code
in a concurrent environment. It supports a single operation, called Perform, which takes as parameters
a piece of sequential code and a list of input arguments for this code. The algorithm that implements
Perform applies a sequence of operations on shared objects provided by the system. We use the term base
objects to refer to these objects and we call the operations on them primitives. A primitive is non-trivial if
it may change the value of the base object; otherwise, the primitive is called trivial. To avoid ambiguities
and to simplify the exposition, we require that all data items in the sequential code are only accessed via
the instruction CreateDI, ReadDI, and WriteDI, which create a new data item, read (any part of) the
data item, and write to (any part of) the data item, respectively.

A configuration provides a global view of the system at some point in time. In an initial configuration,
each process is in its initial state and each base object has its initial value. A step consists of a primitive
applied to a base object by a process and may also contain local computation by that process. An execution
is a (finite or infinite) sequence Ci, φi, Ci+1, φi+1, . . . , φj−1, Cj of alternating configurations (Ck) and steps
(φk), where the application of φk to configuration Ck results in configuration Ck+1, for each i ≤ k < j. An
execution α is indistinguishable from another execution α′ for some processes, if each of these processes takes
the same steps in α and α′, and each of these steps has the same response in α and α′. An execution is solo
if all its steps are taken by the same process.

From this point on, for simplicity, we use the term operation to refer to an instance of an operation.
The execution interval of an operation starts with the first step of the corresponding call to Perform and
terminates when that call returns. Two operations overlap if the call to Perform for one of them occurs
during the execution interval of the other. If a process has invoked Perform for an operation that has not
yet returned, we say that the operation is active. A process can have at most one active operation in any
configuration. A configuration is quiescent if no operation is active in the configuration.

Let α be any execution. We assume that processes may experience crash failures. If a process p does not
fail in α, we say that p is correct in α. Linearizability [23] ensures that, for every completed operation in α and
some of the uncompleted operations, there is some point within the execution interval of the operation called
its linearization point, such that the response returned by the operation in α is the same as the response
it would return if all these operations were executed serially in the order determined by their linearization
points. When this holds, we say that the responses of the operations are consistent. An implementation is
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linearizable if all its executions are linearizable. An implementation is wait-free [20] if, in every execution,
each correct process completes each operation it performs within a finite number of steps.

Since we consider linearizable universal constructions, every quiescent configuration of an execution of a
universal construction applied to a sequential data structure defines a state. This is the state of the data
structure resulting from applying each operation linearized prior to this configuration, in order, starting from
the initial state of the data structure.

Two operations contend on a base object b if they both apply a primitive to b and at least one of these
primitives is non-trivial. We are now ready to present the definition of disjoint-access parallelism that we
use to prove our impossibility result. It is weaker than all the variants discussed in Section 2.

Definition 1. (Feeble Disjoint-Access Parallelism). An implementation resulting from a universal
construction applied to a (sequential) data structure is feebly disjoint-access parallel if, for every solo exe-
cution α1 of an operation op1 and every solo execution α2 of an operation op2, both starting from the same
quiescent configuration C, if the sequential code of op1 and op2 access disjoint sets of data items when each is
executed starting from the state of the data structure represented by configuration C, then α1 and α2 contend
on no base objects. A universal construction is feebly disjoint-access parallel if all implementations resulting
from it are feebly disjoint-access parallel.

We continue with definitions that are needed to define the version of disjoint-access parallelism ensured by
our algorithm. Fix any execution α = C0, φ0, C1, φ1, . . . , produced by a linearizable universal construction
U . Then there is some linearization of the completed operations in α and a subset of the uncompleted
operations in α such that the responses of all these operations are consistent. Let op be any one of these
operations, let Iop be its execution interval, let Ci denote the first configuration of Iop, and let Cj be the first
configuration at which op has been linearized. Since each process has at most one uncompleted operation in
α and each operation is linearized within its execution interval, the set of operations linearized before Ci is
finite. For i ≤ k < j, let Sk denote the state of the data structure which results from applying each operation
linearized in α prior to configuration Ck, in order, starting from the initial state of the data structure. Define
DS(op, α), the data set of op in α, to be the set of all data items accessed by op when executed by itself
starting from Sk, for i ≤ k < j.

The conflict graph of an execution interval I of α is an undirected graph, where vertices represent
operations whose execution intervals overlap with I and an edge connects two operations op and op′ if and
only if DS(op, α) ∩ DS(op′, α) 6= ∅. The following variant of disjoint-access parallelism is ensured by our
algorithm.

Definition 2. (Disjoint-Access Parallelism). An implementation resulting from a universal construc-
tion applied to a (sequential) data structure is disjoint-access parallel if, for every execution containing a
process executing Perform(op1) and a process executing Perform(op2) that contend on some base object,
there is a path between op1 and op2 in the conflict graph of the minimal execution interval containing op1

and op2.

The original definition of disjoint-access parallelism in [24] differs from Definition 2 in that it does not
allow two operations op1 and op2 to read the same base object even if there is no path between op1 and
op2 in the conflict graph of the minimal execution interval that contains them. T Also, that definition
imposes a bound on the step complexity of disjoint-access parallel algorithms. Our definition is a slightly
stronger version of the disjoint-access parallel variant defined in [9] in the context of transactional memory.
This definition allows two operations to contend, (but not concurrently contend) on the same base object
if there is no path connecting them in the conflict graph. This definition makes the lower bound proved
there stronger, whereas our definition makes the design of an algorithm (which is our goal) more difficult.
Our definition is obviously weaker than strict disjoint-access parallelism [18], since our definition allows two
processes to contend even if the data sets of the operations they are executing are disjoint.
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4 Impossibility Result

To prove the impossibility of a wait-free universal construction with feeble disjoint-access parallelism, we
consider an implementation resulting from the application of an arbitrary feebly disjoint-access parallel
universal construction to the singly-linked list discussed in Section 3. We show that there is an execution
in which an instance of Search does not terminate. The idea is that, as the process p performing this
instance proceeds through the list, another process, q, is continually appending new elements with different
values. If q performs each instance of Append before p gets too close to the end of the list, disjoint-access
parallelism prevents q from helping p. This is because q’s knowledge is consistent with the possibility that
p’s instance of Search could terminate successfully before it accesses a data item accessed by q’s current
instance of Append. Also, process p cannot determine which nodes were appended by process q after it
started the Search. The proof relies on the following natural assumption about universal constructions.
Roughly speaking, it formalizes that the operations of the concurrent implementation resulting from applying
a universal construction to a sequential data structure should simulate the behavior of the operations of the
sequential data structure.

Assumption 3 (Value-Obliviousness Assumption). If an operation of a data structure is value oblivious,
then, in any implementation resulting from the application of a universal construction to this data structure,
the sets of base objects read from and written to during any solo execution of a sequence of consecutive
instances of this operation starting from a quiescent configuration do not depend on the values of the input
parameters.

We consider executions of the implementation of a singly-linked list L in which process p performs a
single instance of Search(L, 0) and process q performs instances of Append(L, i), for i ≥ 1, and possibly
one instance of Append(L, 0). The sequential of the singly-linked list code is given in Appendix A. We may
assume the implementation is deterministic: If it is randomized, we fix a sequence of coin tosses for each
process and only consider executions using these coin tosses.

. . . Ci−3 Ci−2 Ci−1 Ci . . .

. . . Ci−3 Ci−2
i−2 Ci−2

i−1 Ci−2
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αi−2

APPEND(i − 2)
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i−1

γi
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βi−2
i

APPEND(0) APPEND(i − 1) APPEND(i)

Figure 1: Configurations and Sequences of Steps used in the Proof

Let C0 be the initial configuration in which L is empty. Let α denote the infinite solo execution by q
starting from C0 in which q performs Append(L, i) for all positive integers i, in increasing order. For i ≥ 1,
let Ci be the configuration obtained when process q performs Append(L, i) starting from configuration Ci−1.
Let αi denote the sequence of steps performed in this execution. Let B(i) denote the set of base objects
written to by the steps in αi and let A(i) denote the set of base objects these steps read from but do not
write to. Notice that the sets A(i) and B(i) partition the set of base objects accessed in αi. In configuration
Ci, the list L consists of i nodes, with values 1, . . . , i in increasing order.

For 1 < j ≤ i, let Cj
i be the configuration obtained from configuration C0 when process q performs the

first i operations of execution α, except that the j’th operation, Append(L, j), is replaced by Append(L, 0);
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namely, when q performs Append(L, 1), . . ., Append(L, j − 1), Append(L, 0), Append(L, j + 1), . . . ,
Append(L, i). Since Append is value oblivious, the same set of base objects are written to during the
executions leading to configurations Ci and Cj

i . Only base objects in ∪{B(k) | j ≤ k ≤ i} can have different

values in Ci and Cj
i .

For i ≥ 3, let σi be the steps of the solo execution of Search(L, 0) by p starting from configuration Ci.
For 1 < j ≤ i, let βj

i be the longest prefix of σi in which p does not access any base object in ∪{B(k) | k ≥ j}
and does not write to any base object in ∪{A(k) | k ≥ j}

Lemma 4. For i ≥ 3 and 1 < j ≤ i, βj
i = βj

i+1 and βi−1
i+1 is a prefix of βi

i+2.

Proof. Only base objects in B(i+ 1) have different values in configurations Ci and Ci+1. Since βj
i and βj

i+1

do not access any base objects in B(i + 1), it follows from their definitions that βj
i = βj

i+1. In particular,

βi
i+2 = βi

i+1, which, by definition contains βi−1
i+1 as a prefix.

For i ≥ 3, let γi+2 be the (possibly empty) suffix of βi
i+2 such that βi−1

i+1γi+2 = βi
i+2. Figure 1 illustrates

these definitions.
Let α′ = α1α2α3α4β

2
4α5γ5α6γ6 · · ·. We show that this infinite sequence of steps gives rise to an infinite

valid execution starting from C0 in which there is an instance of Search(L, 0) that never terminates. The
first steps of this execution are illustrated in Figure 2.

C0 C1 C3 C4 C5 C6
α1 α4

β2
4

α5

γ5

α6

γ6

β3
5 β4

6

Figure 2: An Infinite Execution with a Non-terminating Search Operation

Since β2
4 does not write to any base objects accessed in α2α3 · · · and, for i ≥ 4, βi−1

i+1 = βi−2
i γi+1

does not write to any base object accessed in αi−1αi · · ·, the executions arising from α and α′ starting
from C0 are indistinguishable to process q. Furthermore, since βi−1

i+1 and, hence, γi+1 does not access any

base object written to by αi−1αi · · ·, it follows that α1α2α3α4β
2
4α5γ5 · · ·αjγj and α1α2α3α4 · · ·αjβ

j−2
j are

indistinguishable to process p for all j ≥ 4. Thus α′ is a valid execution.
Next, for each i ≥ 4, we prove that there exists j > i such that γj is nonempty. By the value obliviousness

assumption, only base objects in B(i− 2) ∪B(i− 1) ∪B(i) can have different values in Ci and Ci−2
i . Since

βi−2
i does not access any of these base objects, βi−2

i is also a prefix of Search(L, 0) starting from Ci−2
i .

Since Search(L, 0) starting from Ci−2
i is successful, but starting from Ci is unsuccessful, Search(L, 0) is

not completed after βi−2
i . Therefore βi−2

i is a proper prefix of σi. Let b be the base object accessed in the
first step following βi−2

i in σi. For j ≥ i+ 1, only base objects in ∪{B(k) | i+ 1 ≤ k ≤ j} can have different
values in Ci and Cj . Therefore the first step following βi−2

i in σj is the same as the first step following βi−2
i

in σi.
To obtain a contradiction, suppose that βi−2

i = βi+1
i+3 . Then b is the base object accessed in the first step

following βi+1
i+3 in σi+3. By definition of βi+1

i+3 , there is some ` ≥ i+ 1 such that the first step following βi+1
i+3

in σi+3 is either an access to b ∈ B(`) or a write to b ∈ A(`).
Let S denote the state of the data structure in configuration C`−3

`−1 . In state S, the list has ` − 1 nodes
and the third last node has value 0. Thus, the set of data items accessed by Search(L, 0) starting from
state S consists of L.first and the first ` − 3 nodes of the list. This is disjoint from the set of data items
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accessed by Append(L, `) starting from state S, which consists of L.last, the last node of the list, and the
newly appended node. Hence, by feeble disjoint access parallelism, the solo executions of Append(L, `) and
Search(L, 0) starting from C`−3

`−1 contend on no base objects.
By the value obliviousness assumption, B(`) is the set of base objects written to in the solo execution of

Append(L, `) starting from C`−3
`−1 and A(`) is the set of base objects read from, but not written to in that

execution.
By the value obliviousness assumption, only base objects in B(` − 3) ∪ B(` − 2) ∪ B(` − 1) can have

different values in C`−1 and C`−3
`−1 . Since βi−2

i does not access any of these base objects, βi−2
i is also a prefix

of Search(L, 0) starting from C`−3
`−1 and the first step following βi−2

i in this execution is the same as the first

step following βi−2
i in σi. Recall that this is either an access to b ∈ B(`) or a write to b ∈ A(`). Thus, the

solo executions of Append(L, `) and Search(L, 0) starting from C`−3
`−1 contend on b. This is a contradiction.

Hence, βi−2
i 6= βi+1

i+3 and it follows that at least one of γi+1, γi+2, and γi+3 is nonempty.
Therefore γj is nonempty for infinitely many numbers j and, in the infinite execution α′, process p never

completes its operation Search(L, 0), despite taking an infinite number of steps. Hence, the implementation
is not wait-free and we have proved the following result:

Theorem 5. No feebly disjoint-access parallel universal construction is wait-free.

5 The DAP-UC Algorithm

To execute an operation op, a process p locally simulates the execution of op’s instructions without modifying
the shared representation of the simulated state. This part of the execution is the simulation phase of op.
Specifically, each time p accesses a data item while simulating op, it stores a copy in a local dictionary.
All subsequent accesses by p to this data item (during the same simulation phase of op) are performed on
this local copy. Once all instructions of op have been locally simulated, op enters its modifying phase. At
that time, one of the local dictionaries of the helpers of op becomes shared. All helpers of op then use this
dictionary and apply the modifications listed in it. In this way, all helpers of op apply the same updates for
op, and consistency is guaranteed.

1 type varrec
2 value val
3 ptr to oprec A[1..n]

4 type statrec
5 {〈simulating〉,
6 〈restart, ptr to oprec restartedby〉,
7 〈modifying, ptr to dictionary of dictrec changes,
8 value output〉
9 〈done〉
10 } status

11 type oprec
12 code program
13 process id owner
14 value input
15 value output
16 ptr to statrec status
17 ptr to oprec tohelp[1..n]

18 type dictrec
19 ptr to varrec key
20 value newval

Figure 3: Type definitions

The algorithm maintains a record for each data item x. The first time op accesses x, it makes an
announcement by writing appropriate information in x’s record. It also detects conflicts with other operations
that are accessing x by reading this record. So, conflicts are detected without violating disjoint access
parallelism. The algorithm uses a simple priority scheme, based on the process identifiers of the owners of
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the operations, to resolve conflicts among processes. When an operation op determines a conflict with an
operation op′ of higher priority, op helps op′ to complete before it continues its execution. Otherwise, op
causes op′ to restart and the owner of op will help op′ to complete once it finishes with the execution of op,
before it starts the execution of a new operation. The algorithm also ensures that before op′ restarts its
simulation phase, it will help op to complete. These actions guarantee that processes never starve.

We continue with the details of the algorithm. The algorithm maintains a record of type oprec (lines
11-17) that stores information for each initiated operation. When a process p wants to execute an operation
op, it starts by creating a new oprec for op and initializing it appropriately (line 22). In particular, this
record provides a pointer to the code of op, its input parameters, its output, the status of op, and an array
indicating whether op should help other operations after its completion and before it returns. We call p
the owner of op. To execute op, p calls Help (line 23). To ensure wait-freedom, before op returns, it helps
all other operations listed in the tohelp array of its oprec record (lines 24-25). These are operations with
which op had a conflict during the course of its execution, so disjoint-access parallelism is not violated. The
algorithm also maintains a record of type varrec (lines 1-3) for each data item x, This record contains a
val field, which is an LL/SC object that stores the value of x, and an array A of n LL/SC objects, indexed
by process identifiers, which stores oprec records of operations that are accessing x. This array is used by
operations to announce that they access x and to determine conflicts with other operations that are also
accessing x.

The execution of op is done in a sequence of one or more simulation phases (lines 34-53) followed by a
modification phase (lines 54-62). In a simulation phase, the instructions of op are read (lines 36, 37, and
50) and the execution of each one of them is simulated locally. The first time each process q helping op
(including its owner) needs to access a data item (lines 38, 43), it creates a local copy of it in its (local)
dictionary (lines 42, 46). All subsequent accesses by q to this data item (during the current simulation phase
of op) are performed on this local copy (line 48). During the modification phase, q makes the updates of op
visible by applying them to the shared memory (lines 56-62).

The status field of op determines the execution phase of op. It contains a pointer to a record of type
statrec (lines 4-10) where the status of op is recorded. The status of op can be either simulating, indicating
that op is in its simulation phase, modifying, if op is in its modifying phase, done, if the execution of op
has been completed but op has not yet returned, or restart, if op has experienced a conflict and should
re-execute its simulation phase from the beginning. Depending on which of these values status contains, it
may additionally store another pointer or a value.

To ensure consistency, each time a data item x is accessed for the first time, q checks, before reading the
value of x, whether op conflicts with other operations accessing x. This is done as follows: q announces op
to x by storing a pointer opr to op’s oprec in A[opr → owner]. This is performed by calling Announce
(line 39). Announce first performs an LL on varx → A[p] (line 68), where varx is the varrec for x and
p = opr → owner. Then, it checks if the status of op (line 69) remains simulating and, if this is so, it
performs an SC to store op in varx → A[p] (line 70). These instructions are then executed one more time.
This is needed because an obsolete helper of an operation, initiated by p before op, may successfully execute
an SC on varx → A[p] that stores a pointer to this operation’s oprec. However, we prove in Section 6 that
this can happen only once, so executing the instructions on lines 68-70 twice is enough to ensure consistency.

After announcing op to varx, q calls Conflicts (line 40) to detect conflicts with other operations that
access x. In Conflicts, q reads the rest of the elements of varx → A (lines 76-77). Whenever a conflict
is detected (i.e., the condition of the if statement of line 78 evaluates to true) between op and some other
operation op′, Conflicts first checks if op′ is in its modifying phase (line 82) and, if so, it helps op′ to
complete. In this way, it is ensured that, once an operation enters its modification phase, it will complete its
operation successfully. Therefore, once the status of an operation becomes modifying, it will next become
done, and then, henceforth, never change. If the status of op′ is simulating, q determines which of op or op′

has the higher priority (line 84). If op′ has higher priority (line 89), then op helps op′ by calling Help(op′).
Otherwise, q first adds a pointer opr′ to the oprec of op′ into opr → tohelp (line 85), so that the owner of
op will help op′ to complete after op has completed. Then q attempts to notify op′ to restart, using SC (line
87) to change the status of op′ to restart. A pointer opr is also stored in the status field of op′. When op′
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21 value Perform(prog, input) by process p:
22 opptr := pointer to a new oprec record

opptr → program := prog, opptr → input := input, opptr → output := ⊥
opptr → owner := p, opptr → status := simulating, opptr → tophelp[1..n] := [nil, . . . , nil]

23 Help(opptr) /* p helps its own operation */

24 for p′ := 1 to n excluding p do /* p helps operations that have been restarted by its operation op */
25 if (opptr → tohelp[p′] 6= nil) then Help(opptr → tohelp[p′])

26 return(opptr → output)

27 Help(opptr) by process p:
28 opstatus := LL(opptr → status)

29 while (opstatus 6= done)

30 if opstatus = 〈restart, opptr′〉 then /* op′ has restarted op */
31 Help(opptr′) /* first help op′ */
32 SC(opptr → status, 〈simulating〉) /* try to change the status of op back to simulating */
33 opstatus := LL(opptr → status)

34 if opstatus = 〈simulating〉 then /* start a new simulation phase */
35 dict := pointer to a new empty dictionary of dictrec records

/* to store the values of the data items */
36 ins := the first instruction in opptr → program
37 while ins 6= return(v) /* simulate instruction ins of op */
38 if ins is (WriteDI(x, v) or ReadDI(x)) and (there is no dictrec with key x in dict)

then /* first access of x by this attempt of op */
39 Announce(opptr, x) /* announce that op is accessing x */
40 Conflicts(opptr, x) /* possibly, help or restart other operations accessing x */
41 if ins = ReadDI(x) then valx := x→ val else valx := v /* ins is a write to x of v */
42 add new dictrec 〈x, valx〉 to dict /* create a local copy of x */
43 else if ins is CreateDI() then
44 x := pointer to a new varrec record
45 x→ A[1..n] := [nil, . . . , nil]
46 add new dictrec 〈x, nil〉 to dict
47 else /* ins is WriteDI(x, v) or ReadDI(x) and there is a dictrec with key x in dict */

/* or ins is not a WriteDI(), ReadDI() or CreateDI() instruction */
48 execute ins, using/changing the value in the appropriate entry of dict if necessary
49 if ¬VL(opptr → status) then break /* end of the simulation of ins */
50 ins := next instruction of opptr → program

/* end while */

51 if ins is return(v) then /* v may be empty */
52 SC(opptr → status,〈modifying, dict, v〉) /* try to change status of op to modifying */

/* successful iff simulation is over and status of op not changed since beginning of simulation */
53 opstatus := LL(opptr → status)

54 if opstatus = 〈modifying, changes, out〉 then
55 opptr → outputs := out
56 for each dictrec 〈x, v〉 in the dictionary pointed to by changes do

57 LL(x→ val) /* try to make writes visible */
58 if ¬VL(opptr → status) then return /* opptr → status = done */
59 SC(x→ val, v)

60 LL(x→ val)
61 if ¬VL(opptr → status) then return /* opptr → status = done */
62 SC(x→ val, v)

/* end for */
63 SC(opptr → status, done)
64 opstatus := LL(opptr → status)

/* end while */
65 return

66 Announce(opptr, x) by process p:
67 q := opptr → owner

68 LL(x→ A[q])
69 if ¬ VL(opptr → status) then return
70 SC(x→ A[q], opptr)

71 LL(x→ A[q])
72 if ¬VL(opptr → status) then return
73 SC(x→ A[q], opptr)

74 return

75 Conflicts(opptr, x) by process p:
76 for p′ := 1 to n excluding opptr → owner do
77 opptr′ := LL(x→ A[p′])
78 if (opptr′ 6= nil) then /* possible conflict between op and op′ */
79 opstatus′ := LL(oppptr′ → status)

80 if ¬VL(opptr → status) then return

81 if (opstatus′ = 〈modifying, changes, output〉)
82 then Help(opptr′)

83 else if (opstatus′ = 〈simulating〉) then
84 if (opptr → owner < p′) then

/* op has higher priority than op′, restart op′ */
85 opptr → tohelp[p′] := opptr′

86 if ¬VL(opptr → status) then return
87 SC(opptr′ → status, 〈restart, opptr〉)
88 if (LL(oppptr′ → status) = 〈modifying, changes, output〉) then

Help(opptr′)

89 else Help(opptr′) /* opptr → owner > p′ */
90 return

Figure 4: The code of Perform, Help, Announce, and Conflicts.
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restarts its simulation phase, it will help op to complete (lines 30-33), if op is still in its simulation phase,
before it continues with the re-execution of the simulation phase of op′. This guarantees that op will not
cause op′ to restart again.

Recall that each helper q of op maintains a local dictionary. This dictionary contains an element of
type dictrec (lines 18-20) for each data item that q accesses (while simulating op). A dictionary element
corresponding to data item x consists of two fields, key, which is a pointer to varx, and newval, which stores
the value that op currently knows for x. Notice that only one helper of op will succeed in executing the SC

on line 52, which changes the status of op to modifying. This helper records a pointer to the dictionary it
maintains for op, as well as its output value, in op’s status, to make them public. During the modification
phase, each helper q of op traverses this dictionary, which is recorded in the status of op (lines 54, 56). For
each element in the dictionary, it tries to write the new value into the varrec of the corresponding data
item (lines 57-59). This is performed twice to avoid problems with obsolete helpers in a similar way as in
Announce.

Theorem 6. The DAP-UC universal construction (Figures 3 and 4) produces disjoint-access parallel, wait-
free, concurrent implementations when applied to objects that have a bound on the number of data items
accessed by each operation they support.

6 Proof of the DAP-UC Algorithm

6.1 Preliminaries

The proof is divided in three parts, namely consistency (Section 6.2), wait-freedom (Section 6.3) and disjoint-
access parallelism (Section 6.4). The proof considers an execution α of the universal construction applied
to some sequential data structure. The configurations referred to in the proof are implicitly defined in the
context of this execution. We first introduce a few definitions and establish some basic properties that follow
from inspection of the code.

Observe that an oprec is created only when a process begins Perform (on line 22). Thus, we will not
distinguish between an operation and its oprec.

Observation 7. The status of each oprec is initially simulating (line 22). It can only change from
simulating to modifying (lines 34,52), from modifying to done (lines 54,63), from simulating to restart
(lines 83,87), and from restart to simulating (lines 30,32).

Thus, once the status of an oprec becomes modifying, it can only change to done.

Observation 8. Let op be any operation and let opptr be the pointer to its oprec. When a process returns
from Help(opptr) (on line 58, 61 or 65), opptr → status = done.

This follows from the exit condition of the while loop (line 29) and the fact that, once the status of an
oprec becomes modifying, it can only change to done.

Observation 9. In every configuration, there is at most one oprec owned by each process whose status is
not done.

This follows from the fact that, when a process returns from Perform (on line 26), has also returned from
a call to Help (on line 23), so the status of the oprec it created (on line 22) has status done, and the fact
that a process does not call Perform recursively, either directly or indirectly.

Observation 10. For every varrec, A[i], 1 ≤ i ≤ n, is initially nil and is only changed to point to oprecs

with owner i.

This follows from the fact that A[i], 1 ≤ i ≤ n, is initialized to nil when the varrec is created (on line 44)
and is updated only on lines 70 or 73.
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6.2 Consistency

An attempt is an endeavour by a process to simulate an operation. Formally, let op be any operation initiated
by process q in α and let opptr be the pointer to its oprec, i.e., opptr → owner = q.

Definition 11. An attempt of op by a process p is the longest execution interval that begins when p performs
a LL on opptr → status on line 28, 33, or 53 that returns simulating and during which opptr → status does
not change.

The first step after the beginning of an attempt is to create an empty dictionary of dictrecs (line 35).
So, each dictionary is uniquely associated with an attempt. We say that an attempt is active at each
configuration C contained in the execution interval that defines the attempt.

Let p be a process executing an attempt att of op. If immediately after the completion of att, p successfully
changes opptr → status to 〈modifying, chgs, val〉 (by performing a SC on opptr → status on line 52), then
att is successful. Notice that, in this case, chgs is a pointer to the dictionary associated with att.

By Observation 7, only one process executing an attempt of op can succeed in executing the SC that
changes the status of op to 〈modifying, , 〉 (on line 52). Next observation then follows from the definition
of a successful attempt:

Observation 12. For each operation, there is at most one successful attempt.

In att, p simulates instructions on behalf of op (lines 34 - 52). The simulation of an instruction ins
starts when ins is fetched from op’s program (on lines 36 or 50) and ends either just before the next
instruction starts simulated, or just after the execution of the SC on line 52 if ins is the last instruction of
opptr → program.

When p simulates a CreateDI() instruction, it allocates a new varrec record x in its own stripe of
shared memory (line 44) and adds a pointer to it in the dictionary associated with att (line 46); in this case,
we also say that p simulates the creation of, or creates x. Notice that x is initially private, as it is known
only by p; it may later become public if att is successful. Next definition captures precisely the notion of
public varrec.

We say that a varrec x is referenced by operation op in some configuration C, if opptr → status =
〈modifying, chgs, 〉, where chgs is a pointer to a dictionary that contains a dictrec record whose first
component, key, is a pointer to x.

Definition 13. A varrec x is public in configuration C if and only if it is static or there exists an operation
that references x in C or in some configuration that precedes it.

We say that p simulates an access of (or access) some varrec x by (for) op, if it either simulates an
ins ∈ {ReadDI(x),WriteDI(x, )}, or creates x. Observe that if x is public in configuration C, it is also
public in every configuration that follows. Also, before it is made public, x cannot be accessed by a process
that has not created it.

Observation 14. If, in att, p starts the simulation of an instruction ins ∈ {WriteDI(x, ),ReadDI(x)} at
some configuration C, then either x is created by p in att before C, or there exists a configuration preceding
the simulation of ins in which x is public.

Notice that each time p accesses for the first time a varrec x during att, a new dictrec record is added
for x to the dictionary associated with att (on lines 42 or 46). From this and by inspecting the code lines
38, 42, 43 and 46 follows the observation bellow.

Observation 15. If a varrec x is accessed by p during att for op, then the first time that it accesses x, the
following hold:

1. p executes either lines 38 to 42 or lines 43 to 46 exactly once for x,

2. p inserts a dictrec record for x in the dictionary associated with att exactly once, i.e., this record is
unique.
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We say that p announces op on a varrec x during att, if it successfully executes an SC of line 70 or line
73 on x.A[q] (recall that opptr → owner = q) with value opptr, during a call of Announce(opptr, x) (on
line 39). Distinct processes may perform attempts of the same operation op. However, once an operation
has been announced to a varrec, it can only be replaced by a more recent operation owned by the same
process (i.e., one initiated by q after op’s response), as shown by the next lemma.

Lemma 16. Assume that p calls Announce(opptr, x) in att. Suppose that in the configuration CA imme-
diately after p returns from that call, att is active. Then, in configuration CA and every configuration that
follows in which oppptr → status 6= done, (x.A[opptr → owner]) = opptr.

Proof. Since att is active when p returns from Announce(opptr, x), the tests performed on lines 69 and 72
are successful. So, p performed LL(x→ A[q], opptr) on lines 68 and 71 respectively. Let CLL1 and CLL2 be
the configurations immediately after p performed line 68 and 71, respectively.

Let C be a configuration after p has returned from the call of Announce(opptr, x) in which opptr →
status 6= done. Assume, by contradiction, that (x.A[q]) = opptr′ in C, where opptr′ is a pointer to an
operation op′ 6= op. Let p′ be the last process that changes the value of x.A[q] to opptr′ before C. Therefore
p′ performed a successful SC(x.A[q], opptr′) on line 70 or line 73. This SC is preceded by a VL(opptr′ → status)
(on line 69 or line 72), which is itself preceded by a LL(x→ A[q]) (on line 68 or line 71). Denote by C ′SC , C

′
V L

and C ′LL, respectively, the configurations that immediately follow each of these steps. Since the VL applied
by p′ on (opptr′ → status) is successful, opptr′ → status = simulating in configuration C ′V L.

By Observation 10, opptr′ → owner = q. By Observation 9, in every configuration, there is only one
operation owned by q whose status is not done. Since op has status simulating when p started its attempt
and the status of op is not equal to done in C, it then follows from Observation 7 that the status of op′ is
done when the attempt att of op by p started. Therefore, configuration C ′V L, in which the status of op′ is
simulating, must precede the first configuration in which att is active. In particular, C ′V L precedes CLL1 and
thus C ′LL precedes CLL1.

We consider two cases according to the order in which CLL2 and C ′SC occur:

• C ′SC occurs before CLL2. In that case, no process performs a successful SC(x → A[q], opptr′′), where
opptr′′ is a pointer to an operation op′′ 6= op, after C ′SC and before C; this follows from the definition
of p′. Notice that the second SC(x→ A[q], opptr) performed by p on line 73 is executed after C ′SC , so
it cannot be successful. However, this SC is unsuccessful only if a process 6= p performs a successful SC
on x→ A[q] after CLL2 and before it, thus between C ′SC and C, which is a contradiction.

• CSC′ occurs after CLL2. Notice that C ′LL precedes CLL1 and p performs a SC(x.A[q],opptr) (on line
70) between CLL1 and CLL2. If this SC is successful, then the SC(x.A[q]),opptr’) performed by p′

immediately before CSC′ cannot be successful, which is a contradiction. Otherwise, another process
performs a successful SC on x.A[q] after CLL1 and before p performs the SC(x.A[q], opptr) on line 70,
which also prevents the SC performed by p′ from being successful, which is a contradiction.

Attempts of distinct operations may access the same varrecs. When an attempt att of op accesses a
varrec x for the first time by simulating ReadDI(x) or WriteDI(x, ), the operation is first announced to
x (on line 39) and then Conflicts(opptr, x) is called (on line 40, opptr is a pointer to op) to check whether
another attempt att′ of a distinct operation op′ is concurrently accessing x. If this is the case (line 78), op′ is
either restarted (on line 87) or helped (on lines 82, 88 or 89). Since when Help(op′) returns, the status of op′

is done (Observation 8), in both cases attempt att′ is no longer active when the call to Conflicts(opptr, x)
returns. This is precisely what next Lemma establishes.

Lemma 17. Let att, att′ be two attempts by two processes denoted p and p′, respectively, of two operations
op, op′ owned by q, q′, where q 6= q′, respectively. Let x be a varrec. Denote by opptr and opptr′ two pointers
to op and op′ respectively. Suppose that:

• in att, p calls Announce(opptr, x) and returns from that call,
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• in att′, p′ calls Conflicts(opptr′, x) (on line 40) and returns from that call; denote by C ′D the con-
figuration that follows the termination of Conflicts(opptr′, x) by p′.

• p′ returns from Announce(opptr′, x) after p returns from Announce(opptr, x).

Then, if att′ is active in C ′D, the following hold:

1. att is not active in C ′D;

2. if att is successful, opptr → status = done in C ′D.

Proof. Let CA denote the configuration immediately after p returns from Announce(opptr, x). Similarly,
denote by C ′A the configuration immediately after p′ returns from Announce(opptr′, x). We have that C ′A
occurs after CA, and C ′A occurs before p′ calls Conflicts(opptr′, x).

The proof is by contradiction. Let us assume that att′ is active in C ′D and either att is active in C ′D or att is
successful and opptr → status 6= done in C ′D. Consider the execution by p′ of the call Conflicts(opptr′, x),
which ends at configuration C ′D. In particular, as q′ = op′ → owner 6= op → owner = q, process p′ checks
whether an operation owned by q has been announced to the varrec pointed to by x (on line 76). We derive
a contradiction by examining the steps taken by process p′ in the iteration of the for loop in which x→ A[q]
is examined.

Let C be a configuration that follows CA and precedes C ′D or is equal to C ′D. We show that x→ A[q] =
opptr in C. On one hand, att is active in configuration CA and thus opptr → status = simulating in this
configuration. On the other hand, either att is still active in C ′D, or att is successful, but opptr → status 6=
done in C ′D. Therefore, by Observation 7, the status of op does not change between CA and C ′D or is changed
to 〈modifying, , 〉. Hence, opptr → status ∈ {simulating, 〈modifying, , 〉} in C.

In particular the configuration C ′RA that immediately precedes the read of x.A[q] by p′ (LL on line 77)
occurs after CA and before C ′D. C ′RA thus occurs after the call of Announce(opptr, x) by p returns, and the
status of op is not done in this configuration. Therefore, by applying Lemma 16, we have that A[q] = opptr
in C ′RA.

As attempt att′ is active in C ′D, it is active when p′ performs Conflicts(opptr′, x). In particular, each
VL on opptr′ → status performed by p′ (on line 80 or 86) in the execution of Conflicts(opptr′, x) returns
true. Therefore, p′ reads the status of the operation pointed to by oppptr (LL(opptr → status) on line 79).
In the configuration to which this LL is applied, which occurs between CA and C ′D, the status of op is either
simulating or 〈modifying, , 〉 for what above stated.

We consider two cases, according to the value read from opptr → status by p′:

• The read of opptr → status by p′ returns 〈modifying, , 〉. In that case, p′ calls Help(opptr) (line
82). In the configuration C in which p′ returns from this call, opptr → status = done (Observation 8).
As C is C ′D or occurs prior to C ′D, but after CA, and the status of op is never changed to done between
CA and C ′D, this is a contradiction.

• The read of opptr → status by p′ returns simulating (line 83). We distinguish two sub-cases according
to the relative priorities of op and op′:

– q′ < q, i.e., op′ has higher priority than op. In this case, p′ tries to change the status of op to
〈restart, 〉 by performing a SC on opptr → status with parameter 〈restart, opptr′〉 (line 87). The
SC is performed in a configuration that follows CA and that precedes C ′D. The SC cannot succeed.
Otherwise there is a configuration between CA and C ′D where opptr → status is 〈restart, opptr′〉.
This contradicts the fact that the status of op is simulating or 〈modifying, , 〉 in every config-
uration between CA and C ′D. Therefore, opptr → status has been changed to 〈modifying, , 〉
before the SC is performed by p′. Thus, p′ calls Help(opptr) (on line 88) after performing the
unsuccessful SC. When this call returns, opptr → status = done (Observation 8) which is a
contradiction.
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– q < q′. In that case, p′ calls Help(opptr). As in the previous case, a contradiction can be
obtained, since when p′ returns from this call, opptr → status = done (Observation 8), and p′

returns from the call to Help(opptr) before C ′D.

In an attempt of op, a new varrec is created each time a CreateDI() instruction is simulated on line
44. For such a varrec to be later accessed in another attempt, a pointer to it must be either written to the
val field of another varrec, or passed as an input parameter to an operation. Moreover, when the varrec

is accessed, the status of the operation op is done.

Lemma 18. Suppose that in att, p creates a varrec x. If an instruction ReadDI(x) or WriteDI(x, )
is simulated in an attempt att′ of an operation op′ 6= op, then op → status = done in the configuration
preceding the beginning of the simulation of this instruction.

Proof. Recall that x is allocated to a new shared memory slot (on line 44) and then a dictrec with key a
pointer to x is added to the dictionary associated with att (on line 46). While att is active, the dictionary
associated with it is private. Hence, in order for a WriteDI() or ReadDI() with parameter x to be simulated
in att′, the dictionary associated with att has to be made public, which can occur only if att is successful.
Moreover, there is a varrec x′ created by att such that x′ is written to a varrec that is not created by att,
or it is returned by op. This is so, since otherwise, no varrecs created in att can be accessed in any attemp
other than att, which contradicts the fact that x is accessed by att′. In the second case, the code (lines 23
and 26) and Observation 8 imply that opptr → status = done before a pointer to x is passed as a parameter
to op′, that is before att′ simulates an access on x; so, the claim holds. We continue with the first case.
Denote by W the set of varrecs that are written by att but have not been created by it.

In att′, an instruction WriteDI(x, ) or ReadDI(x) is simulated. Since x is a dynamic varrec, this
instruction is preceded by a simulation of a ReadDI() instruction on some data item not created by att′

that returns a pointer to x. Assume that the first such instruction R has parameter y. We argue that R is
the first access of y by att′. This is so since a copy of y is inserted into the dictionary of att′ the first time
it is accessed by att′ and any subsequent access of y by att′ returns the value written in the dictionary.

1. y ∈W . Note that y is neither created in att nor in att′ but accessed in both attempts. Therefore, Obser-
vation 15 implies that the first time it is accessed in att, Announce(opptr, y) and Conflicts(opptr, y)
are called (lines 39–40). Both calls terminate, as att is successful. Denote by CA and CD the con-
figurations that follow the termination of Announce(opptr, y) and Conflicts(opptr, y), respectively.
Notice that att is active in CD. This is due to the fact that att remains active until the SC on line 52
that changes the status of op to 〈modifying, , 〉 is applied.

Similarly, Observation 15 implies that Announce(opptr′, y) and Conflicts(opptr′, y) are called when
att′ simulates ReadDI(y). Both calls terminate, since the simulation of ReadDI(y) by att′ returns a
value. Denote by C ′A and C ′D the configurations that follow the termination of Announce(opptr′, y)
and Conflicts(oppptr′, y), respectively. Note that att′ is active in C ′D since another instruction,
namely, ReadDI(x) or WriteDI(x, ), is simulated later, and the status of op′ is validated before a
new instruction is simulated (line 49).

If CA occurs before C ′A, it follows from Lemma 17 that opptr → status = done in C ′D. Therefore, by
Observation 7, the status of op is done when the simulation of ReadDI(x) or WriteDI(x, ) starts in
att′. Otherwise, C ′A occurs before CA. In that case, it follows from Lemma 17 that att′ is not active
in CD. Since the SC on line 52 by att is executed after CD and x becomes visible to other attempts
only after this SC, it is not possible for att′ to access x, which is a contradiction.

2. y /∈ W . In this case, a pointer ptrx to x is written to y.val before y.val is read in att′. This means
that in an attempt att′′ 6∈ {att, att′}, an instruction WriteDI(y, ptrx) is simulated. Moreover, as in
att′, this instruction is preceded by the simulation of a ReadDI() instruction that returns x. We
apply inductively the same reasoning to att′′ to prove the Lemma. In each induction step, the number
of configurations between the creation of x (in att) and the first time a ReadDI() that returns x is
simulated in the attempt considered strictly decreases. This ensures the termination of the induction
process.
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Next lemma establishes that in every configuration, no two operations that are in their modifying phase
reference the same varrec. This lemma plays a central role in the definition of the state of the data structure
at the end of a prefix of the (concurrent) execution.

Lemma 19. Let op, op′ denote two distinct operations, and let C be a configuration. Suppose that in C,
op → status = 〈modifying, chgs, 〉 and op′ → status = 〈modifying, chgs′, 〉, where chgs and chgs′ are
pointers to dictionaries d and d′ respectively. Then there is no dictrec with the same key in both d and d′.

Proof. Assume, by contradiction, that dictionaries d and d′ have a dictrec whose key field points to the
same varrec x in configuration C. Since every process owns at most one operation with status 6= done in
every configuration (Observation 9), op→ owner 6= op′ → owner.

Consider a process that changes the status of op to 〈modifying, chgs, 〉. This occurs when this process
performs a SC on op→ status (on line 52). Since once the status of an operation is 〈modifying, , 〉, it can
only change to done (Observation 7), and for this SC to be successful, the status of op must be simulating
in the configuration in which it is applied, there is a unique such process. Denote by p this process. Before
changing the status of op to 〈modifying, chgs, 〉, p performs a (successful) attempt of op (lines 36 - 50).
Denote att this attempt. Note that the dictionary associated with att is d. Hence, a dictrec 〈x, 〉 is added
to d during att. Define similarly attempt att′ by process p′, the successful attempt of op′ that ends with the
SC that changes the status of op′ to 〈modifying, chgs′, 〉. As in att, a dictrec 〈x, 〉 is added to d′ in att′.

We consider two cases, according to the instructions simulated when a dictrec with a pointer ptrx to x
is added in att or att′.

• In both att and att′, some dictrec with key x is added to d when a ReadDI(x) or WriteDI(x, )
is simulated. By the code, p calls in att Announce(opptr, x) and Conflicts(opptr, x) (on lines 39
and 40, respectively) before adding a dictrec 〈ptrx, 〉, to its dictionary (on line 42), where opptr
is pointing to op. Similarly, p′ calls in att′ Announce(opptr′, x) and Conflicts(opptr′, x), where
opptr′ is a pointer to op′, and p′ returns from both calls. Assume without loss of generality that p′

returns from Announce(opptr′, x) after p returns from Announce(opptr, x) by p. Denote by C ′D the
configuration immediately after p′ returns from Conflicts(opptr′, x). As att′ is a successful attempt,
whose end occurs when p′ changes the status of op′ to 〈modifying, , 〉, att′ is active in C ′D.

Therefore, by Lemma 17, att is not active in C ′D and, since att is a successful attempt, the status of op
is done in this configuration. This contradicts the fact that the status op and op′ is 〈modifying, , 〉
at C that folows C ′D.

• A dictrec with key x is added to d or d′ when a CreateDI() is simulated. Whenever a new varrec

is created (on line 44), a distinct shared memory slot is allocated to this varrec. A dictrec record
〈ptrx, 〉 cannot thus be added in both d and d′ at line 46 when a CreateDI() instruction is simulated.

Suppose without loss of generality that, in att, 〈x, 〉 is added to d on line 46, as a result of the simulation
of a CreateDI() instruction. ptrx is thus added to d′ the first time a ReadDI(x) or WriteDI(x, )
instruction for op′ is simulated by p′ in att′. By Lemma 18, op status is done in the configuration
immediately before the simulation of this instruction begins. Therefore there is no configuration in
which the status of op and op′ is 〈modifying, , 〉: a contradiction.

Suppose that att is a successful attempt of op. Hence, the status of op is changed just after att to
〈modifying, chgs, 〉. The changes resulting from the instructions simulated in att are stored in the dictionary
pointed to by chgs. While the status of op is 〈modifying, chgs, 〉, some processes try to apply these changes
by modifying the value of the varrecs referenced by op (on lines 54–64). Next lemma establishes that the
changes described by the dictionary pointed to by chgs are successfully applied by the time that the status
of op is changed to done.

Lemma 20. Suppose that CM is the last configuration in which the status of op is 〈modifying, chgs, 〉,
where chgs is a pointer to a dictionary d of dictrecs. Let C be a configuration that follows CM . For
every dictrec 〈ptrx, v〉 in d, where ptrx is a pointer to a varrec x, ptrx → val = v in C or there exists a
configuration C ′ following CM and preceding C and an operation op′ such that op′ is referencing x in C ′.
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Proof. Let p be the process that successfully performs SC(op → status, done) on line 63 just after CM .
Suppose that in every configuration C ′ following CM and preceding C, no operation references x. Assume,
by contradiction, that ptrx → val = v′ 6= v in C.

Consider the steps performed by p in the execution of the iteration of the for loop (lines 57 - 62) that
corresponds to the dictrec 〈ptrx, v〉. Notice that these steps precede CM . In this iteration, p tries to
change the val of x to v. Since p is the process that changes the status of op to done, it follows that p
does not return on lines 58 and 61. Thus, p executes two SC instructions SC1 and SC2 on lines 59 and 59,
respectively; let LL1 and LL2 be the matching LL instructions to these SC. Notice that, for each i ∈ {1, 2},
there is a successful SC between LLi and SCi. Let SC′i be this successful SC (notice that SC′i may be SCi if SCi
is successful).

Since ptrx → val = v′ 6= v in configuration C, some process changes ptrx → val to v′. Let p′ be the last
process that changes ptrx → val to v′ prior to C. By the code, p′ performs successfully SC(ptrx → val, v′)
on line 59 or 62; denote by SC′ this SC and let LL′ and VL′ be its mathing LL and VL (which are executed on
lines 57 and 58 or 60 and 61), respectively. Since ptrx → val = v′ 6= v in C, either SC′ = SC′2 or SC′ occurs
after SC ′2.

The status of op′ when V L′ is executed is 〈modifying, chgs′, 〉, where chgs′ is a pointer to a dictionary
that includes a dictrec 〈x, v′〉, thus op′ references x when V L′ is executed. Since we have assumed that no
operation references x in any configuration between CM and C, V L′ precedes CM . By Lemma 19, x cannot
be referenced by two operations at the same time. Hence, V L′ occurs before the status of op is changed to
〈modifying, chgs, 〉. In particular, V L′, and therefore also LL′ precedes LL1. Since SC ′ is realized at SC ′2
or after it, SC′1 occurs between LL′ and SC′. Thus, SC′ is not successful. This is a contradiction.

Recall that the state of a sequential data structure is a collection of pairs (x, v) where x is a data item
and v is a value for that data item. The state of the data structure we consider does not depend on where
its data items are stored, so by the value of a pointer we mean which object it points to and not the location
of that object in shared memory. The initial state of a sequential data structure consists of its static data
items and their initial values.

Initially, there is one varrec for each static data item of the data structure. Each varrec that is created
(on line 44) becomes a public dynamic data item if the attempt that creates it is successful. The current value
of a varrec in a configuration is the value of its val field, unless the varrec is referenced by an operation
op, in which case it is the newval field in dictrec, the dictionary contained in op’s status, whose key points
to this varrec. Note that, by Lemma 19, in each configuration, each varrec is referenced by at most one
operation.

Recall that a varrec is public in configuration C if it corresponds to a varrec of a static data item or
there exists a configuration C ′ equal to C or preceding it in which it is referenced by an operation. For
every configuration C in α, denote by DC the set of pairs (x, v), where x is a public varrec and v is its
current value in C. Notice that D0 = S0, where S0 is the initial state of the data structure. We establish in
Theorem 24 that, after having assign linearization points to operations, DC is the state of the data structure
that results if the operations linearized before C are applied sequentially, in order, starting from the initial
state, i.e., that DC = SC .

If an attempt by p of an operation op is active in configuration C, we define the local state of the data
structure in C for the operation and the process that performs the attempt as follows.

Definition 21. For every configuration C and every operation op, if an attempt att by p of op is active in
C, the local state LS(C, p, op) of the data structure in configuration C for att is the set of pairs (x, v) such
that, in configuration C:

• the dictionary associated with att contains a dictrec 〈x, v〉 or,

• the dictionary associated with att does not contain any dictrec with key x and (x, v) ∈ DC .

The goal is to capture the state of the data structure after the instructions simulated so far in att are
applied sequentially to DC . We will indeed establish in Theorem 24 that LS(C, p, op) is the state of the data
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structure, resulting from the sequential application of the instructions of att simulated thus far by p to SC .
Operations are linearized as follows:

Definition 22. Each operation is linearized at the first configuration in the execution at which its status is
〈modifying, , 〉.

By the code and the way the linearization points are assigned, it follows that:

Lemma 23. The linearization point of each operation is within its execution interval.

We continue with our main theorem which proves consistency.

Theorem 24 (Linearizability). Let C be any configuration in execution α. Then, the following hold:

1. DC = SC .

2. Let att be an attempt of an operation op by a process p that is active in C and let τ be the sequence
of instructions of op that have been simulated by p until C. Denote by ρ the sequence of the first |τ |
instructions in a sequential execution of op starting from state SC . Then, ρ = τ and LS(C, p, op) =
SCτ , where SCτ is the state of the data structure if the instructions in τ are applied sequentially
starting from SC .

The proof of Theorem 24 relies on the following lemma.

Lemma 25. Let att denote an attempt by p of some operation op. Suppose that in att, x→ val is read by
p while an instruction ReadDI(x) is simulated (line 41), let r be this read of x → val, let v be the value
returned by r, and denote by Cr the configuration immediately before this read. Then, in every configuration
C such that C is Cr or some configuration that follows Cr and att is active at C, v is the value of x in DC .

Proof. Assume, by contradiction, that in some configuration Cb between Cr and C, the value of x in SCb
is

not v. Denote by C ′ the first such configuration, and let v′ be the value of x in SC′ . Note that C ′ may be
configuration Cr.

By definition of SC′ , v
′ is the current value of x in SC′ if either there exists an operation op′ whose status

is 〈modifying, chgs′, 〉 where chgs′ is pointing to a dictionary that contains a dictrec with key x or no
such operation exists and v′ = x→ val.

In configuration Cr, which is equal to C ′ or precedes C ′, x→ val = v 6= v′. Since in every configuration
C ′′ between Cr and C ′ (if any), the value of x is v in SC′′ , there exists an operation op′ whose status
is 〈modifying, chgs′, 〉 where chgs′ is pointing to a dictionary that contains a dictrec with key x. By
Lemma 19, op′ is unique.

Let p′ be the process that changes the status of op′ from simulating to 〈modifying, chgs′, 〉. Notice that
this occurs before C ′. By the code, it follows that p′ calls Announce(opptr′, x) and Conflicts(opptr′, x)
where opptr′ is pointing to op′. Denote by C ′A and C ′D the configurations in which p′ returns from An-
nounce(opptr′, x) and Conflicts(opptr′, x), respectively. Notice that C ′A and C ′D precede C ′.

By the code it follows that before reading x→ val, p calls Announce(opptr, x) and Conflicts(opptr, x)
where opptr is pointing to op. Denote by CA and CD the configurations in which p returns from An-
nounce(opptr, x) and Conflicts(opptr, x), respectively. Notice that CA and CD precede CR and therefore
also C ′.

We consider two cases based on the order in which CA and C ′A occur.

• C ′A occurs after CA. By Lemma 17, att is not active in C ′D. This is a contradiction, since att is active
in configurations CA and C, and C ′D occurs between C ′A (which, by assumption, follows CA) and C.

• CA occurs after C ′A. The attempt of op′ by p′ in which it calls Announce(opptr′, x) and Con-
flicts(opptr′, x) is successful, since p′ is the process that changes the status of op′ to 〈modifying, , 〉.
Thus, it follows from Lemma 17 that the status of op′ in CD is done, contradicting the fact that op′

status is 〈modifying, , 〉 at C ′ that occurs later.
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We finally prove Theorem 24.

Proof. The proof is by induction on the sequence of configurations in α. The claims are trivially true for the
initial configuration C0. Suppose that the claims is true for configuration C and every configuration that
precedes it. Let C ′ be the configuration that immediately follows C in α.

We first prove claim 1. If no operation has its status changed to 〈modifying, , 〉 between C and C ′, then
DC′ = DC = SC . This follows from the definition of DC , Lemma 20, and the induction hypothesis (claim
1). Otherwise, denote by op the operation whose status is changed to 〈modifying, chgs, 〉 in C ′. The status
of op is changed by a SC performed by some process p on line 52. This SC ends a (successful) attempt att of
op by p. Then, in configuration C ′, the dictionary pointed to by chgs is the dictionary associated with att.
Hence, by definition of DC′ and LS(C, p, op), DC′ = LS(C, p, op). By the inductive hypothesis (claim 2),
LS(C, p, op) = SCτ , where τ is the sequence of instructions simulated by att until C. Notice that the last
instruction of τ is the last instruction of op and op is the only operation that is linearized at C ′. Thus, by
definition of SC′ , it follows that SCτ = SC′ . Since LS(C, p, op) = SCτ , and DC′ = LS(C, p, op), it follows
that DC′ = SC′ , as needed by claim 1.

Since by claim 1, DC′ = SC′ , it follows that for each data item in SC′ there is a unique varrec in DC′

that corresponds to this data item and vice versa. So, in the rest of proof, we sometimes abuse notation and
use x to refer either to a varrec in DC′ or to a data item in SC′ .

We now prove claim 2. Let att be an attempt by p of some operation op. If att is not active in C but
is active in C ′, the step preceding C ′ is a LL that reads the status of op (on lines 28, 33, 53 or 64). In that
case, no step of op has been simulated until C ′, so ρ and τ are empty and by definition, LS(C ′, p, op) = SC′ .
So, claim 2 holds trivially in this case.

In the remaining of the proof, we assume that att is active in both C and C ′. Denote by τ and τ ′ the
sequences of instructions of op simulated in att until C and C ′, respectively. Let dC and dC′ be the values
of the dictionary d that is associated with attempt att, in configurations C and C ′, respectively.

We argue below that two properties, called P1 and P2 below, which are important ingredients of the
proof, are true:

P1 Let Ci be either C or a configuration that precedes C in which att is active. Let τi be the sequence
of instructions that have been simulated in att until Ci. If x is a varrec such that ReadDI(x) is the
first access of x in τi then the value of x is the same in states SCi and SC′ .

To prove P1, denote by v the value returned by the simulation of the first ReadDI(x) in τi. Notice
that this is also the value read on line 41 when ReadDI(x) is simulated in att. Also, since ReadDI(x) has
been simulated by Ci, it follows that this read precedes Ci. Since att is active in configurations Ci and C ′,
Lemma 25 implies that v is the value of x in both states SCi and SC′ .

P2 Let Ci be either C or a configuration that precedes C in which att is active. Denote by dCi
the value

of d in Ci and by τi the sequence of instructions that have been simulated in att until Ci. A dictrec

〈x, v〉 is contained in dCi if and only if x has been accessed in τi and v is the value of x in SCiτi.

To prove P2, notice that by the code, a dictrec with key x is added to d if and only if an instruction
accessing x is simulated (on lines 42 or 46). By the induction hypothesis for Ci (claim 2), SCiτi is well
defined and LC(Ci, p, op) = SCi

τ . Thus, by the definition of LC(Ci, p, op), 〈x, v〉 is contained in dCi
if and

only if x has been accessed in τi and v is the value of x in SCi
τi.

Fix any x that att has accessed for the first time by performing ReadDI(x). Property P1 implies that
x has the same value in SC and SC′ . Since we have assumed that operations are deterministic and the
state of the data structure does not depend on where its data items are stored, it follows that the first |τ |
instructions of op are the same and return the same values, independently of whether they are applied in a
sequential execution starting from SC or from SC′ . Since, by the induction hypothesis (claim 2), τ is the
same sequence as that containing the first |τ | instructions of op executed sequentially starting from state
SC , τ is also the same as the sequence of first |τ | instructions of op executed sequentially starting from state
SC′ . Thus, if τ = τ ′, claim 2 follows.
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Assume now that τ and τ ′ differ, i.e., τ ′ = τ · ins. Let C ′′ be the configuration immediately before the
simulation of ins starts. If the simulation of ins starts on line 36, that is, τ is the empty sequence and thus
τ ′ = ins and ins is the first instruction of op executed. Thus, ins is the first instruction of op when executed
sequentially starting from state S′C . Otherwise, the simulation of ins starts on line 50. In C ′′, the sequence
of instructions of op that have been simulated is τ . The fact that it is instruction ins that is simulated next
depends on the input of op, the value dC′′ of the dictionary d in configuration C ′′ and op’s program. On
the other hand, in a sequential execution, the instruction of op that follows τ depends only on the input of
op, the value of each data item accessed in τ after τ has been applied, and op’s program. By property P2
applied to C ′′, d contains in C ′′ a dictrec 〈x, v〉 if and only if x is accessed in τ and v is the value of x in
SC′′τ . Therefore ins is the instruction of op that follows τ in any sequential execution in which op is applied
to SC′′ .

Moreover, in a sequential execution of op starting from state SC′ , τ is also the sequence of the first
instructions of op. Hence, the same data items are accessed by the first |τ | instructions of op, regardless of
whether op is applied to SC′′ or SC′ . Moreover, by property P1 applied to C ′′ and the fact that program of
op is deterministic, each of these data items have the same value in SC′′τ and SC′τ . Therefore, ins is also
the next instruction of op following τ in any sequential execution in which op is applied to SC′ . We thus
conclude that the first |τ ′| instructions of op when executed starting from state SC′ in a sequential execution
is τ ′.

By the code, a dictrec with key x is added to d if and only if an instruction accessing x is simulated (on
lines 42 or 46). Hence, in configuration C ′, there is a dictrec with key x in d if and only if x is accessed in
τ ′ when op is applied to SC′ in a sequential execution. Therefore, the set of varrecs in LC(C ′, p, op) is the
same as the set of data items in the state SC′τ

′. Consider two pairs (x, v) ∈ LC(C ′, p, op) and (x, u) ∈ SC′τ
′.

To complete the proof that LC(C ′, p, op) = SC′τ
′, we show that u = v:

• There is no dictrec with key x in d in configuration C ′, or equivalently, x is not accessed by any
instruction of τ ′ when op is applied to SC′ in a sequential execution. Then the value of x in LC(C ′, p, op)
is the value of x in SC′ which is the value of x in SC′τ

′.

• τ ′ = τ or τ ′ = τ · ins but x is not accessed by ins. In that case, the value v of x in LC(C ′, p, op) is
also the value of x in LC(C ′, p, op). By the induction hypothesis, v is also the value of x in SCτ . Since
τ = τ ′ or ins is not accessing x, v is also the value of x in SC′τ

′.

• τ ′ = τ · ins and x is accessed by ins. If ins is ReadDI(x) and x is not accessed in τ , it follows from
Lemma 25 and the fact that att is active in C ′ that v is the value of x in SC′ . Thus v is also the value
of x in SC′τ

′. If ins is ReadDI(x) but x is accessed in τ , x has the same value in LS(C, p, op) and in
LS(C ′, p, op). Since x has also the same value in SC′τ

′ and SCτ , it follows by the induction hypothesis
that x has the same value in LS(C ′, p, op) and SC′τ

′.

Finally, if ins = WriteDI(x, v) or ins is a CreateDI() that creates x, x has the same value (v or nil
if ins = CreateDI()) in both LC(p, C ′, op) and SC′τ

′.

6.3 Wait Freedom

Consider any sequential data structure and suppose there is a constantM such that every sequential execution
of an operation applied to the data structure starting from any (legal) state accesses at most M data items.
Then we will prove that, in any (concurrent) execution α of our universal construction, DAP-UC, applied to
the data structure, every call of Perform by a nonfaulty process eventually returns.

Observation 26. For every oprec, tohelp[p′] is initially nil and is only changed to point to oprecs with
owner p′.

This follows from the fact that tohelp[p′] is initialized to nil when the oprec is created (on line 22) and when
it is updated (on line 85), opptr′ points to an oprec whose owner is p′, by Observation 10 (line 77).
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We say that op restarts op′ in an execution if some process calls Conflicts(opptr, x), where opptr points
to op and x points to a varrec, and successfully performs SC(opptr′ → status, 〈restart, opptr〉) (on line 87),
where opptr′ points to op′. Note that, by line 84, this can only happen if the owner of op has higher priority
(i.e. smaller identifier) than the owner of op′. Thus, an operation cannot restart another operation that has
the same owner. Next, we show that an operation cannot restart more than one operation owned by each
other process.

Lemma 27. For any operation op and any process p other than its owner, there is at most one time that
op restarts an operation owned by p.

Proof. Suppose operation op has restarted operation op′ owned by process p. Before any process can change
the status of op′ from 〈restart, opptr〉 back to simulating (on line 32), where opptr is a pointer to op, it
performs Help(opptr) on line 31. When this returns, the status of op is done, by Observation 8.

Consider any process q performing Help(opptr) with opptr pointing to op, after the status of op has been
set to done. If, when it performs LL on line 79, q sees that op′ has status simulating, it will see that the
status of op is done, when it performs line 86. Hence, q will not restart op′ on line 87.

Conversely, we show that an operation cannot be restarted more than twice by operations owned by a single
process.

Lemma 28. For any operation op′ and for any process p other than its owner, at most two operations owned
by p can restart op′.

Proof. Let S be the set containing those operations initiated by p that restart op′, which is owned by process
p′ 6= p. Let opptr′ be a pointer to the oprec record of op′. Let |S| = k and assume, by the way of
contradiction, that k > 2. Let opi ∈ S, 1 ≤ i ≤ k, be the i-th operation that restarts op′ when a process
qi executing an attempt of opi successfully executes the SC on line 87 for op′; let opptri be a pointer to the
oprec record of opi. Before doing so, qi set opptri → tohelp[p′] = opptr′ (on line 85) and then checked that
the status of opi was still simulating (on line 86); thus, opptri → tohelp[p′] is written before the completion
of opi.

Lemma 27 implies that opi will not restart any other operation owned by process p′. Recall that p
does not call Perform recursively, either directly or indirectly; so, before opi+1 is initiated by p, p’s call
of Perform(opptri) should respond (on line 26). Before this response, p reads opptri → tohelp[p′] on
line 25. Since, the call of Help(opptri) by p (on line 23) has responded before this read, Observation 8
implies that this read is performed after the status of opi changed to done; thus, it is performed after qi set
opptri → tohelp[p′] = opptr′.

If in the meantime the value of opptri → tohelp[p′] has not changed, then p calls Help(opptr′). By
Observation 8, the status of op′ is done when this call responds. Thus, any subsequent operation owned
by p will see the status of op′ is done and will not restart it. So, it should be that in the meantime some
process q′i set opptri → tohelp[p′] = opptr′i, where opptr′i 6= opptr′, while executing an attempt of opptri.
Observation 26 implies that opptr′i points to the oprec record of some operation op′i initiated by p′; op′i
should be initiated by p′ before op′, since otherwise Observation 9 implies that the status of op′ has changed
to done (so, any subsequent operation owned by p will see the status of op′ is done and will not restart
it). Observation 26 implies that the status of any operation initiated by p′ before opptr′ (including opptr′i),
changed to done before the initiation of opptr′, that is before qi sets opptri → tohelp[p′] = opptr′, that is
before p reads opptri → tohelp[p′] (on line 25), that is before p initiates opptri+1.

Now consider any j, 1 < j ≤ k. Notice that q′j reads opptr′j on line 77 and before it executes line 85,
which sets opptrj → tohelp[p′] = opptr′j , it reads the status of opptr′j (on line 79) and checks whether it
is still simulating (on line 83). Since, this read is performed after the initiation of opptrj , it follows that
before it the status of opptr′j has changed to done. So, the check fails and line 85 is not executed; that is a
contradiction.

From Lemmas 27 and 28, we get the following result.
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Corollary 29. An operation can be restarted at most 2 ∗ (n− 1).

Next, we bound the depth of recursion that can occur.

Lemma 30. Suppose that, while executing Help(opptri), a process calls Help(opptri+1), for 1 ≤ i < k.
Then k ≤ n.

Proof. Process p may perform recursive calls to Help(opptr′) on lines 31, 82, 88, and 89. If p calls
Help(opptr′) recursively on line 82 or 88, then, by Observation 7, opptr′ → status is either modifying
or done, so, this recursive call will eventually return without itself making recursive calls to Help.

By line 77 and Observation 10, when line 84 is performed, opptr′ → owner = p′. From line 84, if p calls
Help(opptr′) recursively on line 89, then opptr → owner > opttr′ → owner.

If opptr′ → status = 〈restart, opptr〉, then, from lines 87 and 84, opptr → owner < opttr′ → owner.
Hence, if p calls Help(opptr′) recursively on line 31, opptr → status = 〈restart, opptr′〉, so, again, opptr →
owner > opttr′ → owner.

Thus, in any recursively nested sequence of calls to Help, the process identifiers of the owners of the
operations with which Help is called is strictly decreasing, except for possibly the last call. Therefore
k ≤ n.

Lemma 31. Every call of Help(opptr) by a nonfaulty process eventually returns.

Proof. Consider any call of Help(opptr) by a nonfaulty process p where opptr points to op. Immediately
prior to every iteration of the while loop on lines 29–63 during Help(opptr), process p performs LL(opptr →
status) on line 28, 33, 53, or 64.

If op has status done at the beginning of an iteration, Help(opptr) returns immediately. If opptr has
status modifying, no recursive calls to Help are performed during the iteration. Then, Observation 15 and
Theorem 24 (item 1) imply that the dictrecs in a dictionary have different keys (i.e. point to different
varrecs) and correspond to different data items accessed by a sequential execution of op applied to the data
structure (lines 38, 42, and 46). Thus, the total number of dictrecs in a dictionary is bounded above by M
and, so, at most M iterations of the for loop on lines 56–62 are performed. Hence Help(opptr) eventually
returns.

If opptr has status restart, then, during an iteration of the while loop, p performs one recursive call to
Help (on line 31) and, excluding this, performs a constant numbers of steps.

Finally, suppose that opptr has status simulating at the beginning of an iteration. Theorem 24 (item
2) implies that p simulates a finite number of instructions while it is executing an active attempt of op.
After this attempt becomes inactive, the test on line 49 evaluates to true during this iteration, so p may
simulate at most one more instruction during this iteration; so, the number of instructions is finite. For
each instruction in its program, p performs one iteration of the while loop on lines 37–50, in which it takes
a constant number of steps, excluding calls to Conflicts. Observation 15, Theorem 24 (item 2), and the
definition of M , imply that Conflicts can be called at most M times during an active attempt of op. Then,
Theorem 24 (item 2) imply that process p performs a constant number of steps and at most one recursive
call to Help (on line 82, 88, or 89) each time it calls Conflicts. Thus, excluding the recursive calls to
Help, this iteration of the while loop on lines 29–63 eventually completes.

If p does not return on line 65 after exiting from the while loop or on line 58 or 61, it tries to change
opptr → status via an SC on line 32, 52, or 63. Therefore, each time p performs an iteration of the while
loop on lines 29–63, opptr → status changes. It follows from Observation 7 and Corollary 29 that p performs
at most 2n complete iterations of this while loop during Help(opptr).

By Lemma 30, the depth of recursion of calls to Help is bounded. Therefore, the call of Help(opptr)
by p eventually returns.

Finally, we prove wait freedom:

Theorem 32. Every call of Perform by a nonfaulty process eventually returns.
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Proof. Consider any call of Perform by a nonfaulty process. In Perform, the process calls Help at most n
times (excluding recursive calls), each time for an oprec owned by a different process It follows from Lemma
31 that all these instances of Help eventually return. Thus, this call of Perform eventually returns.

6.4 Disjoint access parallelism

As in the other part of the proof, we consider an execution α of our universal construction applied to some
data structure. Recall that the execution interval Iop of an operation op starts with the first step of the
corresponding call to Perform() and terminates when this call returns. In the following to simplify the
presentation we denote Perform(op) the call to Perform corresponding to operation op.

Let Cop be the configuration immediately after p performs line 22, that is, immediately after an oprec

has been initialized for op, and let C ′op be the first configuration at which the status of op is 〈modifying, , 〉.
Note that Ci′ is the configuration at which op is linearized, see Definition 22.

Let S = {SC | C is between Cop and C ′op}. Then, for the data set DS(op) of op, it holds that DS(op) =
∪SC∈S{set of data items accessed by op when executed sequentially starting from SC}.

We recall also the definition of the conflict graph of an execution interval I. The conflict graph is
an undirected graph, where vertices represent operations whose execution interval overlaps I and an edge
connects two operations whose data sets intersect. Given two operations op and op′, we denote by CG(op, op′)
the conflict graph of the minimal execution interval that contains Iop and Iop′ . Finally, recall that we say
that two processes contend on a base object b if they both apply a primitive on b, and at least one of these
primitives is non-trivial.

Recall that an attempt of an operation op by a process p is a longest execution interval that begins when
p performs LL on op→ status on line 28, 33, 53 or 64 that returns simulating and during which op→ status
does not change.

Lemma 33. When Announce(opptr, x) is called, the data item x is in the data set of the operation to
which opptr points.

Proof. Let C be the configuration before p calls Announce(opptr, x) at which p last performs an LL or a
successful VL on opptr → status (on lines 28, 33, or 49). By the code, such a configuration C exists, and if p
performs an LL at C, this LL returns simulating. Hence, an attempt att of op by p, the operation pointed to
by opptr, is active in configuration C. It thus follows from Theorem 24(2) that the sequence of instructions τ
of op that have been simulated before C is the same as in a sequential execution of op applied to SC . Hence,
as in the concurrent execution, Announce(opptr, x) is called in a simulation of a write to or of a read from
x following τ , x is also accessed in the sequential execution of the first instructions τ of op applied to SC .
Therefore, x ∈ DS(op).

Inspecting the code of Announce, we then obtain:

Corollary 34. If x→ A[p] 6= nil, then the data item x is in the data set of the operation to which x→ A[p]
points.

Observation 35. If a process executes a successful VL(opptr → status) while performing
Announce(opptr, x) or Conflicts(opptr, x), then the oprec to which opptr is pointing has status
simulating.

This is because a process only calls Announce(opptr, x) (on line 39) and Conflicts(opptr, x) (on line
40) if opptr → status was simulating (line 34) when p last executed LL(opptr → status) (on line 28, 33, or
53).

When helping an operation op, process p may starts helping another operation op′. This occurs for
example when a conflict between the two operations is discovered by p, that is, when the two operations
access the same varrec. Next Lemma shows that indeed, when p calls Help(op′) while executing Help(op),
the datasets of op and op′ share a common element.
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Suppose that p calls Help(opptr) and Help(opptr′), where opptr and opptr′ are pointers to operations
op and op′, respectively. Denote by I the execution interval of Help(opptr). We say that Help(opptr′) is
directly called by p after Help(opptr) if p calls Help(opptr′) in I and every other call to Help previously
made in by p in I has returned when Help(opptr′) is called by p .

Lemma 36. If Help(opptr′) with opptr′ pointing to op′ is called directly by p after calling Help(opptr)
with opptr pointing to op, then DS(op) ∩DS(op′) 6= ∅.

Proof. In an instance of Help(opptr) by p, where opptr is pointing to op, Help(opptr′) with opptr′ pointing
to op′ may be called on line 31, when p discovers that op has been restarted, or in the resolution of the
conflicts for some varrec x, when p executes Conflicts(opptr, x) (lines 82, 88 or 89). We consider these
two cases separately:

• Help(opptr′) is called in the execution of Conflicts(opptr, x). Before calling Conflicts(opptr, x),
p calls Announce(opptr, x) (line 39). Therefore, it follows from Lemma 33 that x ∈ DS(op). For
Help(opptr′) to be called in Conflicts(opptr, x), opptr′ is read from x→ A[q′], where q′ is the owner
of op′ (LL on line 77). Hence, op′ has been previously announced to x, from which we conclude by
corollary 34 that x ∈ DS(op′).

• Help(opptr′) is called on line 31. This means that some process p′ has changed the status of op to
〈restart, opptr′〉 (SC on line 87). p′ thus calls Conflicts(opptr′, x) for some varrec x in which it
applies a successful SC(opptr, 〈restart, opptr′〉). By the code of Conflicts, this implies that opptr is
read from x → A[q], where q is the owner of op (LL on line 77). Thus, op has been announced to x,
from which we have by Corollary 34 that x ∈ DS(op). Moreover, p′ calls Conflicts(opptr′, x) after
returning from a call to Announce(opptr′, x). Hence, by Lemma 33, x ∈ DS(op′).

When a process p is performing an operation op, i.e., p has called Perform(op) but has not yet returned
from that call, it may access oprecs of operations op′ 6= op. We show that if p applies a non-trivial primitive
to an oprec op′ 6= op then the execution interval Iop′ of that operation overlaps the execution interval Iop of
op.

Lemma 37. If p applies a non-trivial primitive to an oprec op′ in Iop, Iop′ ∩ Iop 6= ∅.

Proof. A non-trivial primitive may be applied to oprec op′ on line 32, 52, 55, 63 in the code of Help or
on lines 85 or 87 in the code of Conflicts. The non-trivial primitive applied by p on line 32, 52 or 63 is
a SC that aims at changing the status of op′ to simulating, 〈modifying, , 〉 or done respectively. On line
55, the output of op′ is changed. Any of these steps, if applied by p, is preceded by an LL(opptr′ → status)
by p (on lines 28, 33, 53 or 64), where opptr′ is pointing to op′. The value returns by this LL is 6= done.
Therefore, in the configuration at which this LL is applied, the call of Perform(op′) has not yet returned.
Hence, Iop ∩ Iop′ 6= ∅.

In the remaining case, p writes opptr′ to opptr → tohelp[p′] on line 85 or applies SC(opptr′ →, 〈restart, 〉)
on line 87. Here also, before these steps, an LL(opptr′ → status) by p occurs (on line 79) and this LL returns
a value 6= done. As above, we then conclude that Iop ∩ Iop′ 6= ∅.

Lemma 38. If p applies a primitive to a varrec x in Iop, there exists an operation op′ such that x ∈ DS(op′),
Iop′ ∩ Iop 6= ∅ and p calls Help(opptr′) where opptr′ is pointing to op′.

Proof. Let x denote a varrec accessed by p. By the code, x is accessed in one of the following cases:

• The step in which p accesses x occurs in a call to Announce(opptr′, x) (lines 68, 70, 71, or 73),
in a call to Conflicts(opptr′, x) (line 77) where opptr′ is pointing to some operation op′, or in the
simulation of ReadDI(x) on behalf of op′ (line 41). Each of these accesses to x occurs after p has
called Announce(opptr′, x). Therefore, by Lemma 33, x ∈ DS(op′). Moreover, before applying any
of these steps, p has verified that the status op′ is 6= done (by applying a LL on opptr′ → status on line
28, 33 or 53). More precisely, consider the last configuration C at which p applies LL(opptr′ → status)
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before accessing x. Such a step occurs since the first step following a call to Help(opptr′) is a LL on
opptr′ → status (line 28). This last LL must returns simulating since p has to pass the test on line
34 before applying any step considered in the present case. Therefore, in C, the call to Perform(op′)
has not returned, from which we have Iop ∩ Iop′ 6= ∅.

• The step in which p accesses x is a LL, VL or SC on the val field of x (lines 57, 58, 59, 60, 61 or 62).
Before applying any of these steps, p performs a LL(opptr′ → status) (on lines 28, 33 or 53), where
opptr′ is pointing to op′, which returns 〈modifying, chgs′, 〉 since the test on line 54 is passed. In
the configuration in which this LL is applied, the calls to Perform(op) and Perform(op′) have not
returned, hence Iop ∩ Iop′ 6= ∅.
Consider the dictionary d′ pointed to by chgs′. Note that x is the key of a dictrec in d′. Hence,
in a successful attempt of op′ by some process p′, a dictrec with key x is added to the dictionary
associated with that attempt (on line 42 or 46) when an instruction of op′ simulated. Therefore, it
follows from Theorem 24 that x ∈ DS(op′).

Lemma 39. If p calls Help(opptr′) in Iop, where opptr′ is pointing to op′, then Iop ∩ Iop′ 6= ∅.

Proof. Process p can only call Help(opptr′) on line 23, line 25, line 31, line 82, line 88 or line 89. If p calls
Help(opptr′) on line 23, op′ = op and the Lemma holds.

If p calls Help(opptr′) on line 25, a conflict with op′ has been detected by some process q and q
has tried to restart op′. More precisely, there exists some process q, and a varrec x such that q calls
Conflicts(opptr, x) and, before returning from that call, writes opptr′ to opptr → tohelp[p] (line 85), where
opptr is pointing to op. By the code, before calling Conflicts(opptr, x), q verifies that the status of op is
simulating by applying a LL on opptr → status. Denote by CLL the last configuration that precedes the
call to Conflicts(opptr, x) at which a LL(opptr → status) is applied by q. opptr → status = simulating
at C. Moreover, it follows from the code of Conflicts that before writing to opptr → tohelp[p], q performs
a successful VL(opptr → status) on line 80. Let CV L denote the configuration at which this step is applied.
By observation 35, opptr → status = simulating in CV L and has not changed since CLL. In its previous
step, q reads opptr′ → status (line 79), and the value it gets back is simulating, since the test on line 83
is later passed. Therefore, there exists a configuration between CLL and CV L in which opptr′ → status =
simulating, from which we conclude that Iop ∩ Iop′ 6= ∅.

Help(opptr′) is called on line 31. As in the previous case, a process q′ performs the successful SC

that changes opptr → status to 〈restart, opptr′〉 (on line 87). This occurs when q′ is executing Con-
flicts(opptr′, x) for some varrec x. The same reasoning as in the previous case (inverting opptr and
opptr′) can be used to establish the existence of a configuration in which opptr → status = opptr′ →
status = simulating, from which it follows that Iop ∩ Iop′ 6= ∅.

Otherwise, process p calls Help(opptr′) on line 82, 88 or 89. Before calling Help(opptr′) on any of these
lines, p has read the status of op′ ( LL(opptr′ → status) on line 79), and this LL returns a value 6= done
(By the tests on line 82 or line 83, opptr′ → status has to be simulating or 〈modifying, , 〉 in order for p
to call Help(opptr′) on line 82, 88 or 89). As this occurs before p returns from the call of Perform(op),
Iop ∩ Iop′ 6= ∅.

Lemma 40. Suppose that p applies a primitive operation to an oprec op′ after calling Help(op) and before
returning from that call. Denote by C and C ′ the configuration at which Help(op) is called and the primitive
is applied respectively. If every call by p to Help() that occurs between C and C ′ returns before C ′ then
op = op′ or DS(op) ∩DS(op′) 6= ∅.

Proof. Suppose that op 6= op′. By the code, p accesses op while executing Conflicts(oppptr, x) where x
is a varrec and opptr is pointing to op. Since every call to Conflicts(oppptr, x) is preceded by a call to
Announce(opptr, x) (lines 39 and 40), it follows from Lemma 33 that x ∈ DS(op). op′ is accessed by p via
the announce array x→ A. Hence op′ has been announced to x and thus by corollary 34, x ∈ DS(op′).
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Theorem 41. Let b be a base object and let op, op′ be two operations. Suppose that p and p′ apply a primitive
on b in Iop and Iop′ respectively. Then, if at least one of the primitives is non-trivial, there is a path between
op and op′ in CG(op, op′).

Proof. Base object b is a field of either an oprec or a varrec, a dictrec or a statrec. A statrec can only
be accessed through the unique oprec that points to it. A dictrec can only be accessed through the unique
statrec that points to the unique dictionary that contains it. Thus to access b, p and p′ have to access the
same oprec or the same varrec. We consider these two cases separately:

• p and p′ access the same oprec op∗. Suppose that op∗ is accessed by p and p′ while in some instances
of Help(). That is, there exists an operation op1 such p calls Help(opptr1), where opptr1 is pointing
to op1, and has not returned from that call when op∗ is accessed. Moreover, when it accesses op∗, p
has returned from each of its calls to Help that are initiated after the call to Help(opptr1) and before
the access of op∗.

This also holds for p′ for some operation op′1. Thus, there exists two chains of operations 〈op =
opk, . . . , op1〉 and 〈op = op′k′ , . . . , op

′
1〉 such that:

– ∀i, 1 ≤ i ≤ k, ∀i′, 1 ≤ i′ ≤ k′ : p calls Help(opptri) and p′ calls Help(opptr′i′) where opptri and
opptr′i′ are pointing to opi and op′i′ respectively;

– ∀i, 2 ≤ i ≤ k, ∀i′, 2 ≤ i′ ≤ k′ : after calling Help(opptri), and before returning from this call, p
calls directly Help(opptri−1). Similarly, after calling Help(opptr′i′), and before returning from
this call, p′ calls directly Help(opptr′i′−1).

It thus follows from the second property that for each i, 2 ≤ i ≤ k, Help(opptri−1) is called directly
in an attempt of opi, from which we derive by Lemma 36 that DS(opi) ∩DS(opi−1) 6= ∅. Moreover,
it follows from Lemma 39 that Iop ∩ Iopi 6= ∅, for each i, 1 ≤ i ≤ k. Therefore, operations op =
opk, . . . , op1 are vertexes of the graph CG(op, op′) and there is path from op = opk to op1. Similarly,
op = op′k′ , . . . , op

′
1 are vertexes of the graph CG(op, op′) and there is path from op′ = op′k′ to op′1.

op∗ is also a vertex of GC(op, op′) because, as p or p′ applies a non-trivial primitive to op∗, Iop∩Iop∗ 6= ∅
or Iop′ ∩ Iop∗ 6= ∅ by Lemma 37. p applies a primitive to op∗ after calling Help(opptr1) and before
returning from this call. Moreover, when this step is applied, every call to Help() by p that follows
the call of Help(opptr1) has returned. Hence by Lemma 40, op1 = op∗ or DS(op1) ∩ DS(op∗) 6= ∅.
Similarly, op′1 = op∗ or DS(op′1) ∩DS(op∗) 6= ∅. We conclude that there is a path between op and op′

in GC(op, op′).

If op∗ = op or op∗ = op′, one chain consists in a single operation, namely op∗. The reasoning above is
still valid.

Finally, op∗ may be accessed by p or p′ on line 25, when p or p′ helps an operation that may have
been restarted by some process helping op or op′ respectively. Without loss of generality, assume that
op∗ is accessed in this way, that is p′ accesses op∗ by reading tohelp[p∗], where p∗ is the owner of
op∗. As p next calls Help(opptr∗), where opptr∗ is pointing to op∗, it follows from Lemma 39 that
Iop ∩ Iop∗ 6= ∅. Therefore, op∗ is a vertex of the graph CG(op, op′). Consider the step in which opptr∗

is written to opptr → tohelp[p∗] (line 85). This occurs while Conflicts(opptr, x) is executed, for
some varrec x. By Lemma 33 and the fact that the call Conflicts(opptr, x) is preceded by a call to
Announce(opptr, x), x ∈ DS(op). Moreover, by the code of Conflicts(), op∗ has been announced
in to x, and thus by corollary 34, x ∈ DS(op∗). Hence op and op∗ are connected in CG(op, op′).
Depending on how op∗ is accessed by p′, the same reasoning or the reasoning above can be used to
show that there is a path between op∗ and op′ in CG(op, op′). Therefore, there is a path between op
and op′ in CG(op, op′).

• p and p′ access the same varrec x∗. By Lemma 38, there exists op1, op
′
1 such that (1) p calls Help(op1)

and p′ calls Help(op′1), (2) x∗ ∈ DS(op1) ∩DS(op′1) and (3) Iop ∩ Iop1
6= ∅ and Iop ∩ Iop′1 6= ∅.
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If op′1 = op1 = op∗, p and p′ access the same oprec op∗. In the proof of the previous item, we use the
fact that p or p′ applies a non-trivial primitive to op∗ only to show that Iop∗ ∩Iop 6= ∅ or Iop∗ ∩Iop′ 6= ∅.
Here, we already known that this holds. Therefore, by the same argument as in the first case, we
conclude that there is a path between op and op′ in CG(op, op′).

If op′1 6= op1, we consider the two chains of operations chains of operations 〈op = opk, . . . , op1〉 and
〈op = op′k′ , . . . , op

′
1〉 defined as in the first case. By the same reasoning as in the first case, each of

these operations is a vertex and (opi, opi−1), (op′i′ , opi′−1) are edges of CG(op, op′) , for each i, i′ : 2 ≤
i ≤ k, 2 ≤ i′ ≤ k′. Since DS(op1)∩DS(op′1) 6= ∅, we conclude that op and op′ are connected by a path
in CG(op, op′).
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A Sequential code for singly-linked list

Figure 5 present the sequential implementation of Append and Search. Figure 6 presents the enhanced
code of Append and Search where CreateDI ReadDI and WriteDI have been incorporated in the
code of Figure 5.

According to the enhanced sequential code, we have three types of operations: InitializeList, Append,
and Search. InitializeList (L) initializes two previously declared pointers, L.start and L.end, to nil.
Append(L, num) appends the element num to the end of the list L by appending a node containing num
as the next element of that pointed to by end, and updating end to point to the newly appended node.
Search(L, num) searches L for the first occurrence of num, starting from the element pointed to by start.
Search returns true if num is in L and false otherwise. Throughout this code, if T is a type with some
field f , then ptr to T t declares that t is a pointer to an object of type T and t→ f denotes the f field of
that object. CreateDI(T ) creates a new data item of type T and returns a pointer to it. ReadDI() and
WriteDI() are used when accessing a data item or a field of a data item.

1 struct {
2 int key: initially 0;
3 ptr to Node next: initially nil;
4 } Node;

5 struct {
6 ptr to Node start: initially nil;
7 ptr to Node end: initially nil;
8 } List;

9 List L;
10 Append(List L, int value) {
11 ptr to Node new := allocate new Node; /* create a new Node, return a pointer to it */
12 ptr to Node e := L.end;
13 new → key := value;
14 new → next := nil;
15 if (e 6= nil) then e→ next := new
16 else L.start := new;
17 L.end := new;

}

18 Boolean Search(List L, int value) {
19 ptr to Node s := L.start;
20 if (s = nil) then return false;
21 while (s→ key 6= value AND s→ next 6= nil)
22 s := s→ next);
23 if (s→ key = value) then return true;
24 else return false;

}

Figure 5: Sequential implementation of a singly-linked list data structure that supports Append and
Search.
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1 struct {
2 int key: initially 0;
3 ptr to Node next: initially nil;
4 } Node;

5 struct {
6 ptr to Node start: initially nil;
7 ptr to Node end: initially nil;
8 } List;

/* Initialization of the access points of the data structure as static data items */
9 List L;
10 L.start := CreateDI(ptr to Node): initially nil
11 L.end := CreateDI(ptr to Node): initially nil;

/* Programs for the operations passed to the universal construction */
12 Append(List L, int value) {
13 ptr to Node new := CreateDI(Node); initially 〈value, nil〉;
14 ptr to Node e := ReadDI(L.end);
15 if (e 6= nil) then WriteDI(e→ next, new)
16 else WriteDI(L.start, new);
17 WriteDI(L.end, new);
18 return
19 }

20 Boolean Search(List L, int value) {
21 int k;
22 ptr to Node s := ReadDI(L.start);
23 if (s = nil) then return false;
24 〈k, s〉 := ReadDI(s);
25 while(k 6= value and s 6= nil)
26 〈k, s〉 := ReadDI(s);
27 if (k = value) then return true;
28 else return false;
29 }

Figure 6: Enhanced version of the pseudocode of Figure 5 that includes calls to CreateDI, ReadDI, and
WriteDI.
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