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Abstract

Some electromagnetic materials exhibit, in a given frequeange, effective
dielectric permittivity and/or magnetic permeability whiare negative. In the
literature, they are called negative index materials;hefided materials or meta-
materials. We propose in this paper a numerical method te solwave trans-
mission between a classical dielectric material and a nmetterial. The method
we investigate can be considered as an alternative mettmopazed to the method
presented by the second author and co-workers. In pantioushall use the
abstract framework they developed to prove well-posedokee exact problem.
We recast this problem to fit later discretization by the géagd discontinuous
Galerkin method developed by the first author and co-woekengthod which re-
lies on introducing an auxiliary unknown. Convergence @f tlumerical method
is proven, with the help of explicit inf-sup operators, anonerical examples are
provided to show the efficiency of the method.

Keywords: wave diffraction problem, interface problemgatve index materials,
left-handed materials, meta-materials, inf-sup theorgodrcivity, staggered discon-
tinuous Galerkin finite elements, convergence and stgbilit

1 Introduction

Consider a bounded domaihof R?, with d = 1,2, 3. The model problem we study
is a scalar electromagnetic wave equation in the time-faqudomain, e.g.

finduw € H'(Q) such that
div (,u*:[Vu) +wleu=finQ Q)
u = 0 onos.
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Above, f is a volume source function df?(Q2), w > 0 is the given pulsation, and y
are respectively the electric permittivity and the magnpérmeability.

Remark 1.1 For instance, assume that we study the Transverse MagratitM,
mode in(2, a subset ofR?. Classically, the right-hand sid¢ in (1) is proportional
to the current density, and the solutians the scalar potential of the magnetic field.
See [10],85, for an alternate approach.

An equivalent variational formulation is obtained simplg integration by parts:

findu € H(Q) such that @)
(,u_1Vu, VU)L2(Q) - w2(5u7v)L2(Q) =—(f,v)r2@ Wve H(Q).

By introducing an additional unknown, namdly = p~!Vu, we can recast equiva-
lently this problem, and obtain a suitable framework forddistinuous Galerkin dis-
cretization, the so-calletvo-unknown problem

find (u, U) € H}(Q) x L*(Q) such that
(WU, V)g2) — (Vu, V)2 =0 YV € L*(9), 3)
(U, V) r2q) — w(eu,v)2(0) = —(fiv)120) Yo € Hg(Q).

In the same spirit, (1) or (2) is called tlome-unknown problenBy construction, we
find thatdiv U + w?cu = f, sodiv U automatically belongs té.2(12).

If there is a dielectric in the domain, one ha$) < ein < € < Emar @NAD < fimin <
1< fmaz @.€. N, so the model problem (1) fits into the well-known Fredholm, o
coercive + compact, framework. Indeed, the faumo) — (1~ 'Vu, Vo) 2(q) is co-
ercive overH; () x Hj(Q), whereas the fornfu,v) — (cu,v).2(q) is a compact
perturbation.

Then, a number of materials can be modeled at a given freguenevithin a given
frequency range) by considering negative real values feir tielectric permittivity
and/or magnetic permeability: these are the so-called-metarials. Interestingly, if
the domain(2 is made entirely of a meta-material, the problem (1) stifl fitto the
Fredholm framework, because the fotm v) — sign(u) (1~ Vu, Vv) 2 () remains
coercive.

On the other hand, in a setting which includes an interfadcedsen a dielectric and
a meta-material, the situation can be much more complexhitndaseg and/oru
can exhibit a sign-shift. Note however that if ordyhas a sign-shift, then there is
no difficulty. The difficulty arises ifu has a sign-shift, because in this case the form
(u,v) = (n~'Vu, Vo) 2 is indefinite, so it is certainly not coercive.

Our aim is to consider a domain made of a dielectric and a mmetizerial, separated
by an interface across which the magnetic permeahiligxhibits a sign-shift, and
to solve the two-unknown problem in this case, both from tegcal and numerical
points of view. In Section 2, we introduce the abstract frawré, and we recall how
T-coercivity, i.e. the use of explicit inf-sup operatore€q2, 1]), can be used to solve
indefinite problems. We prove in the following section tha two-unknown problem



is well-posed, under suitable assumptions. Then, we inttedhe staggered discon-
tinuous Galerkin finite element discretization of [6, 7] iacBon 4. In particular, this
method gives some local and global conservation propértidee discrete level that
mimic the conservation properties arising from the cordimiproblem [8]. In the
next section, we prove that it converges in a classic marorehé class of indefinite
problems under scrutiny. Finally in Section 6 we report somm@erical experiments.

2 The theory of T-coercivity

We propose below a well-known reformulation of the cladsicisup theory [3, 9],
usingexplicitoperators to achieve the inf-sup condition for the exactdisctete prob-
lems. This operator is sometimes called an inf-sup operatos approach will be used
in the forthcoming sections to prove the well-posedness then the convergence of
the numerical approximation, of the interface problem wgitin-shifting permeability.
We choose the vocabulary T-coercivity, in the spirit of [R, 1

2.1 Abstract theory

Consider a Hilbert spacg, with scalar product:, -)y and norm|| - ||y/. To a contin-
uous bilinear formb defined onl” x V, one associates a unique continuous and linear
operatoB (B € L(V)): Yu,v € V, b(u,v) = (Bu,v)y.

Given/ € V', we focus on the variational problem:

findu € V such that b(u,v) = £¢(v) Vv e V. 4)

Below, we recall the definition of T-coercivity of the fortnand its consequence (cf.
Definition 2.1 and Theorem 2.1 in [2]).

Definition 2.1 (T-coercivity) Let T be a continuous, bijective, linear operator 6n
A bilinear formb is T-coercive onl/ x V if

Fy >0, VeV, [|b(v,Tv)| > llv] -

Proposition 2.2 Assume that the T-coercivity assumption is fulfilled. Thieayvaria-
tional problem (4) is well-pose® ! exists and3~! € L(V).

The notion of T-coercivity can be applied to a problem inwadva more general con-
tinuous bilinear forma, defined onVV x V. In this case, the problem to be solved
writes:

findu € V such that a(u,v) =£¢(v) Vv eV. (5)

Above, the formu can be split as = b + ¢, where forms andc are both continuous
and bilinear orV x V. Let us assume that

(H1) There existd € £(V), bijective, such that is T-coercive onV x V;

(H2) the operator associated with the bilinear farim compact.



Remark 2.3 For the one-unknown problem, one introduces respectively
Vi = H}(Q), bi(u,v) = (u*Vu, V)2 (o) andes (u, v) = —w?(eu, v) r2(0)-

Proposition 2.4 Assume that the conditions (H1) and (H2) are fulfilled. Thtbe,
variational problem (5) is well-posed if, and only if, theigmeness principle of the
solution to (5) holds, i.ef{ =0 = u = 0.

In our case, we shall use a variant of this result, namely Ve Bssumption (H1) to:
(H1") The mapping~* exists and belongs t6(V).

Itis straightforward to check that the statement of the jonevproposition holds with
(H1") replacing (H1).

2.2 Convergence theory

Let us recall some additional results of [2R, in the case of @onformingdiscrete
version of the problem (5), which writes

findu" € V" such that a(u”",v") = ¢(v") Yo € V", (6)

where(V"), is a family of finite dimensional vector subspaces/ofWe assume the
usual approximability property below

(H3) Forallu € V, one hadim inf |jv — "y = 0.
h—0phecVh

The idea is to prove the uniform stability of the foenover (V")

h h |a(7fhvwh)| h
Jo >0, Jhg >0, Vh €]0, ho[, Vo' € V", sup ———= >o|[v"[|v. (7)
wheve  lwlv
In [2] (Theorem 2.2), the result below is proved.

Proposition 2.5 Assume that hypotheses (H1) and (H2) hold, together wittrifegie-
ness principle so that problem (5) is well-posed.

Assume that the approximability property (H3) holds.

Assume further thatd § > 0,y > 0, such thatvh, 3T € L(V"), satisfying

Th h
@ sup L0V
wrevn [[0*lv
(b) the formb is T”-coercive ove’" x V" with a coercivity constant equal to
Then, the bilinear forna is uniformly stable.

As a consequence of (7), the standard error estimate isesmdwith the help of the
Strang lemma [12]:

3C > 0,3ho > 0,Vh €)0,hg] |Ju—u"|v <C }in{/} lu— oy . (8)
,ULG v



3 Well-posedness of the two-unknown problem

Let us begin by some notations and functional spaces}lbetan open bounded subset
of R, d = 1,2, 3. Itis assumed that this domain can be split in two sub-dosfajn
and$), with Lipschitz boundariesf = Q; U Q, Q; N Qy = (. Moreover, if we let
¥ = 901 N 9Qs be the interface, we defilg = 99, \ X for £ = 1,2. Finally, we
introduce

H&Fz(ﬂg) = {’U S Hl(ﬂg) | v, = 0}, for/=1,2.

Throughout this paper we will consider that the electronetigrpparameters verify
e € L°(Q), pte e L>®Q).

To fix ideas, we assume thaty, > 0 a. e., angyp, <0 a. e..
Hereafter we adopt the notation, for all quantitiegiefined onQ, v, = v|q,, for
¢ =1,2. Let us now introduce the ratios

info, w4 info, |pa|
Supg, K SupPg, H1

(9)

In the case wherg is piecewise constant (equal to the consfanbver €y, for £ =
1,2), they are respectively equal i¢|«,| and|x,,|, where

H2

ke M1 (10)
defines theontrastof the magnetic permeabilities.
Itturns out that we can not prove T-coercivity directly, iexhibit somead hocoperator
T, for the two-unknown problem (3). Instead, we verify its igbsedness (cf. (H1")),
using the T-coercivity results [2, 1] for the one-unknownlgem (2). For this latter
problem, consider a continuous, linear operadtor H; . (1) — H{p, (Q2), such
that one has theompatibility condition Rv) |z = vjs forall v € Hj 1 (1), and let
the explicit operator be defined by

in Q
Tu={" o (11)
—ug +2Ru; In Qg

Due to the compatibility condition at the interface, the@erT belongs toC (H (2)),
and moreovef? = II.

Remark 3.1 The roles of2; and(2, can be reversed. Indeed, considering a continu-
ous, linear operato?’ : H} . (Q;) — Hjp, (Q1), such that one has the compati-
bility condition (R'v)s; = v|s; for all v € Hg ., (2), one can defin@ € L(Hj(9))

by '

{ul — 2R/U2 in 04
Tu= ) .
— U in Q9



For the one-unknown problem (with forin), one can prove T-coercivity using such
an operator, undesuitable conditiong2, 1] on the ratios (9), or on the contrast

in the piecewise-constant case (see the end of this seaioa precise statement).
Below, well-posedness of the two-unknown problem is shawhald undeiidentical
conditions. To that aim, we introdudé = H¢ (Q) x L*(Q) and

bQ((U’a U)7 (Uv V)) = (IUUa V)LQ(Q) - (V’U,, V)LQ(Q) + (Ua VU)L2(Q)7 (12)
a bilinear form defined ol x V5. LetB, be the associated linear operatorghs).

Theorem 3.2 Assume that the T-coercivity is true for the formof the one-unknown
problem. Then, (H1’) holds f,: B, ! exists and, ! € L(15).

Proof. To prove (H1') forBs, we need to establish that, given afyy G) € V; (by
definition,Vy = H~1(Q) x L*(Q)), there exists one, and only one, solution to

find (u, U) € V5 such that

ba((1,U), (0, V) = —(f, ) mrr(y.sib(y + (G Vo) Vo, V) € Vo (E3)

(We can then use the open mapping theorem to conclgdeging a Banach space.)

We assume the conditions ensuring T-coercivity for the omleaown problem are met,
using somead hocbijective operatofl” of £L(H3(2)). On the other hand, for the two-
unknown problem (with form,), we introduce the operat@r of £(V%), defined by
T((u,U)) = (T'w, TU), where the action dI" € £(L?*(Q)) is simply

x 7 LT UL
Uy In Qy

Now, we are in a position to prove that (H1") holds fr under thesamesuitable
conditions. We note that, by definitio;> = Tin £(L?(Q)), soT is a bijection: in
(13), we can thus replace the test-fieldsV') by T((v, V')). This writes

find (u,U) € V, such that
bQ((U’a U)vT((UaV))) = _<.f7 TU>H*1(Q),H(%(Q) (14)
+(G, TV)L2(Q) V(’U, V) e Vs.

Let us prove the existence of a solution to (14): to that aie pnovide a constructive
proof.
First, consider that = 0. Then, we have thdt, U) is governed by

(WU, TV )20y = (G + Vu,TV) 2(q) YV € L*(Q).

Now, (U,V) + (uU,TV )Lz (q is a bilinear, continuous and coercive form over
L*(Q) x L*(2), andV — (G + Vu,TV) 2(q is a linear and continuous form over

L?(Q). According to Lax-Milgram theorem, there exists one, anty @me, solution
U ¢ L*(9) to the above variational formulation, setfit(£2). Also, uU = G + Vu



in L*(Q).
Second, consider thd = 0 in (14). We have thatu, U) is governed by

(U, V(T0)) 20y = —(f, To) gr-1(0), 11 (0) Vv € Hp ().
ReplacingU by U = ;=1 (G + Vu), we find that
bi(u, Tv) = —(f, Tv) g-1(0),mi(0) — (0~ G, V(T))p2(q) Vv € Hy(Q).

By assumption (the suitable conditions are mét)is T-coercive, so this variational
formulation is well-posed irH{ (Q): it has one, and only one solution, and also
div (p=1Vu) = f —div (p71GQ) in H1(Q).

Last, takingu € H{ () characterized byliv (1= *Vu) = f—div (p71G)in H=1(Q)
(which is possible according to the T-coercivitytg}, and then defining/ = 1~ (G+
Vu) that belongs td.?(Q), it is straightforward to check thét, U) solves (14).
There remains to prove the uniqueness of a solution to (14).

For that, let(u, U') be governed by (14) with zero right-hand side. Retracingsteps,
we find as previously thaiU' = Vu in L*(£2), and then that: € H} () is character-
ized byb, (u, Tv) = 0 for allv € H (). Since the suitable conditions are met, we
have that: = 0, and it follows thatu, U') = (0, 0).

(]
Finally we define the bilinear form o, x V;
az((u,U), (v, V)) = ba((w,U), (v, V) = w* (e, v) 12 (0. (15)
We remark that (3) can be recast as, for a giyen L?(2),
find (u,U) € V4 such that (16)

az((u,U), (v, V)) = —(f, U)LQ(Q) V(v,V) € Va.

Using the abstract proposition 2.4 with (H1'), we concludebelow on the well-
posedness of the two-unknown problem (3). Indeed, (H1'Jdeas proven in Theorem
3.2.

Corollary 3.3 (Fredholm framework) Assume that the T-coercivity is true for the form
b, of the one-unknown problem. Then the two-unknown probléns (8ell-posed if,
and only if, the unigueness principle of the solution to (8)ds, i.e. f = 0 =
(u,U) = 0.

We assume from now on that the uniqueness principle of theisolto (3) holds.
To conclude this section, let us recall briefly thdtable conditionshat allow one to

prove the T-coercivity of the bilinear fory. We follow here [2, 1] and references
therein. Basically, they write in the general case

- v . )
nfo |y o fealpel g (17)
SUpg, |fi2] Supgq, M1



with Is,, I'; > 1. In addition, these numbers;, Is; depend critically on the geometry
of the interface. For instance,(if; andﬂg can be mapped from one to the other with
the help of a reflection symmetry, thég = Iy, = 1. If ¥ is only piecewise smooth,
thenls > 1 or Iy, > 1. Finally, the conditions (17) can be refined, to include only
local suprema near the interfage(see [1] for details).

In the piecewise-constant case, the conditions write edgrivly

A 1
Ky €] — o0, —In[U] — =—,0[. (18)
Ix
Remark 3.4 In [1], sufficient conditions are also proven gy to be Fredholm of index
0. In this case, it can happen that Key # {0}.

4 Discontinuous Galerkin discretization

Following Chung and Engquist [6, 7], we first define the initiangulation7,,. Sup-
pose the domaif is triangulated by a set of tetrahedra in 3D (or trianglesin 2
segments in 1D). We use the notatigp to denote the set of all faces in this triangula-
tion and use the notatiaR? to denote the subset of all interior faces — that is faces that
are not embedded 2 — in F,,. For each tetrahedron, we take an interior poiand
call this tetrahedro&(v). Using the poini/, we can further subdivide each tetrahedron
into 4 sub-tetrahedra by connecting the pairtb the4 vertices of the tetrahedron. We
denote by7 the triangulation made up of all sub-tetrahedra. We use ¢ketion 7, to
denote all new faces obtained by the subdivision of tetrehexhd we lefF = F,UF,,
respectivelyr® = F2 U F,. For each face € F,, we letR(x) be the union of the
two sub-tetrahedra sharing the facdf « is a boundary face, we 18 (x) be the only
tetrahedron having the faee For an illustration in 2D, see Figure 1.

Figure 1: Triangulation in 2D.

We will also define a unit normal vectaer,, on each face in F by the following
way. If x € F\FY, then we definer,, as the unit normal vector of pointing outside
of Q. If k € FYis an interior face, then we fix,, as one of the two possible unit
normal vectors om.. When it is clear which face we are considering, we will use
instead ofn,, to simplify the notations.



Now, we will discuss the finite element spaces. ket 0 be a non-negative integer.
Letr € 7 . We defineP”(7) as the space of polynomials of degree less than or equal
to k on7. Then we introduce the following discrete space for scaédad$i

4.1 Locally H'(Q)-conforming finite element space for scalar fields
Sp = {v|v, € P*(7), ¥r € T; v is continuous om € Fo; vjpq = 0}.  (19)

In the spaceS, we define the following norms

lol% = /02 dv+ ) h,C/UQ do, (20)
Q2 KEFY ®

Wz = / Vol de+ Y h;l/w do 21)
Qr KEFp k

where we remark that the integral Ofv in (21) is defined elementwise:

/Q} Vol de =3 [ V()2 da.

TeT VT

Here we recall that, by definition, € Sy, is always continuous on each fagen the
setF?, whereas it can be discontinuous on each fade the setF,. We say||v|| x

is the discretel.?-norm of v and ||v||z is the discreteH/!-norm of v. In the above
definition, the jumpv] is defined in the following way. For eache F,, there exist
two (sub-)tetrahedra, andr; such thats is a common face of them. Moreover, each
7i, 1 = 1,2, has a face:, that belongs toF,,. Thus,x C 9R(k;) fori = 1,2. Then for
suchk € F,, we writem, as the outward unit normal vector 8RR () fori = 1,2,
and define

50 1 if m; =nonk
" -1 if m; =—-nonk

wheren is the unit normal vector of the face Then the jumgv] on the faces is
defined as
[v] = 601 + 60

wherev; = v|,.
Note that one can prove, by the argument used in the proof@bBm 3.1 of [7], that
there exists a constant> 0, independent of,, such that

[l1Z2(0) < Il < allvllfz) Yo € Sh.

4.2 Locally H(div;)-conforming finite element space for vector
fields

Now, we introduce the following discrete space for vectddfe

Vi ={V | V|, € P*(1)?, V7 € T; V - nis continuous om € F,}. (22)



In the spacé/,,, we define the following norms

VIR = [IVPar+ X e [(Von)? o (23
Q2 KEFp k
V% = /m(divV)2 dr+ h;l/[v-nP do (24)
KEFQ H

where we remark again that the integratiof V' in (24) is defined elementwise. Here
we recall that, by definitiony € V), has continuous normal component on each face
k € F,. We say||V|x is the discretel.?>-norm of V and ||V|| 2 is the discrete
H (div;Q)-norm of V. In the above definition, the jump - n] is defined in the
following way. Letrs C FC. Then there are exactly two tetrahediaandr, such that
 is acommon face of them. Let be an interior node of;. Then we have € 9S(v;)
fori = 1,2. Letm,; be the outward unit normal vector 88(v;). We define

6(1-):{1 if m; =nonk

" -1 if m;=-nonk

wheren is the unit normal vector of the fage Then the jumgV - n] on the faces is

defined as
V-n]=60V - n+sPV, n,

whereV;, = V..
One can prove, by the argument used in the proof of TheorenofdZ, that there
exists a constant > 0, independent of, such that

VT2 < IVI% < BIIVIZ2) YV € Vh. (25)
We define
By(V,v) = V-Vodz— Y [V-n[]do, VEViveS, (26)
ar KEF, "I
Bi(v,V) = —/ vdivV dx + Z v[V - n]do, veS,,V eV,(27)
Qn K
KEFY

Remark 4.1 A natural question to ask is: can we use those forms with ey
v=u€ H(Q)andV €V}, in (27),andV = U € H(div; Q) andv € S, in (26)?

On the one hand, given € H{(Q) andV € Vy,, B; (v, V) can be defined by (27):
indeed, over faces € F2, bothv and[V - n| belong toL? (k).

On the other hand, given € S, andV € H(div; ), then B, (V,v) cannot be
defined as in (26). As a matter of fact, integrals over faces¥,, must be understood
as duality brackets, but one has oty € H (x), whereas there is no guarantee that
(V - n) belongs to its dual spaceH 2 (x))’. Nevertheless, we remark that one can
consider the alternate definition below:

Bh(V,v)z—/vdivV de, V € H(div;Q),v € Sp. (28)
Q

10



Indeed, ifV" belongs toV, N H (div ; €2), we can integrate by parts, element by element,
to find:

—/vdidex = —Z vdivV dx
Q

TeT T

Z{/TV-Vvda:—/aTv(V-naT)da}

TeT

V-Vvdx—z [v] (V -n) do.

KEF, T

Qh

To go from the first to the second line, we used on the one hanfath thatv € Sy,
being continuous across faces&f, there is no contribution on those faces. Then, to
compute the contribution on the remaining faces (i.e. tlodsg,), we used the coupled
definitions of the unit normal vectors and jumps on thosesdsec;4.1). As a result,
we recover the original definition a8, (V,v), that is (26): hence, the two definitions
are consistent.

According to Lemma 2.4 of [7], we have

Bp(V,v) = Bj(v,V), V(v,V) €S, x V. (29)
Moreover, the following holds

By(V,v) <|llz [VIx, VY(v,V)€Sh XV (30)

We say that the discrete fields, V') € S;, x V), arealignedif they satisfy

(VW) 2y — Bi(v, W) =0 YW € V. (31)
Accordingly, let us introduce the subspace of aligned fields

A, ={(v,V) €S, x V| (v, V) satisfy(31)}.
The discrete variational formulation, or numerical methisd

find (uh, Uh) € Sy, x V), such that
(,LLUh, V)L2(Q) - BZ(U}I, V) =0, VV eV, (32)
By(Up,v) — w?(e un,v) 200y = —(f,0)r2(0), Vv € Sh.

In particular, the discrete solutiofis;,, U},) are aligned{(uy, Uy) € Ap,.
For our subsequent analysis, we finally define

b ((w.0), (0.V)) = Bu(U,0) + (WU, V) (o) — Bi(w. V),
an((w0), (0.V)) = ba ((,0), (0.V)) =& u,0) 120,

lh(v) = —(f,v)L2(0)-

11



5 Convergence theory for the two-unknown problem

Here, we choose a conforming triangulatidp in the sense that the interfakeis a
union of faces: in other words,N 3> = (), for all tetrahedra € 7,,. Obviously, this is
possible as soon as the interfacés piecewise planeln this manner, one can spfit

(resp.7,, etc.) asT = TM UT® (resp.fF, = V) UFS?, etc.), withT©) made up
of tetrahedra (resp. faces, etc.) embedded nfor ¢ = 1, 2. It follows that one can
consider the discrete spaces oUgrand(), respectively. Fof = 1, 2:
S\ = {v| v, € P*(r), vr € TY; v is continuous om: € FOO); v, = 0},
V) ={V |V, € P*(r)?, ¥r € T); V -nis continuous om € F("}.
One can define the noris ||x,, || - |z, | - | x;, || - |z, for £ = 1,2.
Finally, we note that given any/; in V,(f), the discrete field defined by

0 in Q\Q,
V;It _ ) \ 4
Ve in Q

automatically belong toy,.
To simplify the proof$, we assume that is piecewise constanhamelyy, = Ho, IS

constant, fo = 1,2. In particular, the relevant quantities to ensure wellgurgess
are the absolute value of either the contrgsor its inversel /x,,, namely|us|/p1 or

pi1/ |zl

5.1 Inf-sup conditions and measures for aligned fields
From Theorem 3.2 of [7], we know that there is a uniform comist& > 0 such that
the global inf-sup condition below holds:
. Bh(Vv U)
inf sup ——— > K. 33
25, Ve, VT Tollz #9
Furthermore, by using a similar proof, one can prove thefalhg localized inf-sup
condition onQy, £ = 1,2, with K, > 0 independent of:
inf  sup Bu(V, v) > K. (34)

vesy vevl ”VHXQ lvllz, —

Consider nexalignedfields (u, U) € A,: we infer the global measure

(WU, V)2
wU || 12 > sup ——————
e A 1
U,V Bi(V,
> sup WU, Vrz ) _ sup Br(V,u) > K|lullz.  (35)
vev, [IVix vev, IVix

1To remove this last assumption, the proof of Propositionafidr (42) has to be modified, in the spirit
of the results of [1].
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In addition, we can find local measures (for= 1,2). Indeed, as the extension of
discrete fields ov,(f) by 0 automatically belongs tv,, we have

U,V U’Vemt
WOy > s PPoVdean o, WOV

Veev® Vel L2, Veey® HV?MHI;(Q)
ey Bi(u,Vi¥)2q) (29) By(VF u) 20
= sup ext = S ext
viev®  IViTllzzo viev® Vil

Going back to the definition (26) of the formy,, we find

B(V§tu) = o V.V dr — Z Vo [u] do
' KEF, "
= Vg'VUZ dx — Z /V/TL[U/] dO’ZBh(Vg,’LM).
QZL nef,(f) "

But u, belongs toS,(f). Using (34), we conclude that, fatignedfields andl = 1, 2,
11U el L2(0,) = Kellwel| z, - (36)

5.2 Uniform discrete T-coercivity for aligned fields

We have already defined the exact operdtaver Hj (Q) x L?(Q) that ensures well-
posedness, provided the absolute value:pfor 1/, is large enough. Let us now
introduce the discrete operat@y, over S;, x V. Given (v, U) € S, X Vy, let
Ty (u,U) = (@, U) be defined by

in Q - U in Q
a=14" T and U=TU={" ' @7
—ug + 2Rpuy  In € Uy in Oy
whereRy, is a discrete operator fronﬁ,(ll) to 8(2), such that one has tttmmpatibility

condition(Rpuy) s = (u1))x forallu; € S,(f). We introduce

1Rl = sup Wialze
wes®  lullz
The roles of2; and(), can be reversed, meaning that one can deﬁﬁméf) by

_9R! in O N
0= {ul Fiyuz !n ' and U =1U,
—Usg in Qs

where R/, is a discrete operator fro”) to S\, with the compatibility condition
(Ryuz)js = (uz)js foralluy € 82 (IR, = sup,,, g 1Rz 2,/ l[us] 2,)-
Let us define the norm ofs;, + H}(R2)) x L*(Q) by

1w Ol = (U0 + l3)", Ve Sy+ HYQ), UeVi. (38)
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Proposition 5.1 Suppose that the discrete operat¢rg, ), and(R},); are such that

K K
Jh, >0, max |[Rul?< =2 sl IR, |2 < =2 KL
hel0,hy [

B helo,h. | B pel (39)

Then, one has the uniform discrete T-coercivityiaf), for aligned fields
37 > Oa vh 6]03 h*[a V(U’a U) € Ap, bh((uv U)a Th(uv U)) > 7”(“’3 U)H% . (40)

Proof. To fix ideas, we consider that the condition (39) holds ferdperator¢ Ry, ).
In (37), we note that, U can be splitagi = u + v’ andU = U + U’ where

0 !an and U’ = 0 !an.
—2u2+2RhU/1 n QQ —2U2 n QQ

!

W = (41)

Then we have by construction

b (. U), T (u,U)
= Bh(Uv U) + (IUUv 0)L2(Q) - B;{(U, U) + Bh(Uv U’/) - B;{(U, U/)
= (|plU,U)2(0) + Br(U,u') — Bj;(u,U")
On the other hand, due to the conforming assumption on taegulation7,,, it fol-
lows thatU’ belongs toV,,. Indeed, according to (22), the matching of the normal
component is enforced on facesof F,, only, but each of those faces is embedded

either in{2, or 22, so no matching condition is required on the interfac& herefore,
B} (u,U") = B, (U’, u), and we have

Br(U,v') — B} (u,U") = B, (U,u) — BR(U', u).
By the definition ofu’ andU’, we can further write

By(U,u") — Br(U',u)

Z/U'n,

KEFp

= U-Vu’dx— /U n| da—/ U' - Vudzr+
aQn KEFp Qnr

=2 | Usy-V(Ryuy)de—2 Y [ Us-n[Ryu]do.
Qg nef;(,z) "

Combining the previous results, we get
b (0, 0), T(w,U)) = (16U, U) 120

+2 [ Uy V(Ryur)do—2 ) /U2 n [Ryui] do.  (42)
Qh K
Kef(2>
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By the Cauchy-Schwarz inequality and the definitionsdfandZ norms, we find

-2 UQ-V(Rhul d$+2 /UQ Rhul do
Qg HE}_(Q)
n 2 |N2|
< —||Rru U /
< M2|H nutllz, + 1U21%,
n |M2|
—HR PludllZ, + =1U2l%,,  ¥n>0.

Since the norm§-|| x- and||| .2 (@) are equivalent (cf. (25)), we have tHar 5" (|%, <
ﬂHUe””HL2 @)’ ie. ||U2H§(,2 < ﬂHUQHiQ(Qz), and it follows that

-2 U2 V(Rhul) dx + 2 Z /Ug n Rhul]

h
ik Kef(2> "

<
= Tha

Thus, (42) yields

|12
[ Ru|[*urlZ, + 8= HUzlle(QQ), V> 0.

Iu |
b (. 0), T, 0)) > (U, U)oy = 7Rl 3, el LEE

To obtain uniform T-coercivity, we assume from now on that discrete field$U , u)
arealigned (u,U) € A;. Using the local measure (36), we have

b (0, 0), Ta(w,U)) = (18U, U)p2() — 2o 1RAI2 G0 UL, U e,

| 2|
12|
5T||U2Hi2(92)

Y

K1
<1— Rl |||Rh|2) (U1, U1)p20y)

+ (1 - g) (l12lU2,U2)z2(02,)- (43)

According to (39), forh €]0, h, [, one can choose such that

Ki|po| , . ( uIg 2) ( ﬂ)
<np< ——"2_  je.min(1-— R >0and(1—-=) >0.
g<n maxp, || Ry |21 h Kq|usl 172l 7

Consider again (43) with this choice of the parametedsing finally the global mea-
sure (35), we derive the uniform discrete T-coercivity @f),, for alignedfields (40).

O

Remark 5.2 The result of the previous proposition holds under condi(i®9) which
is independent of the pulsatian

15



Going back to the definition of the discrete operat@rs);, another straightforward
consequence of (39) is that these operators are unifornaliydied fork "small” enough,
i.e.
[T (u, U) ||
30 > 0, Vh €]0,hy], sup ————— <. (44)
N (R T3]

5.3 Stability for aligned fields

Below, we consider separately the cases 0 andw # 0, which can be solved by two
very different approaches. Our aim is to prove the uniforabiity of the forms(ay, )y,
for alignedfields:

Jo >0, Jho >0, VA €]0, ho[, Vv € A,  sup lan(vn, wn)l

> ollva|ln, (45)
wneSnxv,  Walln

under the condition on the contrast (3%p one has necessarily < h,. Indeed, it
is natural to assume this condition on the contrast, as ([@®)44) are true when this
condition is met.

Casew =0 Inthis case, we need to prove

b
o > 0, Fho €)0, hul, VA €]0, ho|, Vi € A, sup 1 ealTrEn)l

> ollvalln -
Whp ESKL XV HWhHh

Let us proceed by contradiction. Namely, we assume that
I(ug)qen; th{)lo g =0, 3(hq)qen, thgo hq =0,

b, (vh,,w
Vg €N, dvy, € Ay, sup M

< pig Vil -
Whq EShg X Vg ”th th ! R

Without loss of generality, we normalize,, € A, above (v, |[n, = 1), forall .
Now, using the uniform discrete T-coercivity ¢f,);, for aligned fields (40) and the
uniform boundedness (44), we have, forall

¥ < bn, (Vg Th, Vi, ) < g | Thy Vi, lh, <0 ptq-
Butlim, s, = 0, which leads to a contradiction, so (45) holds whe# 0.
Casew # 0 Let us proceed again by contradiction. Namely, we assunte tha
EI(Nq)qua qll)lgo ,uq = 07 El(hq)qGNv qli{lolo hq = 07

a v W
Vg € N, thq S Ahq, Hthth =1, sup M

‘ S Hq-
whquhqxvhq ||th| hq

Let us writevy,, = (va,, Vi, ). Thenwe havduy,, ||z < 1 and|||u|%th|\Lz(Q) <1,
for all ¢. According to general properties of Discontinuous Galeudiscrete spaces
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and norms (see Theorem 5.2 and Lemma 8 of [4]), we infer thataam extract a
subsequence froivy,,, ), that converges strongly ih%(£2). Namely, if we still denote
this subsequence Hyy,, ), there exists:* € L?(12) such that

h;n ||1}hq - U*HLz(Q) =0. (46)

Let us assume provisionally that = 0, that islimg [|vp, | 2oy = 0. This result
will be proved below, see Lemma 5.3. Then, using the unifoisoréte T-coercivity of
(by,)r, for aligned fields (40), the uniform boundedness (44) andassumption on the
lack of stability of the formgay,);, (made at the start of the paragraph), we find now,
forall ¢,

v < ap, (th,Tthhq) + w2(€vhq,1~)hq)L2(Q)
< 8 pig + W (EVhy, Ty ) r2() < 0 g + WPllel| Lo 1ong I 20 150, 2(0)-
Above, vy, is defined as in (37). Using the discrete version of Poirisamequality’
in Sy, , we get
v < g+ Cpw?|ell L (o) 0 [on, |l L2(0) -
But we have bothim, p, = 0 andlim, |vn, [/ 220y = 0, which leads to a contradic-

tion. So, we conclude that we have the uniform stability effitrms(a, ), for aligned
fields, that is (45), whew # 0.

Lemma 5.3 Under the condition on the contrast (18), one hés= 0 in (46).

Proof. We remark that the sequen@é,, ), is bounded inL*(Q2), so one can extract a
subsequence — still denoted Bl 1., ), —and introducd/™ € L?(Q) such thatV'y, )4
convergesveaklyto U* in L*(Q):

V5, — U* weakly inL*(Q). (47)
Up to the extraction of another subsequence, we keep the satroéindices; in (46)
and (47). From this point on, our aim is to prove that, U™) solves the two-unknown
problem (3), withf = 0. For that, we need to prove that belongs toH: (). First,

we check that/«* belongs taL? (), using differentiation in the sense of distributions.
So, givenZ € D(Q2)?, let us computéVu*, Z):

(Vu*,Z) = —(u,divZ)= —/ u* div Z dx
Q
= —lim/ v, div Z dz = lim By, (Z, v, ) -
q Q q
For the last equality, we refer to Remark 4.1.

According to (3.15) and (3.22) of [7], give# < H’”l(Q), for all ¢, there exists
Z}, € Vp, suchthat

th(th — Z,w) =0, Vwe Shq ;
1Zh, — Z| L2 < Chy" | Z| e+ ()

2The discrete Poincaré inequality writda | 2 (o) < Cp|lw||z forallw € S, with Cp independent
of h (see Corollary 4.3 of [4]).
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Above,C is independent oZ andh,.
As (vn,, V1,) € Ap,, We can write successively:

- / Vn, div Z dx = By, (Zn,,vn,) = By (0hys Z1,) 2 / UV, - Z, da.
Q Q

Since(uZy,), converges strongly taZ in L*(Q) and(Vy, ), convergesveaklyto
U* in L*(Q), we conclude that

<Vu*,Z>:/uU*-de, VZ € D(Q)%
Q

In other wordsy* € H' () and moreoveKu* = pU*.
Second, one has* € H}(Q) if, and only if, there holds

/ (u*divZ 4+ Vu* - Z) de =0, VYZ e C>®(Q)e
Q
This time, we find

/u*diVZda: = lim/vhqdiVZda::—hmth(Z,vhq)
Q a Jo a

= - 115[1 th (th s 'Uhq) = — lign(uvhq, th)LQ(Q)

= —/uU*-de:—/Vu*-de,
Q Q

which proves that* € Hi(Q).
Third, let us check thatu*, U*) € HL () x L*(Q2) solves the original two-unknown
problem (3), withf = 0. As Vu* = pU™, we obviously have that
(WU*, Z) o) — (Vu*, Z) 2y =0 VZ € L*(Q).
Consider next € D(Q):

(U*,V2)p2(q) — wi(eu”, 2) 12) = hgﬂ{(th, Vz)r2 ) — @ (Evn, 2) 2(0) }-

Again, let us integrate the first term by parts, element bynelet:

(th,Vz)Lz(Q) = Z Vi, - Vzdo
TeT v T
= Z {—/zdiv Vi, dv —|—/ 2(Vh, - njar) da}
TeT T or
= —/thzdivthdx—i— Z Hz[th.n]da
KEFQ
= By, (2,Vh,) (48)
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Above, we used the fact th&t;,, -n is continuous across faces®f. Also, to compute
the contribution on the remaining faces (i.e. thosé&pf, we used the definition of the
jumps of the normal component on those faces {de2).
According to (3.13) and (3.19) of [7], given € H*+1(Q), for all ¢, there exists
Zh, € Sh, such that
B,’:q (2n, —2, W) =0, YWV, ;
I2h, = 2ll12(0) < Ch" ! [2lmrr(qy,  Nl2n, — 2llz < Chy® 2| prs (.-
Above,C is independent of andh,,.
Therefore, we reach
(Vg Vz)Lz(Q) — wz(evhq L Z)L2(Q)
= B;q (th, th) — w2 (é"Uhq, Z)LQ(Q)
29
(:) th (th, th) — w2 (é"Uhq, Z)LQ(Q)
= th (th, th) — w2(evhq, th)LZ(Q) + w2(evhq, Zhy — Z)Lz(g)
= a’hq (th’ (th ’ 0)) + w2 (E’Uhq ’ th - Z)Lz(ﬂ)'

Let us consider each term of the right-hand side separathbng goes to infinity:

|an, (Vhy, (20,5 0)) < pgll(zn, 5 O)ln, = Hgllzn,llz — 0.
For the other term:
[(evhys 20y — 2)L2()| < llellLoe@)llvn, 22y 120, — 2llL2(2) — 0.
We thus conclude that
(U*,V2)p2(q) — w?(eu*, 2)120) =0, Vz € D(Q).

By density, this is also true for all € H{ (). In other words(u*, U™) solves (3),
with f = 0. As a consequence, under the condition on the contrastkfind that
(u*,U") = (0,0).

O

Remark 5.4 Since we proceed by contradiction, no value of the stahilitsameter
can be exhibited (cf. (45)). In particular, the sensivityoofo the pulsationv is not
provided. To our knowledge, no such result can be found iditd@ture, including
research works that rely on the use of the standard, confagrfinite element method
for the interface problem we consider [2, 11, 5]. A possibiplanation is that, for
a setting that includes an interface between a dielectrid armetamaterial, little is
known on the spectral behavior of the (exact) operator.
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5.4 Error estimates

1
We use the notatiofi(v, V')|lo,, = (|||M|%VH%2(Q) + ||v|\Lz(Q)) * to represent the
weightedZ?(Q) norm on(S, + HE(R2)) x L*(Q).
We recall that(u, U) (resp.(up, U},)) denotes the solution to the exact two-unknown

problem (3) (resp. discrete two-unknown problem (32)).be an arbitrary element
in Sy,. Then we definéV € V, by

(UV, W) 20y — Bi(0, W) =0 YW € V. (49)

Thus,(V,v) satisfy (31): they aralignedfields. Let us now use the uniform stability
of the forms(ay, )., i.e. condition (45), to establish error estimates. Acoayly, we
have

|(v—un, V —Un)|n
ah((v —up, V —-Uyp), (w, W))

1
< — su
=T weswevs (e, W)lln
- 1 ah((u—uh,U—Uh), (w,W))
— su
S0 weswen, (e, W)ln
n 1 CL}L((U - u, V- U)a (U), W)) (50)
— sup
0 weS,,Wevy, (| (w, W)l[n
1 ah((ua U)7 (’LU, W)) + (fv w)LQ(Q)
=— su
0 wesyWev, (e, W)lln
. 1 ah((v—u,V—U), (w,W))
— sup
T weS,,WeV, (| (w, W)l[n

The first term on the right hand side of (50) represents thsistancy error while the
second term on the right hand side of (50) represents thexzippation error.

Approximation error By the definition ofa,;,, we have

ah((v —w,V - U), (w, W)) = By(V -U,w)+ (u(V —U), W) 0
—Bj(v—u, W) — w?(e (v —u), w)r2(0)(51)

3 We recall that(V, W) — WV, TW)p2q) = ([u|V,W)2 ) is a bilinear, continuous and

coercive form over.?(Q) x L?(R2), whereT is the operator used to prove Theorem 3.2. In additiBn,
belongs toL(V},) and it is bijective because there are no continuity requéres across the interface for
elements of the spadé, .
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According to (3.15) and (3.13) of [7], there exist elemerts € S;, andIl, U € V),
such that

Bh(HhU—U,w) = 0, YweS,
By (mpu—u,W) = 0, YW € V.

Now we choose = 7, u and note that the correspondiRgis defined via (49).

Then, for allW € V,, we have
(ILLV, W)LQ(Q) = B}t(ﬂ-huv W) = B;;(uv W) = (IUUv W)L2(Q)

Thus,V is merely theL?-projection ofU with respect to the weighted inner product
(15 ) L2(0)- Therefore, fow = m,u, (51) becomes

an ((mu —w,V —U), (w, W)) = By(V = U,w) — (e (mhu — u), w) 12
Using the definition ofl, U,
an ((Whu —u,V - U), (w, W)) = Bp(V = TILU, w) — w2 (e (mpt — ), w) o)
By the inequality (30) and the equivalence of nofing| x- and| - || 2(q),

ap, ((ﬂ'hu —u,V-U), (w, W))

IN

IV =TI Ullx |wllz + w? max(ex, e2]) [mau — ul|L2(0) [w]lL2(o)

P RV - D) ol
min(p1, |pel)?

+w?max(eq, e2]) [Ty — ullL2() [wllz2()-

With the help of the discrete version of Poincaré’s inetjyah Sy, we obtain

ah((whu—u,V—U), (w, W)) < CH(whu—u,V—HhU)H H(w W)‘

)

0,1 ‘h

whereC = C(w?,Cp, 3,¢1,€2, i1, pi2). Hence

ap, ((Whu —u,V-U), (w, W))

sup

< CH ot —u, V —T,U H
s 1w Wl ( )

0,p

We observe first that by the triangle inequality

1 1 1
ul? (V =ThU)l g2(0) < [[lul? (V = U)llzz@) + ll|pl* (U = LU p2(q),
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and then sincd is the L2-projection ofU with respect to the weighted inner product
(1, +) L2(0), the following holds (see footnotd:

a2 (V=032 = WV =U),T(V-U))Lq

= (WV-U),T(V-U)+TUU - V))L2q)
(|pl(V =U), (I, U - U)) 20
il (V = U) 2o lul? (U = U)| 20
so[[pl? (V =)z < llul? (U = LU)| 12 - (52)

IN

With that, we can obtain error estimates. According to Theo8.4 and Theorem 3.5
of [7], we have respectively

l7mhu — UHLz(Q) < O pmin(k+1,s+1) |’U,|Hs+1(Q) if ue HSJrl(Q) ,

WU — Ul|g2(qy < C LS U ysi ) U € HTH(Q),

wheref is the maximal degree of the polynomials that define the diedields, and”
is independent ofi, U andh. It is possible to obtain more precise results.

First, we can obtain similar estimates, under the weakemagsons that, andU be
piecewise smoothnamely

we € HPH (), €=1,2 ; U, H (), £=1,2. (53)

Within this setting, using the identi®y = 1 ~!Vu, we have automatically = s — 1,
as soon ag is piecewise smooth (which is the case as it is piecewiseaot)sSecond,
the results can also be extended non-integer valuesf s (and.S). Hence, we find
that

||7rhu _ UHLz(Q) < Chmin(kJrLerl) , ||HhU _ U||L2(Q) < Chmin(kJrl,s) , (54)

wheres > 0 defines the piecewise smoothness.dtf. (53)), andC is independent
of h.

Thus, we conclude that for the term representing the appration error, we have

ap ((ﬂ'h’u/ —u, V- U)a (’LU, W)) .
sup <C hmln(k+1,s) )
wES,,WEV), [[(w, W)||n

Consistency error By the definition ofa;,, we have

an (. U), (. W) + (f,w)12(0)
= Bu(U,w) + (nU, W) (q) — Bj(u, W) — (e u,w) p2(0) + (f, w) 226

4Indeed, the proofs of the above results are obtained withele of the standard theory of polynomial
preserving interpolation operators suchmgsandIl;, (see pp. 3836-3837 of [7]).
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Integrating by parts, element by element (cf. (48)), we i B}; (u, W) = (W, Vu) 2.
Using the definition (28) foB;, (U, w), we have

an ((U’a U)v (U), W)) + (fa w)Lz(Q)
= —(divU +w’cu— f,w)2) + (0 U — Vu, W)L )-

Therefore, aglU = Vu in L?(Q) anddivU +w?cu — f = 0in L?(Q), we conclude
that the consistency term is zero.

Error estimate We obtain finally the following estimates.

Theorem 5.5 Assume the condition on the contrast (39) holds. 4 et 0 define the
piecewise smoothnesswods in (53) and lek: be the maximal degree of the polynomials
that define the discrete fields. Then one has

)% (U = U2y < C hmnEHL) (55)
Ju—up||z < C R™mES) (56)
= w20y < CRmREHLS) (57)

Proof. Starting from (50) and combining all the previous reswits know that
[(mhw — wp, V= Up)||n < C hmnETLS)

whereV is theL?-projection ofJ with respect to the weighted inner prodggt, L2 (Q)
(see (49)).
Then, using (52) and (54), we find

1 1 1 min s
lulz U=Un)llz@) < el U=V) 2@ +llul? (V-Un)llLz) < C RN,
Next, we recall from Theorem 3.4 of [7] thit — mpul| z < C h™*(%:5) 'so we get

lu—unllz < lu—mnullz + |mpu — unllz < C ™).

Moreover, by the discrete Poincaré inequality on the sgace

Imhu — unl 20y < Cpllmnu — upl|z < C R™EFLS),

Using again Theorem 3.4 of [7] to readly — myul|r2(q) < Chmint+Lsth e
conclude that

|lu — uhHLQ(Q) < lu— 7ThuHL2(Q) + ||mhu — uhHLQ(Q) < C prin(ktLs),
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6 Numerical experiments

In this section, numerical examples will be provided. Weetgk= [0, 5] x [0,2]. The
data in (1) are defined as follows:

fay) sin(5y), ifr <1 1, if v <lorz>3
Qj, = 3 s € = = 3 .
Y 0, otherwise a -3, otherwise

The exact solution for (1) with data defined above can beyemsiind by the method
of separation of variables. For all numerical results shd&low, piecewise linear
approximation is usedi(= 1).

6.1 Thecases =0

In Figure 2, results are shown for the scalar unknowraduy,. In the left and the
middle figures, we have shown the exact and the numericatisotuon the whole
domain respectively. On the right figure, we compare the migaleand the exact
solutions aty = 0.98. We use blue curve with circles to represent the numerical
solution and red curve to represent the exact solution.

In Figure 3 and Figure 4, results are shown for the vector ankisU andU,
with Figure 3 showing the first componerifs and (Uj); and Figure 4 showing the
second components$, and(U},)2. In the left and the middle figures, we have shown
the exact and the numerical solutions on the whole domapertisely. On the right
figure, we compare the numerical and the exact solutiops-at0.98. We use blue
curve with circles to represent the numerical solution aedi curve to represent the
exact solution.
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Figure 2: Casey = 0. Left: Exact solution:. Middle: Numerical solution:,. Right:
Comparison of numerical and exact solutiong at 0.98.

In Table 1, L?-norm errors are shown for various mesh sizes. We see that the
DG method we propose achieves the expected second ordeaagcln addition, we
compare the accuracy of the DG method and that of the configriimite element
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Figure 3: Casev = 0. Left: Exact solution/;. Middle: Numerical solutio{U},);.
Right: Comparison of numerical and exact solutiong at 0.98.
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Figure 4: Casev = 0. Left: Exact solution/>. Middle: Numerical solutiof{Uy,)a.
Right: Comparison of numerical and exact solutiong at 0.98.

method (FEM) [2, 11, 5]. The conforming FEM is defined on theffitmiangulatiori

and the correspondink?-norm errors for various mesh sizes are shown again in Table
1. We observe the second order accuracy of both the DG metitbtha conforming
FEM. Furthermore, we see that the error of the DG method iscipately3.5 times
smaller than that of the conforming FEM. For the sake of catgpless, we mention
that the above errors are computed by using the quadraterevith quadrature points

located on the mid-points of the edges.

6.2 The casev # 0

In this subsection, we present an example wits 1.6.

In Figure 5, results are shown for the scalar unknowns. Iniféig and Figure 7,
numerical results are shown for the vector unknowns, wiufé 6 showing the first
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h Our method| Order | Conforming FEM| Order
0.1768| 6.9685e-004 - 2.5235e-003 -
0.0884 | 1.7429e-004 1.99936 6.3346e-004 | 1.99412
0.0442| 4.3577e-005 1.99986 1.5853e-004 | 1.99851
0.0221| 1.0894e-005 1.99997 3.9643e-005 | 1.99963
0.0110| 2.7236e-006 1.99999 9.9113e-006 | 1.99991

Table 1: Casey = 0. L2-norm errors with the DG method and the conforming FEM.

components and Figure 7 showing the second componentsbla Ia_2-norm errors
with the DG method are shown for various mesh sizes. We s¢ehthdG method
achieves the expected second order accuracy. In addiieatnorm errors with the
conforming FEM are shown. We observe the second order ancafahe conforming
FEM. In this instance, we see that the error of the DG methapmoximately34

times smaller than that of the conforming FEM.

Exact solution

10

&

&

&
&

Numerical solution

04 04
y 03
0.2
01
o
0. -0.1
-0; -02
-0 -03
-04 04

Numerical and exact solutions at y=0.98

Numerical
—— Exact

0. L L L L
0 05 1 15 2

25 3 35 4 45 5

Figure 5: Casev = 1.6. Left: Exact solutionu. Middle: Numerical solutionuy,.
Right: Comparison of numerical and exact solutiong at 0.98.

h Our method| Order | Conforming FEM| Order
0.1768| 6.1975e-003 - 2.7622e-001 -
0.0884| 1.5507e-003 1.99878 5.7594e-002 | 2.26184
0.0442| 3.8775e-004 1.99972 1.3586e-002 | 2.08379
0.0221| 9.6941e-005 1.99995 3.3548e-003 | 2.01785
0.0110| 2.4236e-005 1.99996 8.3616e-004 | 2.00435

Table 2: Cases = 1.6. L2-norm errors with the DG method and the conforming FEM.
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Exact solution Numerical solution Numerical and exact solutions at y=0.98
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Figure 6: Casey = 1.6. Left: Exact solutiorl/;. Middle: Numerical solutioUy )y,.
Right: Comparison of numerical and exact solutiong at 0.98.
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Figure 7: Casev = 1.6. Left: Exact solutiorl/,. Middle: Numerical solutiof{Us)y,.
Right: Comparison of numerical and exact solutiong at 0.98.
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