A. Carpentier and R. Munos, Finite-time analysis of stratified sampling for monte carlo, Neural Information Processing Systems (NIPS), 2011.
URL : https://hal.archives-ouvertes.fr/inria-00636924

A. Carpentier and R. Munos, Finite-time analysis of stratified sampling for monte carlo, p.636924, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00636924

P. Etoré and B. Jourdain, Adaptive Optimal Allocation in Stratified Sampling Methods, Methodology and Computing in Applied Probability, vol.9, issue.2, pp.335-360, 2010.
DOI : 10.1007/s11009-008-9108-0

P. Etoré, G. Fort, and B. Jourdain, On adaptive stratification, Annals of Operations Research, vol.54, issue.2, 2011.
DOI : 10.1007/s10479-009-0638-9

E. Giné and R. Nickl, Confidence bands in density estimation. The Annals of Statistics, pp.1122-1170, 2010.

P. Glasserman, Monte Carlo methods in financial engineering, 2004.
DOI : 10.1007/978-0-387-21617-1

P. Glasserman, P. Heidelberger, and P. Shahabuddin, Asymptotically Optimal Importance Sampling and Stratification for Pricing Path-Dependent Options, Mathematical Finance, vol.9, issue.2, pp.117-152, 1999.
DOI : 10.1111/1467-9965.00065

V. Grover, Active learning and its application to heteroscedastic problems, 2009.

M. Hoffmann and O. Lepski, Random rates in anisotropic regression, Annals of statistics, pp.325-358, 2002.

R. Kawai, Asymptotically optimal allocation of stratified sampling with adaptive variance reduction by strata, ACM Transactions on Modeling and Computer Simulation, vol.20, issue.2, pp.1-17, 2010.
DOI : 10.1145/1734222.1734225

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method, Wileyinterscience, 2008.